Articles | Volume 26, issue 21
https://doi.org/10.5194/hess-26-5555-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5555-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach
Christopher Spence
CORRESPONDING AUTHOR
Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
Zhihua He
Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Kevin R. Shook
Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
John W. Pomeroy
Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Colin J. Whitfield
School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Jared D. Wolfe
Natural Resources Canada, Ottawa, Ontario, Canada
Related authors
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, and Colin Whitfield
Hydrol. Earth Syst. Sci., 27, 3525–3546, https://doi.org/10.5194/hess-27-3525-2023, https://doi.org/10.5194/hess-27-3525-2023, 2023
Short summary
Short summary
This study evaluated the impacts of climate change on snowmelt, soil moisture, and streamflow over the Canadian Prairies. The entire prairie region was divided into seven basin types. We found strong variations of hydrological sensitivity to precipitation and temperature changes in different land covers and basins, which suggests that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different regions of the prairies.
Kevin Robert Shook, Paul H. Whitfield, Christopher Spence, and John Willard Pomeroy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-51, https://doi.org/10.5194/hess-2023-51, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than are generally assumed. Analyses of historical flows for 23 basins in central Alberta, showed that many of the rivers responded more slowly, and that the flows are much slower, than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Phillip Harder, Warren D. Helgason, and John W. Pomeroy
The Cryosphere, 18, 3277–3295, https://doi.org/10.5194/tc-18-3277-2024, https://doi.org/10.5194/tc-18-3277-2024, 2024
Short summary
Short summary
Remote sensing the amount of water in snow (SWE) at high spatial resolutions is an unresolved challenge. In this work, we tested a drone-mounted passive gamma spectrometer to quantify SWE. We found that the gamma observations could resolve the average and spatial variability of SWE down to 22.5 m resolutions. Further, by combining drone gamma SWE and lidar snow depth we could estimate SWE at sub-metre resolutions which is a new opportunity to improve the measurement of shallow snowpacks.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Anthony A. P. Baron, Helen M. Baulch, Ali Nazemi, and Colin J. Whitfield
EGUsphere, https://doi.org/10.5194/egusphere-2024-1503, https://doi.org/10.5194/egusphere-2024-1503, 2024
Short summary
Short summary
We worked to understand how climate variability and flow management affected water quality in a key drinking water source. Our focus was on dissolved organic carbon, or DOC, and our work demonstrates that DOC can change rapidly, reaching high concentrations in wet periods, when flow sources are dominated by the local catchment. Results indicate that the impacts of high local flow, and low inflows from managed sources are compounding water quality challenges, creating issues for water treatment.
André Bertoncini and John W. Pomeroy
EGUsphere, https://doi.org/10.5194/egusphere-2024-288, https://doi.org/10.5194/egusphere-2024-288, 2024
Short summary
Short summary
Rainfall and snowfall spatial estimation for hydrological purposes is often compromised in cold mountain regions due to inaccessibility, creating sparse gauge networks with few high-elevation gauges. This study developed a framework to quantify gauge network uncertainty, considering elevation to aid in future gauge placement in mountain regions. Results show that gauge placement above 2000 m was the most cost-effective measure to decrease gauge network uncertainty in the Canadian Rockies.
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, and Colin Whitfield
Hydrol. Earth Syst. Sci., 27, 3525–3546, https://doi.org/10.5194/hess-27-3525-2023, https://doi.org/10.5194/hess-27-3525-2023, 2023
Short summary
Short summary
This study evaluated the impacts of climate change on snowmelt, soil moisture, and streamflow over the Canadian Prairies. The entire prairie region was divided into seven basin types. We found strong variations of hydrological sensitivity to precipitation and temperature changes in different land covers and basins, which suggests that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different regions of the prairies.
Kevin Robert Shook, Paul H. Whitfield, Christopher Spence, and John Willard Pomeroy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-51, https://doi.org/10.5194/hess-2023-51, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than are generally assumed. Analyses of historical flows for 23 basins in central Alberta, showed that many of the rivers responded more slowly, and that the flows are much slower, than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Marcos R. C. Cordeiro, Kang Liang, Henry F. Wilson, Jason Vanrobaeys, David A. Lobb, Xing Fang, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 5917–5931, https://doi.org/10.5194/hess-26-5917-2022, https://doi.org/10.5194/hess-26-5917-2022, 2022
Short summary
Short summary
This study addresses the issue of increasing interest in the hydrological impacts of converting cropland to perennial forage cover in the Canadian Prairies. By developing customized models using the Cold Regions Hydrological Modelling (CRHM) platform, this long-term (1992–2013) modelling study is expected to provide stakeholders with science-based information regarding the hydrological impacts of land use conversion from annual crop to perennial forage cover in the Canadian Prairies.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022, https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Short summary
Tracer-aided hydrological models are useful tool to reduce uncertainty of hydrological modeling in cold basins, but there is little guidance on the sampling strategy for isotope analysis, which is important for large mountainous basins. This study evaluated the reliance of the tracer-aided modeling performance on the availability of isotope data in the Yarlung Tsangpo river basin, and provides implications for collecting water isotope data for running tracer-aided hydrological models.
Dhiraj Pradhananga and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 2605–2616, https://doi.org/10.5194/hess-26-2605-2022, https://doi.org/10.5194/hess-26-2605-2022, 2022
Short summary
Short summary
This study considers the combined impacts of climate and glacier changes due to recession on the hydrology and water balance of two high-elevation glaciers. Peyto and Athabasca glacier basins in the Canadian Rockies have undergone continuous glacier loss over the last 3 to 5 decades, leading to an increase in ice exposure and changes to the elevation and slope of the glacier surfaces. Streamflow from these glaciers continues to increase more due to climate warming than glacier recession.
Christopher Spence, Zhihua He, Kevin R. Shook, Balew A. Mekonnen, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 1801–1819, https://doi.org/10.5194/hess-26-1801-2022, https://doi.org/10.5194/hess-26-1801-2022, 2022
Short summary
Short summary
We determined how snow and flow in small creeks change with temperature and precipitation in the Canadian Prairie, a region where water resources are often under stress. We tried something new. Every watershed in the region was placed in one of seven groups based on their landscape traits. We selected one of these groups and used its traits to build a model of snow and streamflow. It worked well, and by the 2040s there may be 20 %–40 % less snow and 30 % less streamflow than the 1980s.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 25, 6151–6172, https://doi.org/10.5194/hess-25-6151-2021, https://doi.org/10.5194/hess-25-6151-2021, 2021
Short summary
Short summary
Hydrological modeling has large problems of uncertainty in cold regions. Tracer-aided hydrological models are increasingly used to reduce uncertainty and refine the parameterizations of hydrological processes, with limited application in large basins due to the unavailability of spatially distributed precipitation isotopes. This study explored the utility of isotopic general circulation models in driving a tracer-aided hydrological model in a large basin on the Tibetan Plateau.
Kunbiao Li, Fuqiang Tian, Mohd Yawar Ali Khan, Ran Xu, Zhihua He, Long Yang, Hui Lu, and Yingzhao Ma
Earth Syst. Sci. Data, 13, 5455–5467, https://doi.org/10.5194/essd-13-5455-2021, https://doi.org/10.5194/essd-13-5455-2021, 2021
Short summary
Short summary
Due to complex climate and topography, there is still a lack of a high-quality rainfall dataset for hydrological modeling over the Tibetan Plateau. This study aims to establish a high-accuracy daily rainfall product over the southern Tibetan Plateau through merging satellite rainfall estimates based on a high-density rainfall gauge network. Statistical and hydrological evaluation indicated that the new dataset outperforms the raw satellite estimates and several other products of similar types.
