Articles | Volume 26, issue 22
https://doi.org/10.5194/hess-26-5737-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5737-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Risks of seasonal extreme rainfall events in Bangladesh under 1.5 and 2.0 °C warmer worlds – how anthropogenic aerosols change the story
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
Karsten Haustein
CORRESPONDING AUTHOR
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
Department of Meteorology, University Leipzig, Stephanstr. 3, 04103 Leipzig, Germany
Emily J. Barbour
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
Commonwealth Scientific and Industrial Research Organisation, Land and Water, Canberra, ACT 2601, Australia
Sarah N. Sparrow
Department of Engineering Science, Oxford e-Research Centre, University of Oxford, Oxford, OX1 3QG, UK
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
Department of Engineering Science, Oxford e-Research Centre, University of Oxford, Oxford, OX1 3QG, UK
David C. H. Wallom
Department of Engineering Science, Oxford e-Research Centre, University of Oxford, Oxford, OX1 3QG, UK
Myles R. Allen
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
Related authors
No articles found.
Ken S. Carslaw, Leighton A. Regayre, Ulrike Proske, Andrew Gettelman, David M. H. Sexton, Yun Qian, Lauren Marshall, Oliver Wild, Marcus van Lier-Walqui, Annika Oertel, Saloua Peatier, Ben Yang, Jill S. Johnson, Sihan Li, Daniel T. McCoy, Benjamin M. Sanderson, Christina J. Williamson, Gregory S. Elsaesser, Kuniko Yamazaki, and Ben B. B. Booth
EGUsphere, https://doi.org/10.5194/egusphere-2025-4341, https://doi.org/10.5194/egusphere-2025-4341, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
A major challenge in climate science is reducing projection uncertainty despite advances in models and observational constraints. Perturbed parameter ensembles (PPEs) offer a powerful tool to explore and reduce uncertainty by revealing model weaknesses and guiding development. PPEs are now widely applied across climate systems and scales. We argue they should be prioritized alongside complexity and resolution in model resource planning.
Ben Clarke, Sihan Li, Ralf Toumi, and Nathan Sparks
EGUsphere, https://doi.org/10.5194/egusphere-2025-665, https://doi.org/10.5194/egusphere-2025-665, 2025
Preprint archived
Short summary
Short summary
In December 2021, Super Typhoon Odette brought high winds and heavy rainfall to the central Philippines. The Philippines is one of the most exposed nations globally to tropical cyclones, so the influence of climate change on such events is of huge societal importance. This study combines several methods in extreme event attribution to investigate this, finding that the likelihood of a disaster like Odette in the Philippines has roughly doubled due to current warming.
Maximillian Van Wyk de Vries, Alexandre Dunant, Amy L. Johnson, Erin L. Harvey, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Simon J. Dadson, Alexander L. Densmore, Tek Bahadur Dong, Mark E. Kincey, Katie Oven, Anuradha Puri, and Nick J. Rosser
Nat. Hazards Earth Syst. Sci., 25, 1937–1942, https://doi.org/10.5194/nhess-25-1937-2025, https://doi.org/10.5194/nhess-25-1937-2025, 2025
Short summary
Short summary
Mapping exposure to landslides is necessary to mitigate risk and reduce vulnerability. In this study, we show that there is a poor correlation between building damage and deaths from landslides, such that the deadliest landslides do not always destroy the most buildings and vice versa. This has important implications for our management of landslide risk.
