Articles | Volume 26, issue 21
https://doi.org/10.5194/hess-26-5555-2022
https://doi.org/10.5194/hess-26-5555-2022
Research article
 | 
08 Nov 2022
Research article |  | 08 Nov 2022

Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach

Christopher Spence, Zhihua He, Kevin R. Shook, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe

Related authors

Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024,https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Modelling the regional sensitivity of snowmelt, soil moisture, and streamflow generation to climate over the Canadian Prairies using a basin classification approach
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, and Colin Whitfield
Hydrol. Earth Syst. Sci., 27, 3525–3546, https://doi.org/10.5194/hess-27-3525-2023,https://doi.org/10.5194/hess-27-3525-2023, 2023
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events
Eduardo Acuña Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1277–1294, https://doi.org/10.5194/hess-29-1277-2025,https://doi.org/10.5194/hess-29-1277-2025, 2025
Short summary
CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025,https://doi.org/10.5194/hess-29-1061-2025, 2025
Short summary
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric–hydrological model
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1033–1060, https://doi.org/10.5194/hess-29-1033-2025,https://doi.org/10.5194/hess-29-1033-2025, 2025
Short summary
Exploring the potential processes controlling changes in precipitation–runoff relationships in non-stationary environments
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 29, 903–924, https://doi.org/10.5194/hess-29-903-2025,https://doi.org/10.5194/hess-29-903-2025, 2025
Short summary
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025,https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary

Cited articles

AAFC: Detailed Soil Surveys, Agriculture and Agri-Food Canada, Government of Canada [data set], https://open.canada.ca/data/en/dataset/7ed13bbe-fbac-417c-a942-ea2b3add1748 (last access: 5 July 2022), 2015. 
AAFC: Annual Crop Inventory, Agriculture and Agri-Food Canada, Government of Canada [data set], https://open.canada.ca/data/en/dataset/ba2645d5-4458-414d-b196-6303ac06c1c9 (last access: 5 July 2022), 2016. 
Acreman, M. and Holden, J.: How wetlands effect floods, Wetlands, 33, 773–786, 2013. 
Ali, G. and English, C.: Phytoplankton blooms in Lake Winnipeg linked to selective water-gatekeeper connectivity, Sci. Rep.-UK, 9, 8395, https://doi.org/10.1038/s41598-019-44717-y, 2019. 
Ali, G., Haque, A., Basu, N. B., Badiou, P., and Wilson, H.: Groundwater-driven wetland-stream connectivity in the Prairie Pothole Region: Inferences based on electrical conductivity data, Wetlands, 37, 773–785, 2017. 
Download
Short summary
We learnt how streamflow from small creeks could be altered by wetland removal in the Canadian Prairies, where this practice is pervasive. Every creek basin in the region was placed into one of seven groups. We selected one of these groups and used its traits to simulate streamflow. The model worked well enough so that we could trust the results even if we removed the wetlands. Wetland removal did not change low flow amounts very much, but it doubled high flow and tripled average flow.
Share