Yi Nan, Lide Tian, Zhihua He, Fuqiang Tian, and Lili Shao
Hydrol. Earth Syst. Sci., 25, 3653–3673, https://doi.org/10.5194/hess-25-3653-2021, https://doi.org/10.5194/hess-25-3653-2021, 2021
Short summary
Short summary
This study integrated a water isotope module into the hydrological model THREW. The isotope-aided model was subsequently applied for process understanding in the glacierized watershed of Karuxung river on the Tibetan Plateau. The model was used to quantify the contribution of runoff component and estimate the water travel time in the catchment. Model uncertainties were significantly constrained by using additional isotopic data, improving the process understanding in the catchment.
Dhiraj Pradhananga, John W. Pomeroy, Caroline Aubry-Wake, D. Scott Munro, Joseph Shea, Michael N. Demuth, Nammy Hang Kirat, Brian Menounos, and Kriti Mukherjee
Earth Syst. Sci. Data, 13, 2875–2894, https://doi.org/10.5194/essd-13-2875-2021, https://doi.org/10.5194/essd-13-2875-2021, 2021
Short summary
Short summary
This paper presents hydrological, meteorological, glaciological and geospatial data of Peyto Glacier Basin in the Canadian Rockies. They include high-resolution DEMs derived from air photos and lidar surveys and long-term hydrological and glaciological model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate change and variability in the basin and understanding the hydrological responses of the basin to both glacier and climate change.
Paul H. Whitfield, Philip D. A. Kraaijenbrink, Kevin R. Shook, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 25, 2513–2541, https://doi.org/10.5194/hess-25-2513-2021, https://doi.org/10.5194/hess-25-2513-2021, 2021
Short summary
Short summary
Using only warm season streamflow records, regime and change classifications were produced for ~ 400 watersheds in the Nelson and Mackenzie River basins, and trends in water storage and vegetation were detected from satellite imagery. Three areas show consistent changes: north of 60° (increased streamflow and basin greenness), in the western Boreal Plains (decreased streamflow and basin greenness), and across the Prairies (three different patterns of increased streamflow and basin wetness).
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Julie M. Thériault, Stephen J. Déry, John W. Pomeroy, Hilary M. Smith, Juris Almonte, André Bertoncini, Robert W. Crawford, Aurélie Desroches-Lapointe, Mathieu Lachapelle, Zen Mariani, Selina Mitchell, Jeremy E. Morris, Charlie Hébert-Pinard, Peter Rodriguez, and Hadleigh D. Thompson
Earth Syst. Sci. Data, 13, 1233–1249, https://doi.org/10.5194/essd-13-1233-2021, https://doi.org/10.5194/essd-13-1233-2021, 2021
Short summary
Short summary
This article discusses the data that were collected during the Storms and Precipitation Across the continental Divide (SPADE) field campaign in spring 2019 in the Canadian Rockies, along the Alberta and British Columbia border. Various instruments were installed at five field sites to gather information about atmospheric conditions focussing on precipitation. Details about the field sites, the instrumentation used, the variables collected, and the collection methods and intervals are presented.
Vincent Vionnet, Christopher B. Marsh, Brian Menounos, Simon Gascoin, Nicholas E. Wayand, Joseph Shea, Kriti Mukherjee, and John W. Pomeroy
The Cryosphere, 15, 743–769, https://doi.org/10.5194/tc-15-743-2021, https://doi.org/10.5194/tc-15-743-2021, 2021
Short summary
Short summary
Mountain snow cover provides critical supplies of fresh water to downstream users. Its accurate prediction requires inclusion of often-ignored processes. A multi-scale modelling strategy is presented that efficiently accounts for snow redistribution. Model accuracy is assessed via airborne lidar and optical satellite imagery. With redistribution the model captures the elevation–snow depth relation. Redistribution processes are required to reproduce spatial variability, such as around ridges.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Nikolas O. Aksamit and John W. Pomeroy
The Cryosphere, 14, 2795–2807, https://doi.org/10.5194/tc-14-2795-2020, https://doi.org/10.5194/tc-14-2795-2020, 2020
Short summary
Short summary
In cold regions, it is increasingly important to quantify the amount of water stored as snow at the end of winter. Current models are inconsistent in their estimates of snow sublimation due to atmospheric turbulence. Specific wind structures have been identified that amplify potential rates of surface and blowing snow sublimation during blowing snow storms. The recurrence of these motions has been modeled by a simple scaling argument that has its foundation in turbulent boundary layer theory.
Nicholas J. Kinar, John W. Pomeroy, and Bing Si
Geosci. Instrum. Method. Data Syst., 9, 293–315, https://doi.org/10.5194/gi-9-293-2020, https://doi.org/10.5194/gi-9-293-2020, 2020
Short summary
Short summary
Heat pulse probes are widely used to monitor soil thermal and physical properties for agricultural and hydrological monitoring related to crop productivity, drought, snowmelt, and evapotranspiration. Changes in the effective probe spacing distance can cause measurement inaccuracy. This paper uses a novel heat pulse probe and theory to compensate for changes in effective distance, thereby enabling more accurate sensor outputs useful for forecasts and predictions of drought and flooding.
Zhihua He, Katy Unger-Shayesteh, Sergiy Vorogushyn, Stephan M. Weise, Doris Duethmann, Olga Kalashnikova, Abror Gafurov, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 3289–3309, https://doi.org/10.5194/hess-24-3289-2020, https://doi.org/10.5194/hess-24-3289-2020, 2020
Short summary
Short summary
Quantifying the seasonal contributions of the runoff components, including groundwater, snowmelt, glacier melt, and rainfall, to streamflow is highly necessary for understanding the dynamics of water resources in glacierized basins given the vulnerability of snow- and glacier-dominated environments to the current climate warming. Our study provides the first comparison of two end-member mixing approaches for hydrograph separation in glacierized basins.
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, https://doi.org/10.5194/tc-14-1919-2020, 2020
Short summary
Short summary
Unmanned-aerial-vehicle-based (UAV) structure-from-motion (SfM) techniques have the ability to map snow depths in open areas. Here UAV lidar and SfM are compared to map sub-canopy snowpacks. Snow depth accuracy was assessed with data from sites in western Canada collected in 2019. It is demonstrated that UAV lidar can measure the sub-canopy snow depth at a high accuracy, while UAV-SfM cannot. UAV lidar promises to quantify snow–vegetation interactions at unprecedented accuracy and resolution.
Xing Fang and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 2731–2754, https://doi.org/10.5194/hess-24-2731-2020, https://doi.org/10.5194/hess-24-2731-2020, 2020
Short summary
Short summary
High-resolution Weather Research and Forecasting model near-surface outputs from control and future periods were bias-corrected by downscaling outputs with respect to meteorological stations in Marmot Creek Research Basin, Canadian Rocky Mountains. A hydrological model simulation driven by the bias-corrected outputs showed declined seasonal peak snowpack, shorter snow-cover duration, higher evapotranspiration, and increased streamflow discharge in Marmot Creek for the warmer and wetter future.
Vincent Vionnet, Vincent Fortin, Etienne Gaborit, Guy Roy, Maria Abrahamowicz, Nicolas Gasset, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 2141–2165, https://doi.org/10.5194/hess-24-2141-2020, https://doi.org/10.5194/hess-24-2141-2020, 2020
Short summary
Short summary
The 2013 Alberta flood in Canada was typical of late-spring floods in mountain basins combining intense precipitation with rapid melting of late-lying snowpack. Hydrological simulations of this event are mainly influenced by (i) the spatial resolution of the atmospheric forcing due to the best estimate of precipitation at the kilometer scale and changes in turbulent fluxes contributing to snowmelt and (ii) uncertainties in initial snow conditions at high elevations. Soil texture has less impact.
Zilefac Elvis Asong, Mohamed Ezzat Elshamy, Daniel Princz, Howard Simon Wheater, John Willard Pomeroy, Alain Pietroniro, and Alex Cannon
Earth Syst. Sci. Data, 12, 629–645, https://doi.org/10.5194/essd-12-629-2020, https://doi.org/10.5194/essd-12-629-2020, 2020
Short summary
Short summary
This dataset provides an improved set of forcing data for large-scale hydrological models for climate change impact assessment in the Mackenzie River Basin (MRB). Here, the strengths of two historical datasets were blended to produce a less-biased long-record product for hydrological modelling and climate change impact assessment over the MRB. This product is then used to bias-correct climate projections from the Canadian Regional Climate Model under RCP8.5.
Christopher B. Marsh, John W. Pomeroy, and Howard S. Wheater
Geosci. Model Dev., 13, 225–247, https://doi.org/10.5194/gmd-13-225-2020, https://doi.org/10.5194/gmd-13-225-2020, 2020
Short summary
Short summary
The Canadian Hydrological Model (CHM) is a next-generation distributed model. Although designed to be applied generally, it has a focus for application where cold-region processes, such as snowpacks, play a role in hydrology. A key feature is that it uses a multi-scale surface representation, increasing efficiency. It also enables algorithm comparisons in a flexible structure. Model philosophy, design, and several cold-region-specific examples are described.
Paul H. Whitfield, Philip D. A. Kraaijenbrink, Kevin R. Shook, and John W. Pomeroy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-671, https://doi.org/10.5194/hess-2019-671, 2020
Revised manuscript not accepted
Short summary
Short summary
Using partial year streamflow records a regime and change classification were produced for ~ 400 watersheds in the Saskatchewan and Mackenzie River basins, and trends in water storage and vegetation were detected from satellite imagery. Three areas show consistent changes; north of 60° [increased streamflow and basin greenness], in the western Boreal Plains [decreased streamflow and basin greenness], and across the Prairies [three different patterns of increased streamflow and basin wetness].
Michael Schirmer and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 143–157, https://doi.org/10.5194/hess-24-143-2020, https://doi.org/10.5194/hess-24-143-2020, 2020
Short summary
Short summary
The spatial distribution of snow water equivalent (SWE) and melt are important for hydrological applications in alpine terrain. We measured the spatial distribution of melt using a drone in very high resolution and could relate melt to topographic characteristics. Interestingly, melt and SWE were not related spatially, which influences the speed of areal melt out. We could explain this by melt varying over larger distances than SWE.
Kabir Rasouli, John W. Pomeroy, and Paul H. Whitfield
Hydrol. Earth Syst. Sci., 23, 4933–4954, https://doi.org/10.5194/hess-23-4933-2019, https://doi.org/10.5194/hess-23-4933-2019, 2019
Short summary
Short summary
The combined effects of changes in climate, vegetation, and soils on mountain hydrology were modeled in three mountain basins. In the Yukon, an insignificant increasing effect of vegetation change on snow was found to be important enough to offset the climate change effect. In the Canadian Rockies, a combined effect of soil and climate change on runoff became significant, whereas their individual effects were not significant. Only vegetation change decreased runoff in the basin in Idaho.
Robert N. Armstrong, John W. Pomeroy, and Lawrence W. Martz
Hydrol. Earth Syst. Sci., 23, 4891–4907, https://doi.org/10.5194/hess-23-4891-2019, https://doi.org/10.5194/hess-23-4891-2019, 2019
Short summary
Short summary
Digital and thermal images taken near midday were used to scale daily point observations of key factors driving actual-evaporation estimates across a complex Canadian Prairie landscape. Point estimates of actual evaporation agreed well with observed values via eddy covariance. Impacts of spatial variations on areal estimates were minor, and no covariance was found between model parameters driving the energy term. The methods can be applied further to improve land surface parameterisations.
Jared D. Wolfe, Kevin R. Shook, Chris Spence, and Colin J. Whitfield
Hydrol. Earth Syst. Sci., 23, 3945–3967, https://doi.org/10.5194/hess-23-3945-2019, https://doi.org/10.5194/hess-23-3945-2019, 2019
Short summary
Short summary
Watershed classification can identify regions expected to respond similarly to disturbance. Methods should extend beyond hydrology to include other environmental questions, such as ecology and water quality. We developed a classification for the Canadian Prairie and identified seven classes defined by watershed characteristics, including elevation, climate, wetland density, and surficial geology. Results provide a basis for evaluating watershed response to land management and climate condition.
Zilefac Elvis Asong, Mohamed Elshamy, Daniel Princz, Howard Wheater, John Pomeroy, Alain Pietroniro, and Alex Cannon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-249, https://doi.org/10.5194/hess-2019-249, 2019
Publication in HESS not foreseen
Xing Fang, John W. Pomeroy, Chris M. DeBeer, Phillip Harder, and Evan Siemens
Earth Syst. Sci. Data, 11, 455–471, https://doi.org/10.5194/essd-11-455-2019, https://doi.org/10.5194/essd-11-455-2019, 2019
Short summary
Short summary
Meteorological, snow survey, streamflow, and groundwater data are presented from Marmot Creek Research Basin, a small alpine-montane forest headwater catchment in the Alberta Rockies. It was heavily instrumented, experimented upon, and operated by several federal government agencies between 1962 and 1986 and was re-established starting in 2004 by the University of Saskatchewan Centre for Hydrology. These long-term legacy data serve to advance our knowledge of hydrology of the Canadian Rockies.
Kabir Rasouli, John W. Pomeroy, J. Richard Janowicz, Tyler J. Williams, and Sean K. Carey
Earth Syst. Sci. Data, 11, 89–100, https://doi.org/10.5194/essd-11-89-2019, https://doi.org/10.5194/essd-11-89-2019, 2019
Short summary
Short summary
A set of hydrometeorological data including daily precipitation, hourly air temperature, humidity, wind, solar and net radiation, soil temperature, soil moisture, snow depth and snow water equivalent, streamflow and water level in a groundwater well, and geographical information system data are presented in this paper. This dataset was recorded at different elevation bands in Wolf Creek Research Basin, near Whitehorse, Yukon Territory, Canada.
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
Hydrol. Earth Syst. Sci., 23, 1–17, https://doi.org/10.5194/hess-23-1-2019, https://doi.org/10.5194/hess-23-1-2019, 2019
Short summary
Short summary
As snow cover becomes patchy during snowmelt, energy is advected from warm snow-free surfaces to cold snow-covered surfaces. This paper proposes a simple sensible and latent heat advection model for snowmelt situations that can be coupled to one-dimensional energy balance snowmelt models. The model demonstrates that sensible and latent heat advection fluxes can compensate for one another, especially in early melt periods.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Zilefac Elvis Asong, Howard Simon Wheater, John Willard Pomeroy, Alain Pietroniro, Mohamed Ezzat Elshamy, Daniel Princz, and Alex Cannon
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-128, https://doi.org/10.5194/essd-2018-128, 2018
Preprint withdrawn
Short summary
Short summary
Cold regions hydrology is very sensitive to the impacts of climate warming. We need better hydrological models driven by reliable climate data in order to assess hydrologic responses to climate change. Cold regions often have sparse surface observations, particularly at high elevations that generate a major amount of runoff. We produce a long-term dataset that can be used to better understand and represent the seasonal/inter-annual variability of hydrological fluxes and the the timing of runoff.
Julie M. Thériault, Ida Hung, Paul Vaquer, Ronald E. Stewart, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 22, 4491–4512, https://doi.org/10.5194/hess-22-4491-2018, https://doi.org/10.5194/hess-22-4491-2018, 2018
Short summary
Short summary
Precipitation events associated with rain and snow on the eastern slopes of the Rocky Mountains, Canada, are a critical aspect of the regional water cycle. The goal is to characterize the precipitation and weather conditions in the Kananaskis Valley, Alberta, during a field experiment. Mainly dense solid precipitation reached the surface and occurred during downslope and upslope conditions. The precipitation phase has critical implications on the severity of flooding events in the area.
Sebastian A. Krogh and John W. Pomeroy
Hydrol. Earth Syst. Sci., 22, 3993–4014, https://doi.org/10.5194/hess-22-3993-2018, https://doi.org/10.5194/hess-22-3993-2018, 2018
Short summary
Short summary
The Arctic has warmed and vegetation has expanded; however, impacts on hydrology are poorly understood. This study used observed meteorology from the last 56 years and changes in vegetation to simulate the water cycle of an Arctic headwater basin. Several changes were found: decreased snow cover duration, deeper permafrost and earlier peak flows. Most changes are from climate change; however, vegetation impacts blowing snow, partially compensating the impact of climate change on streamflow.
Marcos R. C. Cordeiro, Henry F. Wilson, Jason Vanrobaeys, John W. Pomeroy, Xing Fang, and The Red-Assiniboine Project Biophysical Modelling Team
Hydrol. Earth Syst. Sci., 21, 3483–3506, https://doi.org/10.5194/hess-21-3483-2017, https://doi.org/10.5194/hess-21-3483-2017, 2017
Short summary
Short summary
The physically based Cold Regions Hydrological Model (CRHM) was utilized to simulate runoff in the La Salle River, located in the northern Great Plains with flat topography, clay soils, and surface drainage. Snow sublimation and transport as well as infiltration to frozen soils were identified as critical in defining snowmelt. Challenges in representing infiltration into frozen but dry clay soils and flow routing under both dry and flooded conditions indicate the need for further study.
Craig D. Smith, Anna Kontu, Richard Laffin, and John W. Pomeroy
The Cryosphere, 11, 101–116, https://doi.org/10.5194/tc-11-101-2017, https://doi.org/10.5194/tc-11-101-2017, 2017
Short summary
Short summary
One of the objectives of the WMO Solid Precipitation Intercomparison Experiment (SPICE) was to assess the performance of automated instruments that measure snow water equivalent and make recommendations on the best measurement practices and data interpretation. This study assesses the Campbell Scientific CS725 and the Sommer SSG100 for measuring SWE. Different measurement principals of the instruments as well as site characteristics influence the way that the SWE data should be interpreted.
Nikolas O. Aksamit and John W. Pomeroy
The Cryosphere, 10, 3043–3062, https://doi.org/10.5194/tc-10-3043-2016, https://doi.org/10.5194/tc-10-3043-2016, 2016
Short summary
Short summary
The first implementation of particle tracking velocimetry in outdoor alpine blowing snow has both provided new insight on intermittent snow particle transport initiation and entrainment in the dense near-surface "creep" layer whilst also confirming some wind tunnel observations. Environmental PTV has shown to be a viable avenue for furthering our understanding of the coupling of the atmospheric boundary layer turbulence and blowing snow transport.
Phillip Harder, Michael Schirmer, John Pomeroy, and Warren Helgason
The Cryosphere, 10, 2559–2571, https://doi.org/10.5194/tc-10-2559-2016, https://doi.org/10.5194/tc-10-2559-2016, 2016
Short summary
Short summary
This paper assesses the accuracy of high-resolution snow depth maps generated from unmanned aerial vehicle imagery. Snow depth maps are generated from differencing snow-covered and snow-free digital surface models produced from structure from motion techniques. On average, the estimated snow depth error was 10 cm. This technique is therefore useful for observing snow accumulation and melt in deep snow but is restricted to observing peak snow accumulation in shallow snow.
Xicai Pan, Daqing Yang, Yanping Li, Alan Barr, Warren Helgason, Masaki Hayashi, Philip Marsh, John Pomeroy, and Richard J. Janowicz
The Cryosphere, 10, 2347–2360, https://doi.org/10.5194/tc-10-2347-2016, https://doi.org/10.5194/tc-10-2347-2016, 2016
Short summary
Short summary
This study demonstrates a robust procedure for accumulating precipitation gauge measurements and provides an analysis of bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. It highlights the need for and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate–hydrology models.
Nicolas R. Leroux and John W. Pomeroy
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-55, https://doi.org/10.5194/tc-2016-55, 2016
Revised manuscript not accepted
Short summary
Short summary
Snowmelt runoff reaches our rivers and is critical for water management and consumption in cold regions. Preferential flow paths form while snow is melting and accelerate the timing at which meltwater reaches the base of the snowpack and has great impact on basin hydrology. A novel 2D numerical model that simulates water and heat fluxes through a melting snowpack is presented. Its ability to simulate formation and flow through preferential flow paths and impacts on snowmelt runoff are discussed.
Z. H. He, F. Q. Tian, H. V. Gupta, H. C. Hu, and H. P. Hu
Hydrol. Earth Syst. Sci., 19, 1807–1826, https://doi.org/10.5194/hess-19-1807-2015, https://doi.org/10.5194/hess-19-1807-2015, 2015
Z. H. He, J. Parajka, F. Q. Tian, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 4773–4789, https://doi.org/10.5194/hess-18-4773-2014, https://doi.org/10.5194/hess-18-4773-2014, 2014
Short summary
Short summary
In this paper, we propose a new method for estimating the snowmelt degree-day factor (DDFS) directly from MODIS snow covered area (SCA) and ground-based snow depth data without calibration. Snow density is estimated as the ratio between observed precipitation and changes in the snow volume for days with snow accumulation. DDFS values are estimated as the ratio between changes in the snow water equivalent and difference between the daily temperature and a threshold value for days with snowmelt.
C. B. Ménard, R. Essery, and J. Pomeroy
Hydrol. Earth Syst. Sci., 18, 2375–2392, https://doi.org/10.5194/hess-18-2375-2014, https://doi.org/10.5194/hess-18-2375-2014, 2014
Z. He, F. Tian, H. C. Hu, H. V. Gupta, and H. P. Hu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-1253-2014, https://doi.org/10.5194/hessd-11-1253-2014, 2014
Revised manuscript not accepted
X. Fang, J. W. Pomeroy, C. R. Ellis, M. K. MacDonald, C. M. DeBeer, and T. Brown
Hydrol. Earth Syst. Sci., 17, 1635–1659, https://doi.org/10.5194/hess-17-1635-2013, https://doi.org/10.5194/hess-17-1635-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Lack of robustness of hydrological models: A large-sample diagnosis and an attempt to identify the hydrological and climatic drivers
The Significance of the Leaf-Area-Index on the Evapotranspiration Estimation in SWAT-T for Characteristic Land Cover Types of Western Africa
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
A network approach for multiscale catchment classification using traits
Multi-model approach in a variable spatial framework for streamflow simulation
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Toward interpretable LSTM-based modeling of hydrological systems
Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model
What controls the tail behaviour of flood series: rainfall or runoff generation?
Learning Landscape Features from Streamflow with Autoencoders
Seasonal prediction of end-of-dry-season watershed behavior in a highly interconnected alluvial watershed in northern California
Glaciers determine the sensitivity of hydrological processes to perturbed climate in a large mountainous basin on the Tibetan Plateau
Leveraging gauge networks and strategic discharge measurements to aid the development of continuous streamflow records
On the need for physical constraints in deep learning rainfall–runoff projections under climate change: a sensitivity analysis to warming and shifts in potential evapotranspiration
Evaluation of hydrological models on small mountainous catchments: impact of the meteorological forcings
Projecting sediment export from two highly glacierized alpine catchments under climate change: exploring non-parametric regression as an analysis tool
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024, https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary
Short summary
Mountain snowpack has been declining and more precipitation falls as rain than snow. Using stable isotopes, we found flows and flow duration in Yosemite Creek are most sensitive to climate warming due to strong evaporation of waterfalls, potentially lengthening the dry-up period of waterfalls in summer and negatively affecting tourism. Groundwater recharge in Yosemite Valley is primarily from the upper snow–rain transition (2000–2500 m) and very vulnerable to a reduction in the snow–rain ratio.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-80, https://doi.org/10.5194/hess-2024-80, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This work aims at investigating how hydrological models can be transferred to a period in which climatic conditions are different to the ones of the period in which it was set up. The RAT method, built to detect dependencies between model error and climatic drivers, was applied to 3 different hydrological models on 352 catchments in Denmark, France and Sweden. Potential issues are detected for a significant number of catchments for the 3 models even though these catchments differ for each model.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-131, https://doi.org/10.5194/hess-2024-131, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
ET is computed from vegetation (plant transpiration) and soil (soil evaporation). In Western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented with the leaf-area-index (LAI). In this study, we evaluate the importance of LAI for the ET calculation. We take a close look at the LAI-ET interaction and show the relevance to consider both, LAI and ET. Our work contributes to the understanding of the processes of the terrestrial water cycle.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024, https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
Short summary
Input data, model and calibration strategy can affect the accuracy of flood event simulation and prediction. Satellite-based precipitation with different spatiotemporal resolutions is an important input source. Data-driven models are sometimes proven to be more accurate than hydrological models. Event-based calibration and conventional strategy are two options adopted for flood simulation. This study targets the three concerns for accurate flood event simulation and prediction.
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024, https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Short summary
We present a new method based on network science for unsupervised classification of large datasets and apply it to classify 9067 US catchments and 274 biophysical traits at multiple scales. We find that our trait-based approach produces catchment classes with distinct streamflow behavior and that spatial patterns emerge amongst pristine and human-impacted catchments. This method can be widely used beyond hydrology to identify patterns, reduce trait redundancy, and select representative sites.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024, https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary
Short summary
Hydrologists strive to “Be right for the right reasons” when modeling the hydrologic cycle; however, the datasets available to validate hydrological models are sparse, and in many cases, they comprise streamflow observations at the outlets of large catchments. In this work, we show that matching streamflow observations at the outlet of a large basin is not a reliable indicator of a correct description of the small-scale runoff processes.
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024, https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Short summary
This study examines the relationship between air and river temperatures in Washington's Snoqualmie and Wenatchee basins. We used classification and regression approaches to show that the sensitivity of river temperature to air temperature is variable across basins and controlled largely by geology and snowmelt. Findings can be used to inform strategies for river basin restoration and conservation, such as identifying climate-insensitive areas of the basin that should be preserved and protected.
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024, https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
Short summary
To determine if deep learning models are in general a viable alternative to traditional hydrologic modelling techniques in Australian catchments, a comparison of river–runoff predictions is made between traditional conceptual models and deep learning models in almost 500 catchments spread over the continent. It is found that the deep learning models match or outperform the traditional models in over two-thirds of the river catchments, indicating feasibility in a wide variety of conditions.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-57, https://doi.org/10.5194/hess-2024-57, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. In this work we investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analysis indicate that adding two vegetation is enough to improve the representation of evaporation, and the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024, https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Short summary
Calibrating hydrological models with multi-objective functions enhances model robustness. By using spatially distributed snow information in the calibration, the model performance can be enhanced without compromising the outputs. In this study the HYDROTEL model was calibrated in seven different experiments, incorporating the SPAEF (spatial efficiency) metric alongside Nash–Sutcliffe efficiency (NSE) and root-mean-square error (RMSE), with the aim of identifying the optimal calibration strategy.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024, https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-47, https://doi.org/10.5194/hess-2024-47, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature needed for challenging cases, associated with aridity and intermittent flow. Baseflow index, aridity, and soil/vegetation attributes strongly correlate with learned features, indicating their importance for streamflow prediction.
Claire Kouba and Thomas Harter
Hydrol. Earth Syst. Sci., 28, 691–718, https://doi.org/10.5194/hess-28-691-2024, https://doi.org/10.5194/hess-28-691-2024, 2024
Short summary
Short summary
In some watersheds, the severity of the dry season has a large impact on aquatic ecosystems. In this study, we design a way to predict, 5–6 months in advance, how severe the dry season will be in a rural watershed in northern California. This early warning can support seasonal adaptive management. To predict these two values, we assess data about snow, rain, groundwater, and river flows. We find that maximum snowpack and total wet season rainfall best predict dry season severity.
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024, https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary
Short summary
This paper utilized a tracer-aided model validated by multiple datasets in a large mountainous basin on the Tibetan Plateau to analyze hydrological sensitivity to climate change. The spatial pattern of the local hydrological sensitivities and the influence factors were analyzed in particular. The main finding of this paper is that the local hydrological sensitivity in mountainous basins is determined by the relationship between the glacier area ratio and the mean annual precipitation.
Michael J. Vlah, Matthew R. V. Ross, Spencer Rhea, and Emily S. Bernhardt
Hydrol. Earth Syst. Sci., 28, 545–573, https://doi.org/10.5194/hess-28-545-2024, https://doi.org/10.5194/hess-28-545-2024, 2024
Short summary
Short summary
Virtual stream gauging enables continuous streamflow estimation where a gauge might be difficult or impractical to install. We reconstructed flow at 27 gauges of the National Ecological Observatory Network (NEON), informing ~199 site-months of missing data in the official record and improving that accuracy of official estimates at 11 sites. This study shows that machine learning, but also routine regression methods, can be used to supplement existing gauge networks and reduce monitoring costs.
Sungwook Wi and Scott Steinschneider
Hydrol. Earth Syst. Sci., 28, 479–503, https://doi.org/10.5194/hess-28-479-2024, https://doi.org/10.5194/hess-28-479-2024, 2024
Short summary
Short summary
We investigate whether deep learning (DL) models can produce physically plausible streamflow projections under climate change. We address this question by focusing on modeled responses to increases in temperature and potential evapotranspiration and by employing three DL and three process-based hydrological models. The results suggest that physical constraints regarding model architecture and input are necessary to promote the physical realism of DL hydrological projections under climate change.
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, David Penot, Francois Colleoni, Alexandre Mas, Pierre-André Garambois, and Olivier Laurantin
Hydrol. Earth Syst. Sci., 28, 261–281, https://doi.org/10.5194/hess-28-261-2024, https://doi.org/10.5194/hess-28-261-2024, 2024
Short summary
Short summary
Hydrological modelling of mountainous catchments is challenging for many reasons, the main one being the temporal and spatial representation of precipitation forcings. This study presents an evaluation of the hydrological modelling of 55 small mountainous catchments of the northern French Alps, focusing on the influence of the type of precipitation reanalyses used as inputs. These evaluations emphasize the added value of radar measurements, in particular for the reproduction of flood events.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 139–161, https://doi.org/10.5194/hess-28-139-2024, https://doi.org/10.5194/hess-28-139-2024, 2024
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable as many interacting processes are involved, and appropriate physical models are lacking. We present the first study, to our knowledge, exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that peak sediment may have already passed.
Cited articles
AAFC: Detailed Soil Surveys, Agriculture and Agri-Food Canada, Government of Canada [data set], https://open.canada.ca/data/en/dataset/7ed13bbe-fbac-417c-a942-ea2b3add1748 (last access: 5 July 2022), 2015.
AAFC: Annual Crop Inventory, Agriculture and Agri-Food Canada, Government of Canada [data set], https://open.canada.ca/data/en/dataset/ba2645d5-4458-414d-b196-6303ac06c1c9 (last access: 5 July 2022), 2016.
Acreman, M. and Holden, J.:
How wetlands effect floods, Wetlands, 33, 773–786, 2013.
Ali, G. and English, C.:
Phytoplankton blooms in Lake Winnipeg linked to selective water-gatekeeper connectivity, Sci. Rep.-UK, 9, 8395, https://doi.org/10.1038/s41598-019-44717-y, 2019.
Ali, G., Haque, A., Basu, N. B., Badiou, P., and Wilson, H.:
Groundwater-driven wetland-stream connectivity in the Prairie Pothole Region: Inferences based on electrical conductivity data, Wetlands, 37, 773–785, 2017.
Ameli, A. A. and Creed, I. F.:
Quantifying hydrologic connectivity of wetlands to surface water systems, Hydrol. Earth Syst. Sci., 21, 1791–1808, https://doi.org/10.5194/hess-21-1791-2017, 2017.
Armstrong R. N., Pomeroy J. W., and Martz L. W.:
Variability in evaporation across the Canadian Prairie region during drought and non-drought periods, J. Hydrol., 521, 182–195, https://doi.org/10.1016/j.jhydrol.2014.11.070, 2015.
Baulch, H., Whitfield, C., Wolfe, J., Basu, N., Bedard-Haughn, A., Belcher, K., Clark, R., Ferguson, G., Hayashi, M., Ireson, A., Lloyd-Smith, P., Loring, P., Pomeroy, J. W., Shook, K., and Spence, C.:
Synthesis of science: findings on Canadian Prairie wetland drainage, Can. Water Resour. J., 46, 229–241, https://doi.org/10.1080/07011784.2021.1973911, 2021.
Brannen, R., Spence, C., and Ireson, A.:
Influence of shallow groundwater-surface water interactions on the hydrological connectivity and water budget of a wetland complex, Hydrol. Process., 29, 3862–3877, 2015.
Bullock, A. and Acreman, M.:
The role of wetlands in the hydrological cycle, Hydrol. Earth Syst. Sci., 7, 358–389, https://doi.org/10.5194/hess-7-358-2003, 2003.
Chambers, J. M.: tatistical Models in Southern California,
Linear models, in: Statistical Models, edited by: Chambers, J. M. and Hastie, T. J., Wadsworth & Brooks/Cole, Pacific Grove, ISBN 0 534 16765-9,
1992.
Cohen, M. J., Creed, I. F., Alexander, L., Basu, N. B., Calhoun, A. J. K., Craft, C., D'Amico, E., DeKeyser, E., Fowler, L., Golden, H. E., Jawitz, J. W., Kalla, P., Kirkman, K., Lane, C. R., Lang, M., Leibowitz, S. G., Lewis, D. B., Marton, J., McLaughlin D. L., Mushet, D. M., Raanan-Kiperwas, H., Rains, M. C., Smith, L., and Walls, S. C.:
Do geographically isolated wetlands influence landscape function?, P. Natl. Acad. Sci. USA, 113, 1978–1986, 2016.
Cortus, B. G., Unterschultz, J. R., Jeffrey, S. R., and Boxall, P. C.:
The impacts of agriculture support programs on wetland retention on grain farms in the Prairie Pothole Region, Can. Water Resour. J., 34, 245–254, 2009.
Davidson, N. C.:
How much wetland has the world lost? Long term and recent trends in global wetland area, Mar. Freshwater Res., 65, 936–941, 2014.
Dingman, S. L.:
Effects of permafrost on stream characteristics in the discontinuous permafrost zone of Central Alaska, Permafrost: North American Contribution to the Second International Conference, National Academy of Sciences, Washington, DC, Yakutsk, USSR, 13–28 July 1973, 447–453, 1973.
Dumanski, S., Pomeroy, J. W., and Westbrook, C. J.:
Hydrological regime changes in a Canadian Prairie basin, Hydrol. Process., 29, 3893–3904, 2015.
Ehsanzadeh, E.:
Impact of climate variability and wetland drainage on watershed response in depression dominated landscapes, Int. J. River Basin Mgmt., 16, 169–178, 2016.
Ehsanzadeh, E., Spence, C., van der Kamp, G., and McConkey, B.:
On the behaviour of dynamic contributing areas and flood frequency cures in North American Prairie watersheds, J. Hydrol., 414–415, 364–373, 2012.
Fang, X., Pomeroy, J. W., Westbrook, C. J., Guo, X., Minke, A. G., and Brown, T.:
Prediction of snowmelt derived streamflow in a wetland dominated prairie basin, Hydrol. Earth Syst. Sci., 14, 991–1006, https://doi.org/10.5194/hess-14-991-2010, 2010.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The shuttle radar topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Gleason, R. A., Tangen, B. A., Laubhan, M. K., Kermes, K. E., and Euliss Jr., N. H.:
Estimating water storage capacity of existing and potentially restorable wetland depressions in a subbasin of the Red River of the North, U. S. Geological Survey Open-File Report 2007–1159, U.S. Geological Survey, Reston,, 36 pp., 2007.
Godwin, R. B. and Martin, F. R. J.:
Calculation of gross and effective drainage areas for the Prairie Provinces, Canadian Hydrology Symposium – 1975 Proceedings, 11–14 August 1975, Winnipeg, Manitoba. Associate Committee on Hydrology, National Research Council of Canada, 219–223, 1975.
Golden, H. E., Lane, C. R., Amatya, D. M., Bandilla, K. W., Kiperwas, H. R., Knightes, C. D., and Ssegane, H.: Hydrologic connectivity between geographicall isolated wetlands and surface water systems: A review of select modeling methods, Environ. Modell. Softw., 53, 190–206, 2014.
GSC:
Canadian Geoscience Map, Surficial geology of Canada/Géologie des formations superficielles du Canada, Geological Survey of Canada, Government of Canada, Natural Resources Canada, 195 pp., https://doi.org/10.4095/295462, 2014.
Haque, A., Ali, G., and Badiou, P.:
Hydrological dynamics of prairie pothole wetlands: Dominant processes and landscape controls under contrasted conditions, Hydrol. Process., 32, 2405–2422, 2017.
Hayashi, M., van der Kamp, G., and Rudolph, D. L.:
Water and solute transfer between a prairie wetland and adjacent uplands, 1. Water balance, J. Hydrol., 207, 42–55, 1998.
Hayashi, M., van der Kamp, G., and Schmidt, R.:
Focused infiltration of snowmelt water in partially frozen soil under small depressions, J. Hydrol., 270, 214–229. https://doi.org/10.1016/s0022-1694(02)00287-1, 2003.
Hayashi, M., van der Kamp, G., and Rosenberry, D. O.:
Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes, Wetlands, 36, S237–S254. https://doi.org/10.1007/s13157-016-0797-9, 2016.
He, Z., Shook, K., Spence, C., Pomeroy, J. W., Whitfield, C. J., and olfe, J. D.: Virtual Watershed Model Simulations for Typified Prairie Watersheds in Pothole Till, Federated Data Research Depository [data set],
https://doi.org/10.20383/103.0650, 2022.
Hu, S., Niu, Z., Chen, Y., Li, L., and Zhang, H.:
Global wetlands: Potential distribution, wetland loss, and status, Sci. Total Environ., 586, 319–327, 2017.
Hubbard, D. E. and Linder, R. L.:
Spring runoff retention in Prairie Pothole wetlands, J. Soil Water Conserv., 41, 122–125, 1986.
Johnson, W. C., Millett, B. V., Gilmanov, T., Voldseth, R. A., Guntenspergen, G. R., and Naugle, D. E.:
Vulnerability of northern prairie wetlands to climate change, Bioscience, 55, 863–872, 2005.
Labaugh, J. W., Winter, T. C., and Rosenberry, D. O.:
Hydrologic functions of prairie wetlands, Great Plains Research, 8, 17–37, 1998.
Lehner, B. and Grill, G.: Global river hydrography and network
routing: baseline data and new approaches to study the world’s
large river systems, Hydrol. Process., 27, 2171–2186, 2013.
Leibowitz, S. G. and Vining, K. C.:
Temporal connectivity in a prairie pothole complex, Wetlands, 23, 13–25, 2003.
Leibowitz, S. G., Mushet, D. M., and Newton, W. E.:
Intermittent surface water connectivity: Fill and spill vs fill and merge dynamics, Wetlands, 36, 323–342, https://doi.org/10.1007/s13157-016-0830-z, 2016.
Li, X., Bellerby, R., Craft, C., and Widney, S. E.:
Coastal wetland loss, consequences, and challenges for restoration, Anthropocene Coasts, 1, 1–15, 2018.
Liu, G. and Schwartz, F. W.:
An integrated observational and model-based analysis of the hydrologic response of prairie pothole systems to variability in climate, Water Resour. Res., 47, W02504, https://doi.org/10.1029/2010WR009084, 2011.
Lloyd-Smith, P., Boxall, P., and Belcher, K.:
From rhetoric to measurement: The economics of wetland conservation in the Canadian Prairies, Smart Prosperity Institute Clean Economy Working Paper Series, WP 20-05, Smart Prosperity Institute, Ottawa, 37 pp., 2020.
Male, D. H. and Gray, D. M.: Snowcover ablation and runoff, in: Handbook of Snow: Principles, Processes, Management and Use, edited by: Gray, D. M. and Male, D. H., Pergamon Press, Toronto, 360–436, ISBN 10 0080253741, 1981.
McCauley, L. A., Anteau, M. J., Post van der Burg, M., and Wiltermuth, M. T.:
Land use and wetland drainage affect water levels and dynamics of remaining wetlands, Ecosphere 6, 1–22, 2015.
McKenna, O. P., Kucia, S. R., Mushet, D. M., Anteau, M. J., and Wiltermuth, M. T.:
Synergistic interaction of climate and land-use drivers alter the function of North American, Prairie-Pothole wetlands, Sustainability, 11, 6581, https://doi.org/10.3390/su11236581, 2019.
McNamara, J. P., Kane, D. L., and Hinzman, L. D.:
An analysis of streamflow hydrology in the Kuparuk River Basin Arctic Alaska: a nested watershed approach, J. Hydrol., 206, 39–57, 1998.
Mekis, É. and Vincent, L. A.:
An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada, Atmosphere-Ocean, 49, 163–177, 2011.
Millar, J. B.:
Shoreline-area ratio as a factor in rate of water loss from small sloughs, J. Hydrol., 14, 259–284, 1971.
Miller, B. A., Crumpton, W. G., and van der Valk, A. G.:
Spatial distribution of historical wetland classes on the Des Moines Lobe, Iowa, Wetlands, 29, 1146–1152, 2009.
Miller, M. W. and Nudds, T. D.:
Prairie landscape change and flooding in the Mississippi River Valley, Conserv. Biol., 10, 847–853, 1996.
Muggeo, V. M. R.:
Estimating regression models with unknown break-points, Stat. Med., 22, 3055–3071, 2003.
Niemuth, N. D., Wangler, B., and Reynolds, R. E.:
Spatial and temporal variation in wet area of wetlands in the Prairie Pothole Region of North Dakota and South Dakota, Wetlands, 30, 1053–1064, 2010.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.:
High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584, 2016.
Phillips, R. W., Spence, C., and Pomeroy, J. W.:
Connectivity and runoff dynamics in heterogeneous basins, Hydrol. Process., 25, 3061–3075, 2011.
Poiani, K. A. and Johnson, W. C.:
A spatial simulation model of hydrology and vegetation dynamics in semi-permanent prairie wetlands, Ecol. Appl., 3, 279–293, 1993.
Pomeroy, J. W. and Li, L.: Prairie and arctic areal snow cover mass
balance using a blowing snow model, J. Geophys. Res.-Atmos.,
105, 26619–26634, 2000.
Pomeroy, J. W., Granger, R. J., Pietroniro, A., Toth, B., Hedstrom, N. R., and Woxholtt, S.: Classification of the boreal forest for hydrological processes, in: Proceedings of 9th International Boreal Forest Research Association Conference, Oslo, Norway, 21–23 September 1998, 49–59, 1999.
Pomeroy, J. W., Gray, D. M., Brown T., Hedstrom, N. H., Quinton, W. L., Granger, R. J., and Carey, S. K.:
The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence, Hydrol. Process., 21, 2650–2667, 2007.
Pomeroy, J. W., Fang, X., Westbrook, C., Minke, A., Guo, X., and Brown, T.:
Prairie Hydrological Model Study Final Report, Centre for Hydrology Report No. 7, University of Saskatchewan, Saskatoon, 113 pp., 2010.
Pomeroy, J. W., Fang, X., Shook, K., Westbrook, C., and Brown, T.:
Informing the Vermilion River Watershed Plan through Application of the Cold Regions Hydrological Model Platform, 2012, Centre for Hydrology Report #12, Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada, Saskatoon, 2012.
Pomeroy, J. W., Shook, K., Fang, X., Dumanski, S., Westbrook, C., and Brown, T.:
Improving and testing the prairie hydrological model at Smith Creek Research Basin, Centre for Hydrology Report #14, Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada, Saskatoon, 2014.
Rannie, W. F.:
The Red River flood control system and recent flood events, Water Resour. Bull., 16, 207–214, 1980.
Rosenberry, D. O. and Winter, T. C.:
Dynamics of water table fluctuations in an upland between two prairie pothole wetlands in North Dakota, J. Hydrol., 191, 266–289, 1997.
Shaw, D. A., Vanderkamp, G., Conly, F. M., Pietroniro, A., and Martz, L.:
The fill–spill hydrology of prairie wetland complexes during drought and deluge, Hydrol. Process., 26, 3147–3156, 2012.
Shook, K., Pomeroy, J. W., Spence, C., and Boychuk, L.:
Storage dynamics simulations in prairie wetland hydrology models: evaluation and parameterization, Hydrol. Process., 27, 1875–1889, https://doi.org/10.1002/hyp.9867, 2013.
Shook, K., Papalexiou, S., and Pomeroy, J. W.:
Quantifying the effects of Prairie depressional storage complexes on drainage basin connectivity, J. Hydrol., 593, 125846, https://doi.org/10.1016/j.jhydrol.2020.125846, 2021.
Simonovic, S. P. and Juliano, K. M.:
The role of wetlands during low frequency flooding events in the Red River Basin, Can. Water Resour. J., 26, 377–397, 2001.
Spence, C.: On the relation between dynamic storage and runoff: A discussion on thresholds, efficiency, and function, Water Res. Res., 43, W12416, https://doi.org/10.1029/2006WR005645, 2007.
Spence, C. and Mengistu, S. G.: On the relationship between floods and contributing area, Hydrol. Process., 33, 1980–1992, 2019.
Spence, C., He, Z., Shook, K. R., Mekonnen, B. A., Pomeroy, J. W., Whitfield, C. J., and Wolfe, J. D.:
Assessing hydrological sensitivity of grassland basins in the Canadian Prairies to climate using a basin classification-based virtual modelling approach, Hydrol. Earth Syst. Sci., 26, 1801–1819, https://doi.org/10.5194/hess-26-1801-2022, 2022.
Statistics Canada: Table 32-10-0162-01, Selected land management practices and tillage practices used to prepare land for seeding, historical data, Census of Agriculture, Statistics Canada, Government of Canada, https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=3210016201 (last access: 5 July 2022), 2016.
Stichling, W. and Blackwell, S. R.:
Drainage area as a hydrologic factor on the Canadian prairies, IUGG Proceedings, Toronto, Ontario, September 1957,
365–376,
1958.
Su, M., Stolte, W. J., and van der Kamp, G.:
Modelling Canadian prairie wetland hydrology using a semi-distributed streamflow model, Hydrol. Process., 14, 2405–2422, 2000.
Tiner, R. W.:
Geographically isolated wetlands of the United States, Wetlands, 23, 494–516, 2003.
van der Kamp, G. and Hayashi, M.:
The groundwater recharge function of small wetlands in the semi-arid northern prairies, Great Plains Research, 8, 39–56, 1998.
van der Kamp, G. and Hayashi, M.:
Groundwater wetland ecosystem interaction in the semiarid glaciated plains of North America, Hydrogeol. J., 17, 203–214, 2009.
van Meter, K. J. and Basu, N. B.:
Signatures of human impact: size distributions and spatial organization of wetlands in the Prairie Pothole landscape, Ecol. Appl., 25, 451–465, 2015.
Vickruck, J., Purvis, E. E., Kwafo, R., Kerstiens, H., and Galpern, P.:
Diversifying Landscapes for Wild Bees: Strategies for North American Prairie Agroecosystems, Current Landscape Ecology Reports, 6, 1–12, 2021.
Vincent, L. A., Wang, X. L., Milewska, E. J., Wan, H., Yang, F., and Swail, V.:
A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis, J. Geophys. Res., 117, D181, https://doi.org/10.1029/2012JD017859, 2012.
Whitfield, P. H., Shook, K. R., and Pomeroy, J. W.:
Spatial patterns of temporal changes in Canadian Prairie streamflow using an alternative trend assessment approach, J. Hydrol., 582, 124541, https://doi.org/10.1016/j.jhydrol.2020.124541, 2020.
Wilkinson, G. N. and Rogers, C. E.:
Symbolic descriptions of factorial models for analysis of variance, Appl. Stat., 22, 392–399, https://doi.org/10.2307/2346786, 1973.
Wilson, H. F., Casson, N. J., Glenn, A. J., Badiou, P., and Boychuk, L.:
Landscape controls on nutrient export during snowmelt and an extreme rainfall runoff event in northern agricultural watersheds, J. Environ. Qual., 48, 841–849, 2019.
Winter, T. C.and Rosenberry, D. O.:
The interaction of groundwater with prairie pothole wetlands in the Cottonwood Lake area, east-central North Dakota, 1997–1990, Wetlands, 15, 193–211, 1995.
Winter, T. C. and Rosenberry, D. O.:
Hydrology of prairie pothole wetlands during drought and deluge: A 17-year study of the Cottonwood Lake wetlands complex in North Dakota in the perspective of longer term measured and proxy hydrological records, Climatic Change, 40, 189–209, 1998.
Wolfe, J. D., Shook, K. R., Spence, C., and Whitfield, C. J.:
A watershed classification approach that looks beyond hydrology: application to a semi-arid, agricultural region in Canada, Hydrol. Earth Syst. Sci., 23, 3945–3967, https://doi.org/10.5194/hess-23-3945-2019, 2019.
Woo, M. K. and Rowsell, R. D.:
Hydrology of a prairie slough, J. Hydrol., 146, 175–207, 1993.
Zhang, Z., Stadnyk, T. A., and Burn, D. H.:
Identification of a preferred statistical distribution for at-site flood frequency analysis in Canada, Can. Water Resour. J., 45, 43–58, https://doi.org/10.1080/07011784.2019.1691942, 2020.
Short summary
We learnt how streamflow from small creeks could be altered by wetland removal in the Canadian Prairies, where this practice is pervasive. Every creek basin in the region was placed into one of seven groups. We selected one of these groups and used its traits to simulate streamflow. The model worked well enough so that we could trust the results even if we removed the wetlands. Wetland removal did not change low flow amounts very much, but it doubled high flow and tripled average flow.
We learnt how streamflow from small creeks could be altered by wetland removal in the Canadian...