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
Nat. Hazards Earth Syst. Sci., 25, 1207–1228, https://doi.org/10.5194/nhess-25-1207-2025, https://doi.org/10.5194/nhess-25-1207-2025, 2025
Short summary
Short summary
We describe in detail the most recent large landslide-triggered glacial lake outburst flood (GLOF) in the Peruvian Andes (the 2023 Rasac GLOF), analysing its preconditions and consequences, as well as the role of the changing climate. Our study contributes to understanding GLOF occurrence patterns in space and time and corroborates reports detailing the increasing frequency of such events in changing mountains.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025, https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Short summary
Natural hazards like earthquakes often trigger other disasters, such as landslides, creating complex chains of impacts. We developed a risk model using a mathematical approach called hypergraphs to efficiently measure the impact of interconnected hazards. We showed that it can predict broad patterns of damage to buildings and roads from the 2015 Nepal earthquake. The model's efficiency allows it to generate multiple disaster scenarios, even at a national scale, to support preparedness plans.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025, https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Maximillian Van Wyk de Vries, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Alexander L. Densmore, Tek Bahadur Dong, Alexandre Dunant, Erin L. Harvey, Ganesh K. Jimee, Mark E. Kincey, Katie Oven, Sarmila Paudyal, Dammar Singh Pujara, Anuradha Puri, Ram Shrestha, Nick J. Rosser, and Simon J. Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-397, https://doi.org/10.5194/egusphere-2024-397, 2024
Preprint archived
Short summary
Short summary
This study focuses on understanding soil moisture, a key factor for evaluating hillslope stability and landsliding. In Nepal, where landslides are common, we used a computer model to better understand how rapidly soil dries out after the monsoon season. We calibrated the model using field data and found that, by adjusting soil properties, we could predict moisture levels more accurately. This helps understand where landslides might occur, even where direct measurements are not possible.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Daniel Gliksman, Paul Averbeck, Nico Becker, Barry Gardiner, Valeri Goldberg, Jens Grieger, Dörthe Handorf, Karsten Haustein, Alexia Karwat, Florian Knutzen, Hilke S. Lentink, Rike Lorenz, Deborah Niermann, Joaquim G. Pinto, Ronald Queck, Astrid Ziemann, and Christian L. E. Franzke
Nat. Hazards Earth Syst. Sci., 23, 2171–2201, https://doi.org/10.5194/nhess-23-2171-2023, https://doi.org/10.5194/nhess-23-2171-2023, 2023
Short summary
Short summary
Wind and storms are a major natural hazard and can cause severe economic damage and cost human lives. Hence, it is important to gauge the potential impact of using indices, which potentially enable us to estimate likely impacts of storms or other wind events. Here, we review basic aspects of wind and storm generation and provide an extensive overview of wind impacts and available indices. This is also important to better prepare for future climate change and corresponding changes to winds.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Folmer Krikken, Flavio Lehner, Karsten Haustein, Igor Drobyshev, and Geert Jan van Oldenborgh
Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, https://doi.org/10.5194/nhess-21-2169-2021, 2021
Short summary
Short summary
In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying observationally constrained data and multiple climate models. We find a small reduced probability of such events, based on reanalyses, but a small increased probability due to global warming up to now and a more robust increase in the risk for such events in the future, based on climate models.
Sarah Sparrow, Andrew Bowery, Glenn D. Carver, Marcus O. Köhler, Pirkka Ollinaho, Florian Pappenberger, David Wallom, and Antje Weisheimer
Geosci. Model Dev., 14, 3473–3486, https://doi.org/10.5194/gmd-14-3473-2021, https://doi.org/10.5194/gmd-14-3473-2021, 2021
Short summary
Short summary
This paper describes how the research version of the European Centre for Medium-Range Weather Forecasts’ Integrated Forecast System is combined with climateprediction.net’s public volunteer computing resource to develop OpenIFS@home. Thousands of volunteer personal computers simulated slightly different realizations of Tropical Cyclone Karl to demonstrate the performance of the large-ensemble forecast. OpenIFS@Home offers researchers a new tool to study weather forecasts and related questions.
Nicholas J. Leach, Stuart Jenkins, Zebedee Nicholls, Christopher J. Smith, John Lynch, Michelle Cain, Tristram Walsh, Bill Wu, Junichi Tsutsui, and Myles R. Allen
Geosci. Model Dev., 14, 3007–3036, https://doi.org/10.5194/gmd-14-3007-2021, https://doi.org/10.5194/gmd-14-3007-2021, 2021
Short summary
Short summary
This paper presents an update of the FaIR simple climate model, which can estimate the impact of anthropogenic greenhouse gas and aerosol emissions on the global climate. This update aims to significantly increase the structural simplicity of the model, making it more understandable and transparent. This simplicity allows it to be implemented in a wide range of environments, including Excel. We suggest that it could be used widely in academia, corporate research, and education.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Cited articles
Ahmed, M. R., Rahaman, K. R., Kok, A., and Hassan, Q. K.: Remote
sensing-based quantification of the impact of flash flooding on the rice
production: A case study over Northeastern Bangladesh, Sensors, 17, 1–14, https://doi.org/10.3390/s17102347, 2017.
Ali, R. M. E., Tunbridge, L. W., Bhasin, R. K., Akter, S., Khan, M. M. H.
and Uddin, M. Z.: Landslides susceptibility of Chittagong city, Bangladesh and development of landslides early warning system, in: Landslide Science for a Safer Geoenvironment, edited by: Sassa, K., Canuti, P., and Yin, Y., 1, 423–429, Springer, Cham. https://doi.org/10.1007/978-3-319-04999-1_59, 2014.
Allen, M.: Do-it-yourself climate prediction, Nature, 401, 642,
https://doi.org/10.1038/44266, 1999.
Banglapedia: River and Drainage system, Banglapedia- Natl. Encycl.
Bangladesh [online],
https://en.banglapedia.org/index.php/River5Ctextunderscoreand5Ctextunderscore_Drainage5Ctextunderscore_System (last access: 15 February 2015), 2012.
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Anthropogenic aerosols and the
weakening of the south asian summer monsoon, Science, 334,
502–505, https://doi.org/10.1126/science.1204994, 2011.
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Earlier onset of the Indian
monsoon in the late twentieth century: The role of anthropogenic aerosols,
Geophys. Res. Lett., 40, 3715–3720, https://doi.org/10.1002/grl.50719, 2013.
Caesar, J. and Janes, T.: Regional climate change over South Asia, in
Ecosystem Services for Well-Being in Deltas: Integrated Assessment for
Policy Analysis, 207–221, 2018.
Caesar, J., Janes, T., Lindsay, A., and Bhaskaran, B.: Temperature and
precipitation projections over Bangladesh and the upstream Ganges,
Brahmaputra and Meghna systems, Environ. Sci. Proc. Imp., 17,
1047–1056, https://doi.org/10.1039/C4EM00650J, 2015.
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Higgins, R. W.,
and Janowiak, J. E.: Assessing objective techniques for gauge-based analyses
of global daily precipitation, [data set], J. Geophys. Res.-Atmos., 113, 1–13,
https://doi.org/10.1029/2007JD009132, 2008a.
Chen, M., Xie, P., and NOAA Climate Prediction Center(CPC): CPC Gauge-Based
Analysis of Global Daily Precipitation, in Western Pacific Geophysics
Meeting, Cairns, Australia, 29 July–1 August, 2008, [data set], ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/DOCU/Chen_et_al_2008_Daily_Gauge_Anal.pdf (last access date: 12 December 2018), 2008b.
Chevuturi, A., Klingaman, N. P., Turner, A. G., and Hannah, S.: Projected
Changes in the Asian-Australian Monsoon Region in 1.5 ∘C and
2.0 ∘C Global-Warming Scenarios, Earth's Futur., 6, 339–358,
https://doi.org/10.1002/2017EF000734, 2018.
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012.
Endo, H., Kitoh, A., Ose, T., Mizuta, R., and Kusunoki, S.: Erratum: Future
changes and uncertainties in Asian precipitation 15 simulated by
multiphysics and multi-sea surface temperature ensemble experiments with
high-resolution Meteorological Research Institute atmospheric general
circulation models (MRI-AGCMs) J. Geophys. Res.-Atmos., 118, 2303,
https://doi.org/10.1002/jgrd.50267, 2013.
Essery, R. L. H., Best, M. J., Betts, R. A., Cox, P. M., and Taylor, C. M.:
Explicit representation of subgrid heterogeneity in a GCM land surface
scheme, J. Hydrometeorol., 4, 530–543,
https://doi.org/10.1175/1525-7541(2003)004< 0530:EROSHI>2.0.CO;2,
2003.
Fahad, M. G. R., Saiful Islam, A. K. M., Nazari, R., Alfi Hasan, M., Tarekul
Islam, G. M. and Bala, S. K.: Regional changes of precipitation and
temperature over Bangladesh using bias-corrected multi-model ensemble
projections considering high-emission pathways, Int. J. Climatol., 38, 1–15,
https://doi.org/10.1002/joc.5284, 2017.
Faust, E.: Rapid attribution: Is climate change involved in an extreme
weather event?, https://www.munichre.com/topics-online/en/2017/topics-geo/rapid-attribution, last access: 3 December 2017.
Fung, F., Lopez, A., and New, M.: Water availability in +2C and +4C
worlds, Philos. T. Roy. Soc. A, 369, 99–116,
https://doi.org/10.1098/rsta.2010.0293, 2011.
Goswami, B. B., Deshpande, M., Mukhopadhyay, P., Saha, S. K., Rao, S. A.,
Murthugudde, R., and Goswami, B. N.: Simulation of monsoon intraseasonal
variability in NCEP CFSv2 and its role on systematic bias, Clim. Dynam.,
43, 2725–2745, https://doi.org/10.1007/s00382-014-2089-5, 2014.
Guillod, B. P., Jones, R. G., Bowery, A., Haustein, K., Massey, N. R., Mitchell, D. M., Otto, F. E. L., Sparrow, S. N., Uhe, P., Wallom, D. C. H., Wilson, S., and Allen, M. R.: weather@home 2: validation of an improved global–regional climate modelling system, Geosci. Model Dev., 10, 1849–1872, https://doi.org/10.5194/gmd-10-1849-2017, 2017.
Guo, L., Highwood, E. J., Shaffrey, L. C., and Turner, A. G.: The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon, Atmos. Chem. Phys., 13, 1521–1534, https://doi.org/10.5194/acp-13-1521-2013, 2013.
Gutro, R.: Bangladesh's Heavy Rainfall Examined With NASA's IMERG, Nasa Gpm,
https://www.nasa.gov/feature/goddard/2017/bangladeshs-heavy-rainfall-examined-with-nasas-imerg, last access: 14 November 2017.
Hauser, M., Gudmundsson, L., Orth, R., Jeìzeìquel, A., Haustein, K.,
Vautard, R., van Oldenborgh, G. J., Wilcox, L., and Seneviratne, S. I.: Methods and Model Dependency of Extreme Event
Attribution: The 2015 European Drought, Earth's Futur., 5, 1034–1043,
https://doi.org/10.1002/2017EF000612, 2017.
Hossain, A. N. H. A.: Flood management, http://www.apfm.info/publications/casestudies/cs_bangladesh_sum.pdf (last access date: 3 March 2015), 1998.
IPCC, 2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, ISBN 978-1-107-05799-1 hardback,
2013.
Islam, M. N.: Rainfall and Temperature Scenario for Bangladesh, Open Atmos.
Sci. J., 3, 93–103, https://doi.org/10.2174/1874282300903010093, 2009.
Janes, T. and Bhaskaran, B.: Evaluation of regional model performance in
simulating key climate variables over Bangladesh, Met Office, Exeter, United
Kingdom, 2012.
Jones, A., Roberts, D. L., Woodage, M. J., and Johnson, C. E.: Indirect
sulphate aerosol forcing in a climate model with an 15 interactive sulphur
cycle, J. Geophys. Res. Atmos., 106, 20293–20310,
https://doi.org/10.1029/2000JD000089, 2001.
Kirkevåg, A., Iversen, T., Seland, Ø., Hoose, C., Kristjánsson, J. E., Struthers, H., Ekman, A. M. L., Ghan, S., Griesfeller, J., Nilsson, E. D., and Schulz, M.: Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M, Geosci. Model Dev., 6, 207–244, https://doi.org/10.5194/gmd-6-207-2013, 2013.
Klimont, Z., Smith, S. J., and Cofala, J.: The last decade of global
anthropogenic sulfur dioxide: 2000–2011 emissions, Environ. Res. Lett.,
8, 014003, https://doi.org/10.1088/1748-9326/8/1/014003, 2013.
Kripalani, R. H., Oh, J. H., Kulkarni, A., Sabade, S. S., and Chaudhari, H.
S.: South Asian summer monsoon precipitation variability: Coupled climate
model simulations and projections under IPCC AR4, Theor. Appl. Climatol.,
90, 133–159, https://doi.org/10.1007/s00704-006-0282-0, 2007.
Kumar, D. and Dimri, A. P.: Sensitivity of convective and land surface
parameterization in the simulation of contrasting monsoons over
CORDEX-South Asia domain using RegCM-4.4.5.5, Theor. Appl. Climatol., 139, 297–322,
https://doi.org/10.1007/s00704-019-02976-9, 2019.
Kumar, D., Arya, D. S., Murumkar, A. R., and Rahman, M. M.: Impact of climate
change on rainfall in Northwestern Bangladesh using multi-GCM ensembles,
Int. J. Climatol., 34, 1395–1404, https://doi.org/10.1002/joc.3770, 2014.
Kumar, K. K., Kamala, K., Rajagopalan, B., Hoerling, M. P., Eischeid, J. K.,
Patwardhan, S. K., Srinivasan, G., Goswami, B. N., and Nemani, R.: The once
and future pulse of Indian monsoonal climate, Clim. Dynam., 36,
2159–2170, https://doi.org/10.1007/s00382-010-0974-0, 2011.
Lau, W. K. M. and Kim, K. M.: Fingerprinting the impacts of aerosols on
long-term trends of the Indian summer monsoon regional rainfall, Geophys.
Res. Lett., 37, L16705, https://doi.org/10.1029/2010GL043255, 2010.
Lee, D., Min, S.-K., Fischer, E. M., Shiogama, H., Bethke, I., Lierhammer,
L., and Scinocca, J.: Impacts of half a degree additional warming on the
Asian summer monsoon rainfall characteristics, Environ. Res. Lett., 13, 044033,
https://doi.org/10.1088/1748-9326/aab55d, 2018.
Li, Z., Lau, W. K. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu,
J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y.,
Huang, J., Wang, B., Xu, X., Lee, S. S., Cribb, M., Zhang, F., Yang, X.,
Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J.,
Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and
monsoon climate interactions over Asia, Rev. Geophys., 54, 866–929,
https://doi.org/10.1002/2015RG000500, 2016.
Macadam, I. and Janes, T.: Validation of Regional Climate Model simulations
for the DECCMA project, DECCMA Working Paper, Deltas, Vulnerability and
Climate Change: Migration and Adaptation, IDRC Project Number 107642,
http://generic.wordpress.soton.ac.uk/deccma/ (last access: 5 February 2018), 2017.
Massey, N., Jones, R., Otto, F. E. L., Aina, T., Wilson, S., Murphy, J. M.,
Hassell, D., Yamazaki, Y. H. and Allen, M. R.: Weather@Home-Development and
Validation of a Very Large Ensemble Modelling System for Probabilistic Event
Attribution, Q. J. Roy. Meteor. Soc., 141, 1528–1545,
https://doi.org/10.1002/qj.2455, 2015.
Menon, A., Levermann, A., Schewe, J., Lehmann, J., and Frieler, K.: Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models, Earth Syst. Dynam., 4, 287–300, https://doi.org/10.5194/esd-4-287-2013, 2013.
Mitchell, D., James, R., Forster, P. M., Betts, R. A., Shiogama, H., and
Allen, M.: Realizing the impacts of a 1.5 ∘C warmer world, Nat.
Clim. Chang., 6, 735–737, https://doi.org/10.1038/nclimate3055, 2016.
Mitchell, D., AchutaRao, K., Allen, M., Bethke, I., Beyerle, U., Ciavarella, A., Forster, P. M., Fuglestvedt, J., Gillett, N., Haustein, K., Ingram, W., Iversen, T., Kharin, V., Klingaman, N., Massey, N., Fischer, E., Schleussner, C.-F., Scinocca, J., Seland, Ø., Shiogama, H., Shuckburgh, E., Sparrow, S., Stone, D., Uhe, P., Wallom, D., Wehner, M., and Zaaboul, R.: Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design, Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, 2017.
Murshed, S. B., Islam, A. K. M., and Khan, M. S. A.: Impact of climate change
on rainfall intensity in Bangladesh, Dhaka, Bangladesh, http://teacher.buet.ac.bd/akmsaifulislam/reports/Heavy_Rainfall_report.pdf (last access: 21 November 2017), 2011.
National Academies of Sciences, Engineering, and Medicine: Attribution of Extreme
Weather Events in the Context of Climate Change, National Academies Press,
Washington, D.C., https://doi.org/10.17226/21852, 2016.
Nirapad: Bangladesh: Flash Flood Situation – April 19, 2017, Situat. Rep., 7, https://reliefweb.int/attachments/6b57d093-dab2-3202-a3b1-c58b33758521/Flash_Flood%2C, last access: 14 November 2017.
Nowreen, S., Murshed, S. B., Islam, A. K. M. S., Bhaskaran, B., and Hasan, M.
A.: Changes of rainfall extremes around the haor basin areas of Bangladesh
using multi-member ensemble RCM, Theor. Appl. Climatol., 119,
363–377, https://doi.org/10.1007/s00704-014-1101-7, 2015.
Otto, F. E. L.: Attribution of Weather and Climate Events, Annu. Rev.
Environ. Resour., 42, 627–646, https://doi.org/10.1146/annurev-environ, 2017.
Paul, R. and Hussain, Z.: Landslide, floods kill 156 in Bangladesh, India;
toll could rise, Reuters, 14th June, https://uk.reuters.com/article/uk-bangladesh-landslides/landslide-floods-kill-156-in-bangladesh-india-toll-could-rise-idUKKBN1950AG (last access date: 17 April 2018),
2017.
Philip, S., Sparrow, S., Kew, S. F., van der Wiel, K., Wanders, N., Singh, R., Hassan, A., Mohammed, K., Javid, H., Haustein, K., Otto, F. E. L., Hirpa, F., Rimi, R. H., Islam, A. K. M. S., Wallom, D. C. H., and van Oldenborgh, G. J.: Attributing the 2017 Bangladesh floods from meteorological and hydrological perspectives, Hydrol. Earth Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, 2019.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T.,
Washington, W. M., Fu, Q., Sikka, D. R., and Wild, M.: Atmospheric brown
clouds: Impacts on South Asian climate and hydrological cycle, P. Natl. Acad. Sci. USA, 102, 5326–5333, https://doi.org/10.1073/pnas.0500656102, 2005.
Rawlani, A. K. and Sovacool, B. K.: Building responsiveness to climate
change through community based adaptation in Bangladesh, Mitig. Adapt.
Strateg. Glob. Chang., 16, 845–863, https://doi.org/10.1007/s11027-011-9298-6, 2011.
Rimi, R. H., Haustein, K., Barbour, E. J., Jones, R. G., Sparrow, S. N., and
Allen, M. R.: Evaluation of a large ensemble regional climate modelling
system for extreme weather events analysis over Bangladesh, Int. J.
Climatol., 39, 2845–2861, https://doi.org/10.1002/joc.5931, 2019a.
Rimi, R. H., Haustein, K., Barbour, E. J., and Allen, M. R.: Risks of
Pre-Monsoon Extreme Rainfall Events of Bangladesh: Is Anthropogenic Climate
Change Playing a Role?, B. Am. Meteorol. Soc., 100, 61–65,
https://doi.org/10.1175/BAMS-D-18-0152.1, 2019b.
Saha, S. K., Pokhrel, S., Chaudhari, H. S., Dhakate, A., Shewale, S.,
Sabeerali, C. T., Salunke, K., Hazra, A., Mahapatra, S., and Rao, A. S.:
Improved simulation of Indian summer monsoon in latest NCEP climate forecast
system free run, Int. J. Climatol., 34, 1628–1641, https://doi.org/10.1002/joc.3791,
2014.
Samset, B. H., Sand, M., Smith, C. J., Bauer, S. E., Forster, P. M.,
Fuglestvedt, J. S., Osprey, S., and Schleussner, C. F.: Climate Impacts From
a Removal of Anthropogenic Aerosol Emissions, Geophys. Res. Lett., 45,
1020–1029, https://doi.org/10.1002/2017GL076079, 2018.
Schaller, N., Kay, A. L., Lamb, R., Massey, N. R., Van Oldenborgh, G. J.,
Otto, F. E. L., Sparrow, S. N., Vautard, R., Yiou, P., Ashpole, I., Bowery,
A., Crooks, S. M., Haustein, K., Huntingford, C., Ingram, W. J., Jones, R.
G., Legg, T., Miller, J., Skeggs, J., Wallom, D., Weisheimer, A., Wilson,
S., Stott, P. A., and Allen, M. R.: Human influence on climate in the 2014
southern England winter floods and their impacts, Nat. Clim. Chang., 6,
627–634, https://doi.org/10.1038/nclimate2927, 2016.
Schleussner, C.-F., Lissner, T. K., Fischer, E. M., Wohland, J., Perrette, M., Golly, A., Rogelj, J., Childers, K., Schewe, J., Frieler, K., Mengel, M., Hare, W., and Schaeffer, M.: Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C, Earth Syst. Dynam., 7, 327–351, https://doi.org/10.5194/esd-7-327-2016, 2016.
Shahid, S.: Rainfall variability and the trends of wet and dry periods in
Bangladesh, Int. J. Climatol., 30, 2299–2313, https://doi.org/10.1002/joc.2053,
2010.
Srivastava, A., Naresh Kumar, S., and Aggarwal, P. K.: Assessment on
vulnerability of sorghum to climate change in India, Agric. Ecosyst.
Environ., 138, 160–169, https://doi.org/10.1016/j.agee.2010.04.012, 2010.
Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame,
D. J., Kettleborough, J. A., Knight, S., Martin, A., Murphy, J. M., Piani,
C., Sexton, D., Smith, L. A., Splcer, R. A., Thorpe, A. J., and Allen, M. R.:
Uncertainty in predictions of the climate response to rising levels of
greenhouse gases, Nature, 433, 403–406, https://doi.org/10.1038/nature03301,
2005.
Stark, J. D., Donlon, C. J., Martin, M. J. and McCulloch, M. E.: OSTIA: An
Operational, high resolution, real time, global sea surface temperature
analysis system., in Oceans 2007 – Marine Challenges: Coastline to Deep Sea, IEEE Xplore, 1–4, https://doi.org/10.1109/OCEANSE.2007.4302251, 2007.
Stott, P. A., Stone, D. A., and Allen, M. R.: Human Contribution to the Heat
wave of 2003, Nature, 432, 610–614, 2004.
The World Bank: Turn Down the Heat: Why a 4 ∘C Warmer World Must Be Avoided, Washington, DC, https://openknowledge.worldbank.org/handle/10986/11860 (last access: 13 November 2017), 2012.
Turner, A. G. and Annamalai, H.: Climate change and the South Asian summer
monsoon, Nat. Clim. Chang., 2, 587–595, https://doi.org/10.1038/NCLIMATE1495, 2012.
UNFCCC: Paris Agreement, in 21st Conference of the Parties, vol. 2017, p. 3., 2015.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A.,
Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: An overview, Clim. Change, 109,
5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Wang, B., Liu, J., Yim, P. J. W. S., and Kiefer, T.: Recent change of the
global monsoon precipitation (1979–2008), Clim. Dynam., 39,
1123–1135, https://doi.org/10.1007/s00382-011-1266-z, 2012.
Wilks, D. S.: Comparison of three-parameter probability distributions for
representing annual extreme and partial duration precipitation series, Water
Resour. Res., 29, 3543–3549, https://doi.org/10.1029/93WR01710, 1993.
Wilks, D. S. Statistical Methods in the Atmospheric Sciences (3rd ed., Vol. 100), Elsevier Science, 676 pp., ISBN: 9780123850225, 0123850223, 2011.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi,
N., and Kitoh, A.: Aphrodite constructing a long-term daily
gridded precipitation dataset for Asia based on a dense network
of rain gauges [data set], B. Am. Meteorol. Soc., 93, 1401–1415,
https://doi.org/10.1175/BAMS-D-11-00122.1, 2012.
Zhao, A. D., Stevenson, D. S., and Bollasina, M. A.: The role of
anthropogenic aerosols in future precipitation extremes over the Asian
Monsoon Region, Clim. Dynam., 52, 6257–6278,
https://doi.org/10.1007/s00382-018-4514-7, 2019.
Short summary
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods and damage nearly harvestable crops in pre-monsoon season. While in monsoon season, the impacts can range from widespread agricultural loss, huge property damage, to loss of lives and livelihoods. This paper assesses the role of anthropogenic climate change drivers in changing risks of extreme rainfall events during pre-monsoon and monsoon seasons at local sub-regional-scale within Bangladesh.
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods...