Articles | Volume 26, issue 22
https://doi.org/10.5194/hess-26-5737-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5737-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Risks of seasonal extreme rainfall events in Bangladesh under 1.5 and 2.0 °C warmer worlds – how anthropogenic aerosols change the story
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
Karsten Haustein
CORRESPONDING AUTHOR
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
Department of Meteorology, University Leipzig, Stephanstr. 3, 04103 Leipzig, Germany
Emily J. Barbour
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
Commonwealth Scientific and Industrial Research Organisation, Land and Water, Canberra, ACT 2601, Australia
Sarah N. Sparrow
Department of Engineering Science, Oxford e-Research Centre, University of Oxford, Oxford, OX1 3QG, UK
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
Department of Engineering Science, Oxford e-Research Centre, University of Oxford, Oxford, OX1 3QG, UK
David C. H. Wallom
Department of Engineering Science, Oxford e-Research Centre, University of Oxford, Oxford, OX1 3QG, UK
Myles R. Allen
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
Related authors
Sjoukje Philip, Sarah Sparrow, Sarah F. Kew, Karin van der Wiel, Niko Wanders, Roop Singh, Ahmadul Hassan, Khaled Mohammed, Hammad Javid, Karsten Haustein, Friederike E. L. Otto, Feyera Hirpa, Ruksana H. Rimi, A. K. M. Saiful Islam, David C. H. Wallom, and Geert Jan van Oldenborgh
Hydrol. Earth Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, https://doi.org/10.5194/hess-23-1409-2019, 2019
Short summary
Short summary
In August 2017 Bangladesh faced one of its worst river flooding events in recent history. For the large Brahmaputra basin, using precipitation alone as a proxy for flooding might not be appropriate. In this paper we explicitly test this assumption by performing an attribution of both precipitation and discharge as a flooding-related measure to climate change. We find the change in risk to be of similar order of magnitude (between 1 and 2) for both the meteorological and hydrological approach.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
EGUsphere, https://doi.org/10.5194/egusphere-2023-1460, https://doi.org/10.5194/egusphere-2023-1460, 2023
Short summary
Short summary
Europe is regularly affected by compound events and natural hazards that occur simultaneously or with a temporal lag and are connected with disproportional impacts. Within the interdisciplinary project climXtreme (https://climxtreme.net/) we investigate the interplay of these events, their characteristics and changes, intensity, frequency and uncertainties in the past, present and future, as well as the associated impacts on different socio-economic sectors in Germany and Central Europe.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Joni-Pekka Pietikaeinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
EGUsphere, https://doi.org/10.5194/egusphere-2023-1463, https://doi.org/10.5194/egusphere-2023-1463, 2023
Short summary
Short summary
With a team of 20 authors from different countries, we tried to compile the impacts of drought and heat on European forests in the period 2018–2022. This is a research approach that transcends subject and country borders.
Daniel Gliksman, Paul Averbeck, Nico Becker, Barry Gardiner, Valeri Goldberg, Jens Grieger, Dörthe Handorf, Karsten Haustein, Alexia Karwat, Florian Knutzen, Hilke S. Lentink, Rike Lorenz, Deborah Niermann, Joaquim G. Pinto, Ronald Queck, Astrid Ziemann, and Christian L. E. Franzke
Nat. Hazards Earth Syst. Sci., 23, 2171–2201, https://doi.org/10.5194/nhess-23-2171-2023, https://doi.org/10.5194/nhess-23-2171-2023, 2023
Short summary
Short summary
Wind and storms are a major natural hazard and can cause severe economic damage and cost human lives. Hence, it is important to gauge the potential impact of using indices, which potentially enable us to estimate likely impacts of storms or other wind events. Here, we review basic aspects of wind and storm generation and provide an extensive overview of wind impacts and available indices. This is also important to better prepare for future climate change and corresponding changes to winds.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
EGUsphere, https://doi.org/10.5194/egusphere-2023-717, https://doi.org/10.5194/egusphere-2023-717, 2023
Short summary
Short summary
As our climate warms, soils in West-Central Europe and across much of the northern extratropics are expected to dry out more often. An event such as the 2022 summer soil drought in Europe would naturally occur about once per century, but the current global warming of 1.2 °C has already increased the probability of such an event five-fold. With even more warming, at +2 °C, we expect a 2022-like drought or worse every 10th summer, being 10 times more likely due to human-induced climate change.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Folmer Krikken, Flavio Lehner, Karsten Haustein, Igor Drobyshev, and Geert Jan van Oldenborgh
Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, https://doi.org/10.5194/nhess-21-2169-2021, 2021
Short summary
Short summary
In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying observationally constrained data and multiple climate models. We find a small reduced probability of such events, based on reanalyses, but a small increased probability due to global warming up to now and a more robust increase in the risk for such events in the future, based on climate models.
Sarah Sparrow, Andrew Bowery, Glenn D. Carver, Marcus O. Köhler, Pirkka Ollinaho, Florian Pappenberger, David Wallom, and Antje Weisheimer
Geosci. Model Dev., 14, 3473–3486, https://doi.org/10.5194/gmd-14-3473-2021, https://doi.org/10.5194/gmd-14-3473-2021, 2021
Short summary
Short summary
This paper describes how the research version of the European Centre for Medium-Range Weather Forecasts’ Integrated Forecast System is combined with climateprediction.net’s public volunteer computing resource to develop OpenIFS@home. Thousands of volunteer personal computers simulated slightly different realizations of Tropical Cyclone Karl to demonstrate the performance of the large-ensemble forecast. OpenIFS@Home offers researchers a new tool to study weather forecasts and related questions.
Nicholas J. Leach, Stuart Jenkins, Zebedee Nicholls, Christopher J. Smith, John Lynch, Michelle Cain, Tristram Walsh, Bill Wu, Junichi Tsutsui, and Myles R. Allen
Geosci. Model Dev., 14, 3007–3036, https://doi.org/10.5194/gmd-14-3007-2021, https://doi.org/10.5194/gmd-14-3007-2021, 2021
Short summary
Short summary
This paper presents an update of the FaIR simple climate model, which can estimate the impact of anthropogenic greenhouse gas and aerosol emissions on the global climate. This update aims to significantly increase the structural simplicity of the model, making it more understandable and transparent. This simplicity allows it to be implemented in a wide range of environments, including Excel. We suggest that it could be used widely in academia, corporate research, and education.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Nicholas James Leach, Zebedee Nicholls, Stuart Jenkins, Christopher J. Smith, John Lynch, Michelle Cain, Bill Wu, Junichi Tsutsui, and Myles R. Allen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-379, https://doi.org/10.5194/gmd-2019-379, 2020
Revised manuscript not accepted
Short summary
Short summary
GIR is a simple climate model designed to make exploration of the impact of greenhouse gas and aerosol emissions on the climate easy and understandable for its users. It uses an intuitive input and output structure, and the model is itself a set of only six equations. This lends the model to applications such as teaching, or as a lowest common denominator model between groups in large-scale climate assessments. It could also be used to investigate more complex models through emulation.
Sihan Li, David E. Rupp, Linnia Hawkins, Philip W. Mote, Doug McNeall, Sarah N. Sparrow, David C. H. Wallom, Richard A. Betts, and Justin J. Wettstein
Geosci. Model Dev., 12, 3017–3043, https://doi.org/10.5194/gmd-12-3017-2019, https://doi.org/10.5194/gmd-12-3017-2019, 2019
Short summary
Short summary
Understanding the unfolding challenges of climate change relies on climate models, many of which have regional biases larger than the expected climate signal over the next half-century. This work shows the potential for improving climate model simulations through a multiphased parameter refinement approach. Regional warm biases are substantially reduced, suggesting this iterative approach is one path to improving climate models and simulations of present and future climate.
Sjoukje Philip, Sarah Sparrow, Sarah F. Kew, Karin van der Wiel, Niko Wanders, Roop Singh, Ahmadul Hassan, Khaled Mohammed, Hammad Javid, Karsten Haustein, Friederike E. L. Otto, Feyera Hirpa, Ruksana H. Rimi, A. K. M. Saiful Islam, David C. H. Wallom, and Geert Jan van Oldenborgh
Hydrol. Earth Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, https://doi.org/10.5194/hess-23-1409-2019, 2019
Short summary
Short summary
In August 2017 Bangladesh faced one of its worst river flooding events in recent history. For the large Brahmaputra basin, using precipitation alone as a proxy for flooding might not be appropriate. In this paper we explicitly test this assumption by performing an attribution of both precipitation and discharge as a flooding-related measure to climate change. We find the change in risk to be of similar order of magnitude (between 1 and 2) for both the meteorological and hydrological approach.
Christopher J. Smith, Piers M. Forster, Myles Allen, Nicholas Leach, Richard J. Millar, Giovanni A. Passerello, and Leighton A. Regayre
Geosci. Model Dev., 11, 2273–2297, https://doi.org/10.5194/gmd-11-2273-2018, https://doi.org/10.5194/gmd-11-2273-2018, 2018
Short summary
Short summary
FAIR v1.3 is a simple Python-based climate model emulator. It takes emissions of greenhouse gases and aerosol and ozone precursors to calculate radiative forcing and temperature change. It includes a simple representation of carbon cycle feedbacks due to temperature and accumulated carbon uptake. Large ensembles can be run with minimal computational expense for any user-specified emissions pathway. We produce such an ensemble using the RCP emissions datasets.
Benoit P. Guillod, Richard G. Jones, Simon J. Dadson, Gemma Coxon, Gianbattista Bussi, James Freer, Alison L. Kay, Neil R. Massey, Sarah N. Sparrow, David C. H. Wallom, Myles R. Allen, and Jim W. Hall
Hydrol. Earth Syst. Sci., 22, 611–634, https://doi.org/10.5194/hess-22-611-2018, https://doi.org/10.5194/hess-22-611-2018, 2018
Short summary
Short summary
Assessing the potential impacts of extreme events such as drought and flood requires large datasets of such events, especially when looking at the most severe and rare events. Using a state-of-the-art climate modelling infrastructure that is simulating large numbers of weather time series on volunteers' computers, we generate such a large dataset for the United Kingdom. The dataset covers the recent past (1900–2006) as well as two future time periods (2030s and 2080s).
Richard J. Millar, Zebedee R. Nicholls, Pierre Friedlingstein, and Myles R. Allen
Atmos. Chem. Phys., 17, 7213–7228, https://doi.org/10.5194/acp-17-7213-2017, https://doi.org/10.5194/acp-17-7213-2017, 2017
Short summary
Short summary
Simple representations of the global coupled climate–carbon-cycle system are required for climate policy analysis. Existing models have often failed to capture important physical dependencies of the climate response to carbon dioxide emissions. In this paper we propose a simple but novel modification to impulse-response climate–carbon-cycle models to capture these physical dependencies. This simple model creates an important tool for both climate policy and climate science analysis.
Benoit P. Guillod, Richard G. Jones, Andy Bowery, Karsten Haustein, Neil R. Massey, Daniel M. Mitchell, Friederike E. L. Otto, Sarah N. Sparrow, Peter Uhe, David C. H. Wallom, Simon Wilson, and Myles R. Allen
Geosci. Model Dev., 10, 1849–1872, https://doi.org/10.5194/gmd-10-1849-2017, https://doi.org/10.5194/gmd-10-1849-2017, 2017
Short summary
Short summary
The weather@home climate modelling system uses the computing power of volunteers around the world to generate a very large number of climate model simulations. This is particularly useful when investigating extreme weather events, notably for the attribution of these events to anthropogenic climate change. A new version of weather@home is presented and evaluated, which includes an improved representation of the land surface and increased horizontal resolution over Europe.
Diego Montes, Juan A. Añel, Tomás F. Pena, Peter Uhe, and David C. H. Wallom
Geosci. Model Dev., 10, 811–826, https://doi.org/10.5194/gmd-10-811-2017, https://doi.org/10.5194/gmd-10-811-2017, 2017
Short summary
Short summary
This paper discusses the how the combination of cloud and volunteer computing can be a feasible solution to address large, complex, and expensive computing problems such as climate modelling.
Daniel Mitchell, Krishna AchutaRao, Myles Allen, Ingo Bethke, Urs Beyerle, Andrew Ciavarella, Piers M. Forster, Jan Fuglestvedt, Nathan Gillett, Karsten Haustein, William Ingram, Trond Iversen, Viatcheslav Kharin, Nicholas Klingaman, Neil Massey, Erich Fischer, Carl-Friedrich Schleussner, John Scinocca, Øyvind Seland, Hideo Shiogama, Emily Shuckburgh, Sarah Sparrow, Dáithí Stone, Peter Uhe, David Wallom, Michael Wehner, and Rashyd Zaaboul
Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, https://doi.org/10.5194/gmd-10-571-2017, 2017
Short summary
Short summary
This paper provides an experimental design to assess impacts of a world that is 1.5 °C warmer than at pre-industrial levels. The design is a new way to approach impacts from the climate community, and aims to answer questions related to the recent Paris Agreement. In particular the paper provides a method for studying extreme events under relatively high mitigation scenarios.
Mitchell T. Black, David J. Karoly, Suzanne M. Rosier, Sam M. Dean, Andrew D. King, Neil R. Massey, Sarah N. Sparrow, Andy Bowery, David Wallom, Richard G. Jones, Friederike E. L. Otto, and Myles R. Allen
Geosci. Model Dev., 9, 3161–3176, https://doi.org/10.5194/gmd-9-3161-2016, https://doi.org/10.5194/gmd-9-3161-2016, 2016
Short summary
Short summary
This study presents a citizen science computing project, known as weather@home Australia–New Zealand, which runs climate models on thousands of home computers. By harnessing the power of volunteers' computers, this project is capable of simulating extreme weather events over Australia and New Zealand under different climate scenarios.
Geert Jan van Oldenborgh, Sjoukje Philip, Emma Aalbers, Robert Vautard, Friederike Otto, Karsten Haustein, Florence Habets, Roop Singh, and Heidi Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-308, https://doi.org/10.5194/hess-2016-308, 2016
Manuscript not accepted for further review
Short summary
Short summary
Extreme rain caused flooding in France and Germany at the end of May 2016. After such an event the question is always posed to what extent it can be attributed to anthropogenic climate change. Using observations and five model ensembles we give a first answer. For the 3-day precipitation extremes over the Seine and Loire basins that caused the flooding all methods agree that the probability has increased by a factor of about two. For 1-day precipitation extremes in Germany the methods disagree.
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71–88, https://doi.org/10.5194/esd-7-71-2016, https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Short summary
We introduce a novel technique to bias correct climate model output for impact simulations that preserves its physical consistency and multivariate structure. The methodology considerably improves the representation of extremes in climatic variables relative to conventional bias correction strategies. Illustrative simulations of biosphere–atmosphere carbon and water fluxes with a biosphere model (LPJmL) show that the novel technique can be usefully applied to drive climate impact models.
G. J. van Oldenborgh, F. E. L. Otto, K. Haustein, and H. Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-13197-2015, https://doi.org/10.5194/hessd-12-13197-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
On 4–6 December 2015, the storm 'Desmond' caused very heavy rainfall in northern England and Scotland, which led to widespread flooding. We provide an initial assessment of the influence of anthropogenic climate change on the likelihood of precipitation events like this. We use three independent methods of extreme event attribution based on observations and two climate models. All methods agree that the effect of climate change is positive, making events like this about 40% (5–80%) more likely.
K. Haustein, R. Washington, J. King, G. Wiggs, D. S. G. Thomas, F. D. Eckardt, R. G. Bryant, and L. Menut
Geosci. Model Dev., 8, 341–362, https://doi.org/10.5194/gmd-8-341-2015, https://doi.org/10.5194/gmd-8-341-2015, 2015
Short summary
Short summary
In this paper, the performance of three commonly used dust emissions schemes is investigated using a box model environment and observational data obtained in Botswana (Sua Pan). The results suggest that all schemes fail to reproduce the observed horizontal dust flux properly. They overestimate its magnitude by several orders of magnitude. The key parameter for this mismatch is the surface crusting which limits the availability of erosive material, even at higher wind speeds.
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
A semi-parametric hourly space–time weather generator
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach
Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Investigating the response of land–atmosphere interactions and feedbacks to spatial representation of irrigation in a coupled modeling framework
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Statistical post-processing of precipitation forecasts using circulation classifications and spatiotemporal deep neural networks
Sensitivity of the pseudo-global warming method under flood conditions: a case study from the northeastern US
Hybrid forecasting: blending climate predictions with AI models
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Local moisture recycling across the globe
How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?
Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany
Divergent future drought projections in UK river flows and groundwater levels
The Dilemma of Including 'Hot' Models in Climate Impact Studies: A Hydrological Study
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Accounting for Hydroclimatic Properties in Flood Frequency Analysis Procedures
Declining water resources in response to global warming and changes in atmospheric circulation patterns over southern Mediterranean France
Linking the complementary evaporation relationship with the Budyko framework for ungauged areas in Australia
Pan evaporation is increased by submerged macrophytes
Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis
Characterizing basin-scale precipitation gradients in the Third Pole region using a high-resolution atmospheric simulation-based dataset
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Hydrological concept formation inside long short-term memory (LSTM) networks
A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China
Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations
On the links between sub-seasonal clustering of extreme precipitation and high discharge in Switzerland and Europe
Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature
Investigating the response of leaf area index to droughts in southern African vegetation using observations and model simulations
Recent decrease in summer precipitation over the Iberian Peninsula closely links to reduction in local moisture recycling
Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall erosivity
Critical transitions in the hydrological system: early-warning signals and network analysis
Testing a maximum evaporation theory over saturated land: implications for potential evaporation estimation
The role of morphology in the spatial distribution of short-duration rainfall extremes in Italy
Impact of correcting sub-daily climate model biases for hydrological studies
The Mesoamerican mid-summer drought: the impact of its definition on occurrences and recent changes
Reconstructing climate trends adds skills to seasonal reference crop evapotranspiration forecasting
Influence of initial soil moisture in a regional climate model study over West Africa – Part 1: Impact on the climate mean
Influence of initial soil moisture in a regional climate model study over West Africa – Part 2: Impact on the climate extremes
Compound flood impact forecasting: integrating fluvial and flash flood impact assessments into a unified system
Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning
Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany
Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023, https://doi.org/10.5194/hess-27-3957-2023, 2023
Short summary
Short summary
Long continuous time series of meteorological variables (i.e. rainfall, temperature) are required for the modelling of floods. Observed time series are generally too short or not available. Weather generators are models that reproduce observed weather time series. This study extends an existing station-based rainfall model into space by enforcing observed spatial rainfall characteristics. To model other variables (i.e. temperature) the model is then coupled to a simple resampling approach.
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023, https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Short summary
Intensity–duration–frequency (IDF) curves describe the likelihood of extreme rainfall and are used in hydrology and engineering, for example, for flood forecasting and water management. We develop a model to estimate IDF curves from daily meteorological observations, which are more widely available than the observations on finer timescales (minutes to hours) that are needed for IDF calculations. The method is applied to all data at once, making it efficient and robust to individual errors.
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023, https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Short summary
High-resolution precipitation data, needed for many applications in hydrology, are typically rare. Such data can be simulated from daily precipitation with stochastic disaggregation. In this work, multiplicative random cascades are used to disaggregate time series of 40 min precipitation from daily precipitation for 81 Swiss stations. We show that very relevant statistics of precipitation are obtained when precipitation asymmetry is accounted for in a continuous way in the cascade generator.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov
EGUsphere, https://doi.org/10.5194/egusphere-2023-811, https://doi.org/10.5194/egusphere-2023-811, 2023
Short summary
Short summary
Paleogeographical data allow to assert that 17–13 ka BP the Caspian Sea level was 80 m above the current one. There are significant disagreements regarding the genesis of this “Great” Khvalynian transgression of the sea, and we tried to shed light on this issue. Using climate and hydrological models as well as the paleo-reconstructions, we proved that the transgression could be initiated solely by hydroclimatic factors within the deglaciation period in the absence of glacial meltwater effect.
Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu
Hydrol. Earth Syst. Sci., 27, 2919–2933, https://doi.org/10.5194/hess-27-2919-2023, https://doi.org/10.5194/hess-27-2919-2023, 2023
Short summary
Short summary
This study aims to investigate the performance of a genetic particle filter which was used as a snow data assimilation scheme across different snow climates. The results demonstrated that the genetic algorithm can effectively solve the problem of particle degeneration and impoverishment in a particle filter algorithm. The system has revealed a low sensitivity to the particle number in point-scale application of the ground snow depth measurement.
Patricia Lawston-Parker, Joseph A. Santanello Jr., and Nathaniel W. Chaney
Hydrol. Earth Syst. Sci., 27, 2787–2805, https://doi.org/10.5194/hess-27-2787-2023, https://doi.org/10.5194/hess-27-2787-2023, 2023
Short summary
Short summary
Irrigation has been shown to impact weather and climate, but it has only recently been considered in prediction models. Prescribing where (globally) irrigation takes place is important to accurately simulate its impacts on temperature, humidity, and precipitation. Here, we evaluated three different irrigation maps in a weather model and found that the extent and intensity of irrigated areas and their boundaries are important drivers of weather impacts resulting from human practices.
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
Hydrol. Earth Syst. Sci., 27, 2559–2578, https://doi.org/10.5194/hess-27-2559-2023, https://doi.org/10.5194/hess-27-2559-2023, 2023
Short summary
Short summary
For rainfall-runoff simulation of a certain area, hydrological models are used, which requires precipitation data and temperature data as input. Since these are often not available as observations, we have tested simulation results from atmospheric models. ERA5-Land and COSMO-REA6 were tested for Slovenian catchments. Both lead to good simulations results. Their usage enables the use of rainfall-runoff simulation in unobserved catchments as a requisite for, e.g., flood protection measures.
Tuantuan Zhang, Zhongmin Liang, Wentao Li, Jun Wang, Yiming Hu, and Binquan Li
Hydrol. Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-1945-2023, https://doi.org/10.5194/hess-27-1945-2023, 2023
Short summary
Short summary
We use circulation classifications and spatiotemporal deep neural networks to correct raw daily forecast precipitation by combining large-scale circulation patterns with local spatiotemporal information. We find that the method not only captures the westward and northward movement of the western Pacific subtropical high but also shows substantially higher bias-correction capabilities than existing standard methods in terms of spatial scale, timescale, and intensity.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Bora Shehu, Winfried Willems, Henrike Stockel, Luisa-Bianca Thiele, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023, https://doi.org/10.5194/hess-27-1109-2023, 2023
Short summary
Short summary
Rainfall volumes at varying duration and frequencies are required for many engineering water works. These design volumes have been provided by KOSTRA-DWD in Germany. However, a revision of the KOSTRA-DWD is required, in order to consider the recent state-of-the-art and additional data. For this purpose, in our study, we investigate different methods and data available to achieve the best procedure that will serve as a basis for the development of the new KOSTRA-DWD product.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-59, https://doi.org/10.5194/hess-2023-59, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface and below ground water.
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-47, https://doi.org/10.5194/hess-2023-47, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022, https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary
Short summary
Floods cause enormous damage to infrastructure and agriculture in India. However, the utility of ensemble meteorological forecast for hydrologic prediction has not been examined. Moreover, Indian river basins have a considerable influence of reservoirs that alter the natural flow variability. We developed a hydrologic modelling-based streamflow prediction considering the influence of reservoirs in India.
Joeri B. Reinders and Samuel E. Munoz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-292, https://doi.org/10.5194/hess-2022-292, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
Flooding presents a major hazard for people and infrastructure along waterways, however, it is challenging to study the likelihood of a flood magnitude occuring regionally due to a lack of long discharge records. We show that hydroclimatic variables like Köppen climate regions and precipitation intensity explain part of the variance in flood frequency distributions and thus reduce the uncertainty of flood probability estimates. This gives watermangers a tool to locally improve flood analysis.
Camille Labrousse, Wolfgang Ludwig, Sébastien Pinel, Mahrez Sadaoui, Andrea Toreti, and Guillaume Lacquement
Hydrol. Earth Syst. Sci., 26, 6055–6071, https://doi.org/10.5194/hess-26-6055-2022, https://doi.org/10.5194/hess-26-6055-2022, 2022
Short summary
Short summary
The interest of this study is to demonstrate that we identify two zones in our study area whose hydroclimatic behaviours are uneven. By investigating relationships between the hydroclimatic conditions in both clusters for past observations with the overall atmospheric functioning, we show that the inequalities are mainly driven by a different control of the atmospheric teleconnection patterns over the area.
Daeha Kim, Minha Choi, and Jong Ahn Chun
Hydrol. Earth Syst. Sci., 26, 5955–5969, https://doi.org/10.5194/hess-26-5955-2022, https://doi.org/10.5194/hess-26-5955-2022, 2022
Short summary
Short summary
We proposed a practical method that predicts the evaporation rates on land surfaces (ET) where only atmospheric data are available. Using a traditional equation that describes partitioning of precipitation into ET and streamflow, we could approximately identify the key parameter of the predicting formulation based on land–atmosphere interactions. The simple method conditioned by local climates outperformed sophisticated models in reproducing water-balance estimates across Australia.
Brigitta Simon-Gáspár, Gábor Soós, and Angela Anda
Hydrol. Earth Syst. Sci., 26, 4741–4756, https://doi.org/10.5194/hess-26-4741-2022, https://doi.org/10.5194/hess-26-4741-2022, 2022
Short summary
Short summary
Due to climate change, it is extremely important to determine evaporation as accurately as possible. In nature, there are sediments and macrophytes in the open waters; thus, one of the aims was to investigate their effect on evaporation. The second aim of this paper was to estimate daily evaporation by using different models, which, according to results, have high priority in the evaporation prediction. Water management can obtain useful information from the results of the current research.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 26, 4603–4618, https://doi.org/10.5194/hess-26-4603-2022, https://doi.org/10.5194/hess-26-4603-2022, 2022
Short summary
Short summary
There have been many machine learning simulation studies based on eddy-covariance observations for water flux and evapotranspiration. We performed a meta-analysis of such studies to clarify the impact of different algorithms and predictors, etc., on the reported prediction accuracy. It can, to some extent, guide future global water flux modeling studies and help us better understand the terrestrial ecosystem water cycle.
Yaozhi Jiang, Kun Yang, Hua Yang, Hui Lu, Yingying Chen, Xu Zhou, Jing Sun, Yuan Yang, and Yan Wang
Hydrol. Earth Syst. Sci., 26, 4587–4601, https://doi.org/10.5194/hess-26-4587-2022, https://doi.org/10.5194/hess-26-4587-2022, 2022
Short summary
Short summary
Our study quantified the altitudinal precipitation gradients (PGs) over the Third Pole (TP). Most sub-basins in the TP have positive PGs, and negative PGs are found in the Himalayas, the Hengduan Mountains and the western Kunlun. PGs are positively correlated with wind speed but negatively correlated with relative humidity. In addition, PGs tend to be positive at smaller spatial scales compared to those at larger scales. The findings can assist precipitation interpolation in the data-sparse TP.
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022, https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Short summary
In the study we analysed the uncertainties of the meteorological data and model parameterization for evaporation modelling. We have taken a physically based lumped BROOK90 model and applied it in three different frameworks using global, regional and local datasets. Validating the simulations with eddy-covariance data from five stations in Germany, we found that the accuracy model parameterization plays a bigger role than the quality of the meteorological forcing.
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022, https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
Short summary
Despite the accuracy of deep learning rainfall-runoff models, we are currently uncertain of what these models have learned. In this study we explore the internals of one deep learning architecture and demonstrate that the model learns about intermediate hydrological stores of soil moisture and snow water, despite never having seen data about these processes during training. Therefore, we find evidence that the deep learning approach learns a physically realistic mapping from inputs to outputs.
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022, https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Short summary
How to combine multi-source precipitation data effectively is one of the hot topics in hydrometeorological research. This study presents a two-step merging strategy based on machine learning for multi-source precipitation merging over China. The results demonstrate that the proposed method effectively distinguishes the occurrence of precipitation events and reduces the error in precipitation estimation. This method is robust and may be successfully applied to other areas even with scarce data.
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022, https://doi.org/10.5194/hess-26-2697-2022, 2022
Short summary
Short summary
The hydrometeorological skills of two new nowcasting systems for forecasting Mediterranean intense rainfall events and floods are investigated. The results reveal that up to 75 or 90 min of forecast the performance of the nowcasting system blending numerical weather prediction and extrapolation of radar estimation is higher than the numerical weather model. For lead times up to 3 h the skills are equivalent in general. Using these nowcasting systems for flash flood forecasting is also promising.
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Shakirudeen Lawal, Stephen Sitch, Danica Lombardozzi, Julia E. M. S. Nabel, Hao-Wei Wey, Pierre Friedlingstein, Hanqin Tian, and Bruce Hewitson
Hydrol. Earth Syst. Sci., 26, 2045–2071, https://doi.org/10.5194/hess-26-2045-2022, https://doi.org/10.5194/hess-26-2045-2022, 2022
Short summary
Short summary
To investigate the impacts of drought on vegetation, which few studies have done due to various limitations, we used the leaf area index as proxy and dynamic global vegetation models (DGVMs) to simulate drought impacts because the models use observationally derived climate. We found that the semi-desert biome responds strongly to drought in the summer season, while the tropical forest biome shows a weak response. This study could help target areas to improve drought monitoring and simulation.
Yubo Liu, Monica Garcia, Chi Zhang, and Qiuhong Tang
Hydrol. Earth Syst. Sci., 26, 1925–1936, https://doi.org/10.5194/hess-26-1925-2022, https://doi.org/10.5194/hess-26-1925-2022, 2022
Short summary
Short summary
Our findings indicate that the reduction in contribution to the Iberian Peninsula (IP) summer precipitation is mainly concentrated in the IP and its neighboring grids. Compared with 1980–1997, both local recycling and external moisture were reduced during 1998–2019. The reduction in local recycling in the IP closely links to the disappearance of the wet years and the decreasing contribution in the dry years.
Nejc Bezak, Pasquale Borrelli, and Panos Panagos
Hydrol. Earth Syst. Sci., 26, 1907–1924, https://doi.org/10.5194/hess-26-1907-2022, https://doi.org/10.5194/hess-26-1907-2022, 2022
Short summary
Short summary
Rainfall erosivity is one of the main factors in soil erosion. A satellite-based global map of rainfall erosivity was constructed using data with a 30 min time interval. It was shown that the satellite-based precipitation products are an interesting option for estimating rainfall erosivity, especially in regions with limited ground data. However, ground-based high-frequency precipitation measurements are (still) essential for accurate estimates of rainfall erosivity.
Xueli Yang, Zhi-Hua Wang, and Chenghao Wang
Hydrol. Earth Syst. Sci., 26, 1845–1856, https://doi.org/10.5194/hess-26-1845-2022, https://doi.org/10.5194/hess-26-1845-2022, 2022
Short summary
Short summary
In this study, we investigated potentially catastrophic transitions in hydrological processes by identifying the early-warning signals which manifest as a
critical slowing downin complex dynamic systems. We then analyzed the precipitation network of cities in the contiguous United States and found that key network parameters, such as the nodal density and the clustering coefficient, exhibit similar dynamic behaviour, which can serve as novel early-warning signals for the hydrological system.
Zhuoyi Tu, Yuting Yang, and Michael L. Roderick
Hydrol. Earth Syst. Sci., 26, 1745–1754, https://doi.org/10.5194/hess-26-1745-2022, https://doi.org/10.5194/hess-26-1745-2022, 2022
Short summary
Short summary
Here we test a maximum evaporation theory that acknowledges the interdependence between radiation, surface temperature, and evaporation over saturated land. We show that the maximum evaporation approach recovers observed evaporation and surface temperature under non-water-limited conditions across a broad range of bio-climates. The implication is that the maximum evaporation concept can be used to predict potential evaporation that has long been a major difficulty for the hydrological community.
Paola Mazzoglio, Ilaria Butera, Massimiliano Alvioli, and Pierluigi Claps
Hydrol. Earth Syst. Sci., 26, 1659–1672, https://doi.org/10.5194/hess-26-1659-2022, https://doi.org/10.5194/hess-26-1659-2022, 2022
Short summary
Short summary
We have analyzed the spatial dependence of rainfall extremes upon elevation and morphology in Italy. Regression analyses show that previous rainfall–elevation relations at national scale can be substantially improved with new data, both using topography attributes and constraining the analysis within areas stemming from geomorphological zonation. Short-duration mean rainfall depths can then be estimated, all over Italy, using different parameters in each area of the geomorphological subdivision.
Mina Faghih, François Brissette, and Parham Sabeti
Hydrol. Earth Syst. Sci., 26, 1545–1563, https://doi.org/10.5194/hess-26-1545-2022, https://doi.org/10.5194/hess-26-1545-2022, 2022
Short summary
Short summary
The diurnal cycles of precipitation and temperature generated by climate models are biased. This work investigates whether or not impact modellers should correct the diurnal cycle biases prior to conducting hydrological impact studies at the sub-daily scale. The results show that more accurate streamflows are obtained when the diurnal cycles biases are corrected. This is noticeable for smaller catchments, which have a quicker reaction time to changes in precipitation and temperature.
Edwin P. Maurer, Iris T. Stewart, Kenneth Joseph, and Hugo G. Hidalgo
Hydrol. Earth Syst. Sci., 26, 1425–1437, https://doi.org/10.5194/hess-26-1425-2022, https://doi.org/10.5194/hess-26-1425-2022, 2022
Short summary
Short summary
The mid-summer drought (MSD) is common in Mesoamerica. It is a short (weeks-long) period of reduced rainfall near the middle of the rainy season. When it occurs, how long it lasts, and how dry it is all have important implications for smallholder farmers. Studies of changes in MSD characteristics rely on defining characteristics of an MSD. Different definitions affect whether an area would be considered to experience an MSD as well as the changes that have happened in the last 40 years.
Qichun Yang, Quan J. Wang, Andrew W. Western, Wenyan Wu, Yawen Shao, and Kirsti Hakala
Hydrol. Earth Syst. Sci., 26, 941–954, https://doi.org/10.5194/hess-26-941-2022, https://doi.org/10.5194/hess-26-941-2022, 2022
Short summary
Short summary
Forecasts of evaporative water loss in the future are highly valuable for water resource management. These forecasts are often produced using the outputs of climate models. We developed an innovative method to correct errors in these forecasts, particularly the errors caused by deficiencies of climate models in modeling the changing climate. We apply this method to seasonal forecasts of evaporative water loss across Australia and achieve significant improvements in the forecast quality.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 711–730, https://doi.org/10.5194/hess-26-711-2022, https://doi.org/10.5194/hess-26-711-2022, 2022
Short summary
Short summary
The impact of initial soil moisture anomalies can persist for up to 3–4 months and is greater on temperature than on precipitation over West Africa. The strongest homogeneous impact on temperature is located over the Central Sahel, with a peak change of −1.5 and 0.5 °C in the wet and dry experiments, respectively. The strongest impact on precipitation in the wet and dry experiments is found over the West and Central Sahel, with a peak change of about 40 % and −8 %, respectively.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 731–754, https://doi.org/10.5194/hess-26-731-2022, https://doi.org/10.5194/hess-26-731-2022, 2022
Short summary
Short summary
The impact of initial soil moisture is more significant on temperature extremes than on precipitation extremes. A stronger impact is found on maximum temperature than on minimum temperature. The impact on extreme precipitation indices is homogeneous, especially over the Central Sahel, and dry (wet) experiments tend to decrease (increase) the number of precipitation extreme events but not their intensity.
Josias Láng-Ritter, Marc Berenguer, Francesco Dottori, Milan Kalas, and Daniel Sempere-Torres
Hydrol. Earth Syst. Sci., 26, 689–709, https://doi.org/10.5194/hess-26-689-2022, https://doi.org/10.5194/hess-26-689-2022, 2022
Short summary
Short summary
During flood events, emergency managers such as civil protection authorities rely on flood forecasts to make informed decisions. In the current practice, they monitor several separate forecasts, each one of them covering a different type of flooding. This can be time-consuming and confusing, ultimately compromising the effectiveness of the emergency response. This work illustrates how the automatic combination of flood type-specific impact forecasts can improve decision support systems.
Junjiang Liu, Xing Yuan, Junhan Zeng, Yang Jiao, Yong Li, Lihua Zhong, and Ling Yao
Hydrol. Earth Syst. Sci., 26, 265–278, https://doi.org/10.5194/hess-26-265-2022, https://doi.org/10.5194/hess-26-265-2022, 2022
Short summary
Short summary
Hourly streamflow ensemble forecasts with the CSSPv2 land surface model and ECMWF meteorological forecasts reduce both the probabilistic and deterministic forecast error compared with the ensemble streamflow prediction approach during the first week. The deterministic forecast error can be further reduced in the first 72 h when combined with the long short-term memory (LSTM) deep learning method. The forecast skill for LSTM using only historical observations drops sharply after the first 24 h.
Michael Peichl, Stephan Thober, Luis Samaniego, Bernd Hansjürgens, and Andreas Marx
Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, https://doi.org/10.5194/hess-25-6523-2021, 2021
Short summary
Short summary
Using a statistical model that can also take complex systems into account, the most important factors affecting wheat yield in Germany are determined. Different spatial damage potentials are taken into account. In many parts of Germany, yield losses are caused by too much soil water in spring. Negative heat effects as well as damaging soil drought are identified especially for north-eastern Germany. The model is able to explain years with exceptionally high yields (2014) and losses (2003, 2018).
Sara Cloux, Daniel Garaboa-Paz, Damián Insua-Costa, Gonzalo Miguez-Macho, and Vicente Pérez-Muñuzuri
Hydrol. Earth Syst. Sci., 25, 6465–6477, https://doi.org/10.5194/hess-25-6465-2021, https://doi.org/10.5194/hess-25-6465-2021, 2021
Short summary
Short summary
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing it with a highly accurate Eulerian tool, both operating on the same WRF atmospheric model fields. Although the Lagrangian approach is very useful for a qualitative analysis of moisture sources, it has important limitations in quantifying the contribution of individual sources to precipitation. These drawbacks should be considered by other authors in the future so as to not draw erroneous conclusions.
Cited articles
Ahmed, M. R., Rahaman, K. R., Kok, A., and Hassan, Q. K.: Remote
sensing-based quantification of the impact of flash flooding on the rice
production: A case study over Northeastern Bangladesh, Sensors, 17, 1–14, https://doi.org/10.3390/s17102347, 2017.
Ali, R. M. E., Tunbridge, L. W., Bhasin, R. K., Akter, S., Khan, M. M. H.
and Uddin, M. Z.: Landslides susceptibility of Chittagong city, Bangladesh and development of landslides early warning system, in: Landslide Science for a Safer Geoenvironment, edited by: Sassa, K., Canuti, P., and Yin, Y., 1, 423–429, Springer, Cham. https://doi.org/10.1007/978-3-319-04999-1_59, 2014.
Allen, M.: Do-it-yourself climate prediction, Nature, 401, 642,
https://doi.org/10.1038/44266, 1999.
Banglapedia: River and Drainage system, Banglapedia- Natl. Encycl.
Bangladesh [online],
https://en.banglapedia.org/index.php/River5Ctextunderscoreand5Ctextunderscore_Drainage5Ctextunderscore_System (last access: 15 February 2015), 2012.
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Anthropogenic aerosols and the
weakening of the south asian summer monsoon, Science, 334,
502–505, https://doi.org/10.1126/science.1204994, 2011.
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Earlier onset of the Indian
monsoon in the late twentieth century: The role of anthropogenic aerosols,
Geophys. Res. Lett., 40, 3715–3720, https://doi.org/10.1002/grl.50719, 2013.
Caesar, J. and Janes, T.: Regional climate change over South Asia, in
Ecosystem Services for Well-Being in Deltas: Integrated Assessment for
Policy Analysis, 207–221, 2018.
Caesar, J., Janes, T., Lindsay, A., and Bhaskaran, B.: Temperature and
precipitation projections over Bangladesh and the upstream Ganges,
Brahmaputra and Meghna systems, Environ. Sci. Proc. Imp., 17,
1047–1056, https://doi.org/10.1039/C4EM00650J, 2015.
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Higgins, R. W.,
and Janowiak, J. E.: Assessing objective techniques for gauge-based analyses
of global daily precipitation, [data set], J. Geophys. Res.-Atmos., 113, 1–13,
https://doi.org/10.1029/2007JD009132, 2008a.
Chen, M., Xie, P., and NOAA Climate Prediction Center(CPC): CPC Gauge-Based
Analysis of Global Daily Precipitation, in Western Pacific Geophysics
Meeting, Cairns, Australia, 29 July–1 August, 2008, [data set], ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/DOCU/Chen_et_al_2008_Daily_Gauge_Anal.pdf (last access date: 12 December 2018), 2008b.
Chevuturi, A., Klingaman, N. P., Turner, A. G., and Hannah, S.: Projected
Changes in the Asian-Australian Monsoon Region in 1.5 ∘C and
2.0 ∘C Global-Warming Scenarios, Earth's Futur., 6, 339–358,
https://doi.org/10.1002/2017EF000734, 2018.
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012.
Endo, H., Kitoh, A., Ose, T., Mizuta, R., and Kusunoki, S.: Erratum: Future
changes and uncertainties in Asian precipitation 15 simulated by
multiphysics and multi-sea surface temperature ensemble experiments with
high-resolution Meteorological Research Institute atmospheric general
circulation models (MRI-AGCMs) J. Geophys. Res.-Atmos., 118, 2303,
https://doi.org/10.1002/jgrd.50267, 2013.
Essery, R. L. H., Best, M. J., Betts, R. A., Cox, P. M., and Taylor, C. M.:
Explicit representation of subgrid heterogeneity in a GCM land surface
scheme, J. Hydrometeorol., 4, 530–543,
https://doi.org/10.1175/1525-7541(2003)004< 0530:EROSHI>2.0.CO;2,
2003.
Fahad, M. G. R., Saiful Islam, A. K. M., Nazari, R., Alfi Hasan, M., Tarekul
Islam, G. M. and Bala, S. K.: Regional changes of precipitation and
temperature over Bangladesh using bias-corrected multi-model ensemble
projections considering high-emission pathways, Int. J. Climatol., 38, 1–15,
https://doi.org/10.1002/joc.5284, 2017.
Faust, E.: Rapid attribution: Is climate change involved in an extreme
weather event?, https://www.munichre.com/topics-online/en/2017/topics-geo/rapid-attribution, last access: 3 December 2017.
Fung, F., Lopez, A., and New, M.: Water availability in +2C and +4C
worlds, Philos. T. Roy. Soc. A, 369, 99–116,
https://doi.org/10.1098/rsta.2010.0293, 2011.
Goswami, B. B., Deshpande, M., Mukhopadhyay, P., Saha, S. K., Rao, S. A.,
Murthugudde, R., and Goswami, B. N.: Simulation of monsoon intraseasonal
variability in NCEP CFSv2 and its role on systematic bias, Clim. Dynam.,
43, 2725–2745, https://doi.org/10.1007/s00382-014-2089-5, 2014.
Guillod, B. P., Jones, R. G., Bowery, A., Haustein, K., Massey, N. R., Mitchell, D. M., Otto, F. E. L., Sparrow, S. N., Uhe, P., Wallom, D. C. H., Wilson, S., and Allen, M. R.: weather@home 2: validation of an improved global–regional climate modelling system, Geosci. Model Dev., 10, 1849–1872, https://doi.org/10.5194/gmd-10-1849-2017, 2017.
Guo, L., Highwood, E. J., Shaffrey, L. C., and Turner, A. G.: The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon, Atmos. Chem. Phys., 13, 1521–1534, https://doi.org/10.5194/acp-13-1521-2013, 2013.
Gutro, R.: Bangladesh's Heavy Rainfall Examined With NASA's IMERG, Nasa Gpm,
https://www.nasa.gov/feature/goddard/2017/bangladeshs-heavy-rainfall-examined-with-nasas-imerg, last access: 14 November 2017.
Hauser, M., Gudmundsson, L., Orth, R., Jeìzeìquel, A., Haustein, K.,
Vautard, R., van Oldenborgh, G. J., Wilcox, L., and Seneviratne, S. I.: Methods and Model Dependency of Extreme Event
Attribution: The 2015 European Drought, Earth's Futur., 5, 1034–1043,
https://doi.org/10.1002/2017EF000612, 2017.
Hossain, A. N. H. A.: Flood management, http://www.apfm.info/publications/casestudies/cs_bangladesh_sum.pdf (last access date: 3 March 2015), 1998.
IPCC, 2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, ISBN 978-1-107-05799-1 hardback,
2013.
Islam, M. N.: Rainfall and Temperature Scenario for Bangladesh, Open Atmos.
Sci. J., 3, 93–103, https://doi.org/10.2174/1874282300903010093, 2009.
Janes, T. and Bhaskaran, B.: Evaluation of regional model performance in
simulating key climate variables over Bangladesh, Met Office, Exeter, United
Kingdom, 2012.
Jones, A., Roberts, D. L., Woodage, M. J., and Johnson, C. E.: Indirect
sulphate aerosol forcing in a climate model with an 15 interactive sulphur
cycle, J. Geophys. Res. Atmos., 106, 20293–20310,
https://doi.org/10.1029/2000JD000089, 2001.
Kirkevåg, A., Iversen, T., Seland, Ø., Hoose, C., Kristjánsson, J. E., Struthers, H., Ekman, A. M. L., Ghan, S., Griesfeller, J., Nilsson, E. D., and Schulz, M.: Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M, Geosci. Model Dev., 6, 207–244, https://doi.org/10.5194/gmd-6-207-2013, 2013.
Klimont, Z., Smith, S. J., and Cofala, J.: The last decade of global
anthropogenic sulfur dioxide: 2000–2011 emissions, Environ. Res. Lett.,
8, 014003, https://doi.org/10.1088/1748-9326/8/1/014003, 2013.
Kripalani, R. H., Oh, J. H., Kulkarni, A., Sabade, S. S., and Chaudhari, H.
S.: South Asian summer monsoon precipitation variability: Coupled climate
model simulations and projections under IPCC AR4, Theor. Appl. Climatol.,
90, 133–159, https://doi.org/10.1007/s00704-006-0282-0, 2007.
Kumar, D. and Dimri, A. P.: Sensitivity of convective and land surface
parameterization in the simulation of contrasting monsoons over
CORDEX-South Asia domain using RegCM-4.4.5.5, Theor. Appl. Climatol., 139, 297–322,
https://doi.org/10.1007/s00704-019-02976-9, 2019.
Kumar, D., Arya, D. S., Murumkar, A. R., and Rahman, M. M.: Impact of climate
change on rainfall in Northwestern Bangladesh using multi-GCM ensembles,
Int. J. Climatol., 34, 1395–1404, https://doi.org/10.1002/joc.3770, 2014.
Kumar, K. K., Kamala, K., Rajagopalan, B., Hoerling, M. P., Eischeid, J. K.,
Patwardhan, S. K., Srinivasan, G., Goswami, B. N., and Nemani, R.: The once
and future pulse of Indian monsoonal climate, Clim. Dynam., 36,
2159–2170, https://doi.org/10.1007/s00382-010-0974-0, 2011.
Lau, W. K. M. and Kim, K. M.: Fingerprinting the impacts of aerosols on
long-term trends of the Indian summer monsoon regional rainfall, Geophys.
Res. Lett., 37, L16705, https://doi.org/10.1029/2010GL043255, 2010.
Lee, D., Min, S.-K., Fischer, E. M., Shiogama, H., Bethke, I., Lierhammer,
L., and Scinocca, J.: Impacts of half a degree additional warming on the
Asian summer monsoon rainfall characteristics, Environ. Res. Lett., 13, 044033,
https://doi.org/10.1088/1748-9326/aab55d, 2018.
Li, Z., Lau, W. K. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu,
J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y.,
Huang, J., Wang, B., Xu, X., Lee, S. S., Cribb, M., Zhang, F., Yang, X.,
Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J.,
Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and
monsoon climate interactions over Asia, Rev. Geophys., 54, 866–929,
https://doi.org/10.1002/2015RG000500, 2016.
Macadam, I. and Janes, T.: Validation of Regional Climate Model simulations
for the DECCMA project, DECCMA Working Paper, Deltas, Vulnerability and
Climate Change: Migration and Adaptation, IDRC Project Number 107642,
http://generic.wordpress.soton.ac.uk/deccma/ (last access: 5 February 2018), 2017.
Massey, N., Jones, R., Otto, F. E. L., Aina, T., Wilson, S., Murphy, J. M.,
Hassell, D., Yamazaki, Y. H. and Allen, M. R.: Weather@Home-Development and
Validation of a Very Large Ensemble Modelling System for Probabilistic Event
Attribution, Q. J. Roy. Meteor. Soc., 141, 1528–1545,
https://doi.org/10.1002/qj.2455, 2015.
Menon, A., Levermann, A., Schewe, J., Lehmann, J., and Frieler, K.: Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models, Earth Syst. Dynam., 4, 287–300, https://doi.org/10.5194/esd-4-287-2013, 2013.
Mitchell, D., James, R., Forster, P. M., Betts, R. A., Shiogama, H., and
Allen, M.: Realizing the impacts of a 1.5 ∘C warmer world, Nat.
Clim. Chang., 6, 735–737, https://doi.org/10.1038/nclimate3055, 2016.
Mitchell, D., AchutaRao, K., Allen, M., Bethke, I., Beyerle, U., Ciavarella, A., Forster, P. M., Fuglestvedt, J., Gillett, N., Haustein, K., Ingram, W., Iversen, T., Kharin, V., Klingaman, N., Massey, N., Fischer, E., Schleussner, C.-F., Scinocca, J., Seland, Ø., Shiogama, H., Shuckburgh, E., Sparrow, S., Stone, D., Uhe, P., Wallom, D., Wehner, M., and Zaaboul, R.: Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design, Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, 2017.
Murshed, S. B., Islam, A. K. M., and Khan, M. S. A.: Impact of climate change
on rainfall intensity in Bangladesh, Dhaka, Bangladesh, http://teacher.buet.ac.bd/akmsaifulislam/reports/Heavy_Rainfall_report.pdf (last access: 21 November 2017), 2011.
National Academies of Sciences, Engineering, and Medicine: Attribution of Extreme
Weather Events in the Context of Climate Change, National Academies Press,
Washington, D.C., https://doi.org/10.17226/21852, 2016.
Nirapad: Bangladesh: Flash Flood Situation – April 19, 2017, Situat. Rep., 7, https://reliefweb.int/attachments/6b57d093-dab2-3202-a3b1-c58b33758521/Flash_Flood%2C, last access: 14 November 2017.
Nowreen, S., Murshed, S. B., Islam, A. K. M. S., Bhaskaran, B., and Hasan, M.
A.: Changes of rainfall extremes around the haor basin areas of Bangladesh
using multi-member ensemble RCM, Theor. Appl. Climatol., 119,
363–377, https://doi.org/10.1007/s00704-014-1101-7, 2015.
Otto, F. E. L.: Attribution of Weather and Climate Events, Annu. Rev.
Environ. Resour., 42, 627–646, https://doi.org/10.1146/annurev-environ, 2017.
Paul, R. and Hussain, Z.: Landslide, floods kill 156 in Bangladesh, India;
toll could rise, Reuters, 14th June, https://uk.reuters.com/article/uk-bangladesh-landslides/landslide-floods-kill-156-in-bangladesh-india-toll-could-rise-idUKKBN1950AG (last access date: 17 April 2018),
2017.
Philip, S., Sparrow, S., Kew, S. F., van der Wiel, K., Wanders, N., Singh, R., Hassan, A., Mohammed, K., Javid, H., Haustein, K., Otto, F. E. L., Hirpa, F., Rimi, R. H., Islam, A. K. M. S., Wallom, D. C. H., and van Oldenborgh, G. J.: Attributing the 2017 Bangladesh floods from meteorological and hydrological perspectives, Hydrol. Earth Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, 2019.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T.,
Washington, W. M., Fu, Q., Sikka, D. R., and Wild, M.: Atmospheric brown
clouds: Impacts on South Asian climate and hydrological cycle, P. Natl. Acad. Sci. USA, 102, 5326–5333, https://doi.org/10.1073/pnas.0500656102, 2005.
Rawlani, A. K. and Sovacool, B. K.: Building responsiveness to climate
change through community based adaptation in Bangladesh, Mitig. Adapt.
Strateg. Glob. Chang., 16, 845–863, https://doi.org/10.1007/s11027-011-9298-6, 2011.
Rimi, R. H., Haustein, K., Barbour, E. J., Jones, R. G., Sparrow, S. N., and
Allen, M. R.: Evaluation of a large ensemble regional climate modelling
system for extreme weather events analysis over Bangladesh, Int. J.
Climatol., 39, 2845–2861, https://doi.org/10.1002/joc.5931, 2019a.
Rimi, R. H., Haustein, K., Barbour, E. J., and Allen, M. R.: Risks of
Pre-Monsoon Extreme Rainfall Events of Bangladesh: Is Anthropogenic Climate
Change Playing a Role?, B. Am. Meteorol. Soc., 100, 61–65,
https://doi.org/10.1175/BAMS-D-18-0152.1, 2019b.
Saha, S. K., Pokhrel, S., Chaudhari, H. S., Dhakate, A., Shewale, S.,
Sabeerali, C. T., Salunke, K., Hazra, A., Mahapatra, S., and Rao, A. S.:
Improved simulation of Indian summer monsoon in latest NCEP climate forecast
system free run, Int. J. Climatol., 34, 1628–1641, https://doi.org/10.1002/joc.3791,
2014.
Samset, B. H., Sand, M., Smith, C. J., Bauer, S. E., Forster, P. M.,
Fuglestvedt, J. S., Osprey, S., and Schleussner, C. F.: Climate Impacts From
a Removal of Anthropogenic Aerosol Emissions, Geophys. Res. Lett., 45,
1020–1029, https://doi.org/10.1002/2017GL076079, 2018.
Schaller, N., Kay, A. L., Lamb, R., Massey, N. R., Van Oldenborgh, G. J.,
Otto, F. E. L., Sparrow, S. N., Vautard, R., Yiou, P., Ashpole, I., Bowery,
A., Crooks, S. M., Haustein, K., Huntingford, C., Ingram, W. J., Jones, R.
G., Legg, T., Miller, J., Skeggs, J., Wallom, D., Weisheimer, A., Wilson,
S., Stott, P. A., and Allen, M. R.: Human influence on climate in the 2014
southern England winter floods and their impacts, Nat. Clim. Chang., 6,
627–634, https://doi.org/10.1038/nclimate2927, 2016.
Schleussner, C.-F., Lissner, T. K., Fischer, E. M., Wohland, J., Perrette, M., Golly, A., Rogelj, J., Childers, K., Schewe, J., Frieler, K., Mengel, M., Hare, W., and Schaeffer, M.: Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C, Earth Syst. Dynam., 7, 327–351, https://doi.org/10.5194/esd-7-327-2016, 2016.
Shahid, S.: Rainfall variability and the trends of wet and dry periods in
Bangladesh, Int. J. Climatol., 30, 2299–2313, https://doi.org/10.1002/joc.2053,
2010.
Srivastava, A., Naresh Kumar, S., and Aggarwal, P. K.: Assessment on
vulnerability of sorghum to climate change in India, Agric. Ecosyst.
Environ., 138, 160–169, https://doi.org/10.1016/j.agee.2010.04.012, 2010.
Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame,
D. J., Kettleborough, J. A., Knight, S., Martin, A., Murphy, J. M., Piani,
C., Sexton, D., Smith, L. A., Splcer, R. A., Thorpe, A. J., and Allen, M. R.:
Uncertainty in predictions of the climate response to rising levels of
greenhouse gases, Nature, 433, 403–406, https://doi.org/10.1038/nature03301,
2005.
Stark, J. D., Donlon, C. J., Martin, M. J. and McCulloch, M. E.: OSTIA: An
Operational, high resolution, real time, global sea surface temperature
analysis system., in Oceans 2007 – Marine Challenges: Coastline to Deep Sea, IEEE Xplore, 1–4, https://doi.org/10.1109/OCEANSE.2007.4302251, 2007.
Stott, P. A., Stone, D. A., and Allen, M. R.: Human Contribution to the Heat
wave of 2003, Nature, 432, 610–614, 2004.
The World Bank: Turn Down the Heat: Why a 4 ∘C Warmer World Must Be Avoided, Washington, DC, https://openknowledge.worldbank.org/handle/10986/11860 (last access: 13 November 2017), 2012.
Turner, A. G. and Annamalai, H.: Climate change and the South Asian summer
monsoon, Nat. Clim. Chang., 2, 587–595, https://doi.org/10.1038/NCLIMATE1495, 2012.
UNFCCC: Paris Agreement, in 21st Conference of the Parties, vol. 2017, p. 3., 2015.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A.,
Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: An overview, Clim. Change, 109,
5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Wang, B., Liu, J., Yim, P. J. W. S., and Kiefer, T.: Recent change of the
global monsoon precipitation (1979–2008), Clim. Dynam., 39,
1123–1135, https://doi.org/10.1007/s00382-011-1266-z, 2012.
Wilks, D. S.: Comparison of three-parameter probability distributions for
representing annual extreme and partial duration precipitation series, Water
Resour. Res., 29, 3543–3549, https://doi.org/10.1029/93WR01710, 1993.
Wilks, D. S. Statistical Methods in the Atmospheric Sciences (3rd ed., Vol. 100), Elsevier Science, 676 pp., ISBN: 9780123850225, 0123850223, 2011.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi,
N., and Kitoh, A.: Aphrodite constructing a long-term daily
gridded precipitation dataset for Asia based on a dense network
of rain gauges [data set], B. Am. Meteorol. Soc., 93, 1401–1415,
https://doi.org/10.1175/BAMS-D-11-00122.1, 2012.
Zhao, A. D., Stevenson, D. S., and Bollasina, M. A.: The role of
anthropogenic aerosols in future precipitation extremes over the Asian
Monsoon Region, Clim. Dynam., 52, 6257–6278,
https://doi.org/10.1007/s00382-018-4514-7, 2019.
Short summary
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods and damage nearly harvestable crops in pre-monsoon season. While in monsoon season, the impacts can range from widespread agricultural loss, huge property damage, to loss of lives and livelihoods. This paper assesses the role of anthropogenic climate change drivers in changing risks of extreme rainfall events during pre-monsoon and monsoon seasons at local sub-regional-scale within Bangladesh.
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods...