Articles | Volume 26, issue 15
https://doi.org/10.5194/hess-26-4187-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4187-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Frozen soil hydrological modeling for a mountainous catchment northeast of the Qinghai–Tibet Plateau
Hongkai Gao
CORRESPONDING AUTHOR
Key Laboratory of Geographic Information Science (Ministry of Education of China), East China Normal University, Shanghai, China
School of Geographical Sciences, East China Normal University, Shanghai, China
State Key Laboratory of Tibetan Plateau Earth System and Resources
Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Chuntan Han
Qilian Alpine Ecology and Hydrology Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Rensheng Chen
Qilian Alpine Ecology and Hydrology Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Zijing Feng
School of Geographical Sciences, East China Normal University, Shanghai, China
Kang Wang
Key Laboratory of Geographic Information Science (Ministry of Education of China), East China Normal University, Shanghai, China
School of Geographical Sciences, East China Normal University, Shanghai, China
Fabrizio Fenicia
Eawag, Swiss Federal Institute of Aquatic Science and Technology,
Dubendorf, Switzerland
Hubert Savenije
Water Resources Section, Delft University of Technology, Delft, the Netherlands
Related authors
Hongkai Gao, Markus Hrachowitz, Lan Wang-Erlandsson, Fabrizio Fenicia, Qiaojuan Xi, Jianyang Xia, Wei Shao, Ge Sun, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 4477–4499, https://doi.org/10.5194/hess-28-4477-2024, https://doi.org/10.5194/hess-28-4477-2024, 2024
Short summary
Short summary
The concept of the root zone is widely used but lacks a precise definition. Its importance in Earth system science is not well elaborated upon. Here, we clarified its definition with several similar terms to bridge the multi-disciplinary gap. We underscore the key role of the root zone in the Earth system, which links the biosphere, hydrosphere, lithosphere, atmosphere, and anthroposphere. To better represent the root zone, we advocate for a paradigm shift towards ecosystem-centred modelling.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Jiaxing Liang, Hongkai Gao, Fabrizio Fenicia, Qiaojuan Xi, Yahui Wang, and Hubert H. G. Savenije
EGUsphere, https://doi.org/10.5194/egusphere-2024-550, https://doi.org/10.5194/egusphere-2024-550, 2024
Short summary
Short summary
The root zone storage capacity (Sumax) is a key element in hydrology and land-atmospheric interaction. In this study, we utilized a hydrological model and a dynamic parameter identification method, to quantify the temporal trends of Sumax for 497 catchments in the USA. We found that 423 catchments (85 %) showed increasing Sumax, which averagely increased from 178 to 235 mm between 1980 and 2014. The increasing trend was also validated by multi-sources data and independent methods.
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023, https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Short summary
It is a deeply rooted perception that soil is key in hydrology. In this paper, we argue that it is the ecosystem, not the soil, that is in control of hydrology. Firstly, in nature, the dominant flow mechanism is preferential, which is not particularly related to soil properties. Secondly, the ecosystem, not the soil, determines the land–surface water balance and hydrological processes. Moving from a soil- to ecosystem-centred perspective allows more realistic and simpler hydrological models.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-264, https://doi.org/10.5194/hess-2021-264, 2021
Manuscript not accepted for further review
Short summary
Short summary
Permafrost hydrology is one of the 23 major unsolved problems in hydrology. In this study, we used a stepwise modeling and dynamic parameter method to examine the impact of permafrost on streamflow in the Hulu catchment in western China. We found that: topography and landscape are dominant controls on catchment response; baseflow recession is slower than other regions; precipitation-runoff relationship is non-stationary; permafrost impacts on streamflow mostly at the beginning of melting season.
Hongkai Gao, Christian Birkel, Markus Hrachowitz, Doerthe Tetzlaff, Chris Soulsby, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 23, 787–809, https://doi.org/10.5194/hess-23-787-2019, https://doi.org/10.5194/hess-23-787-2019, 2019
Short summary
Short summary
Supported by large-sample ecological observations, a novel, simple and topography-driven runoff generation module (HSC-MCT) was created. The HSC-MCT is calibration-free, and therefore it can be used to predict in ungauged basins, and has great potential to be generalized at the global scale. Also, it allows us to reproduce the variation of saturation areas, which has great potential to be used for broader hydrological, ecological, climatological, and biogeochemical studies.
Nutchanart Sriwongsitanon, Hongkai Gao, Hubert H. G. Savenije, Ekkarin Maekan, Sirikanya Saengsawang, and Sansarith Thianpopirug
Hydrol. Earth Syst. Sci., 20, 3361–3377, https://doi.org/10.5194/hess-20-3361-2016, https://doi.org/10.5194/hess-20-3361-2016, 2016
Short summary
Short summary
We demonstrated that the readily available NDII remote sensing product is a very useful proxy for moisture storage in the root zone of vegetation. We compared the temporal variation of the NDII with the root zone storage in a hydrological model of eight catchments in the Upper Ping River in Thailand, yielding very good results. Having a reliable NDII product that can help us to estimate the actual moisture storage in catchments is a major contribution to prediction in ungauged basins.
Lan Wang-Erlandsson, Wim G. M. Bastiaanssen, Hongkai Gao, Jonas Jägermeyr, Gabriel B. Senay, Albert I. J. M. van Dijk, Juan P. Guerschman, Patrick W. Keys, Line J. Gordon, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 20, 1459–1481, https://doi.org/10.5194/hess-20-1459-2016, https://doi.org/10.5194/hess-20-1459-2016, 2016
Short summary
Short summary
We present an "Earth observation-based" method for estimating root zone storage capacity – a critical parameter in land surface modelling that represents the maximum amount of soil moisture available for vegetation. Variability within a land cover type is captured, and a global model evaporation simulation is overall improved, particularly in sub-humid to humid regions with seasonality. This new method can eliminate the need for unreliable soil and root depth data in land surface modelling.
S. Gharari, M. Hrachowitz, F. Fenicia, H. Gao, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4839–4859, https://doi.org/10.5194/hess-18-4839-2014, https://doi.org/10.5194/hess-18-4839-2014, 2014
H. Gao, M. Hrachowitz, F. Fenicia, S. Gharari, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 1895–1915, https://doi.org/10.5194/hess-18-1895-2014, https://doi.org/10.5194/hess-18-1895-2014, 2014
Daniel Klotz, Peter Miersch, Thiago V. M. do Nascimento, Fabrizio Fenicia, Martin Gauch, and Jakob Zscheischler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-450, https://doi.org/10.5194/essd-2024-450, 2025
Preprint under review for ESSD
Short summary
Short summary
Data availability is central to hydrological science. It is the basis for advancing our understanding of hydrological processes, building prediction models, and anticipatory water management. We present a data-driven daily runoff reconstruction product for natural streamflow. We name it EARLS: European aggregated reconstruction for large-sample studies. The reconstructions represent daily simulations of natural streamflow across Europe and cover the period from 1953 to 2020.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Hongkai Gao, Markus Hrachowitz, Lan Wang-Erlandsson, Fabrizio Fenicia, Qiaojuan Xi, Jianyang Xia, Wei Shao, Ge Sun, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 4477–4499, https://doi.org/10.5194/hess-28-4477-2024, https://doi.org/10.5194/hess-28-4477-2024, 2024
Short summary
Short summary
The concept of the root zone is widely used but lacks a precise definition. Its importance in Earth system science is not well elaborated upon. Here, we clarified its definition with several similar terms to bridge the multi-disciplinary gap. We underscore the key role of the root zone in the Earth system, which links the biosphere, hydrosphere, lithosphere, atmosphere, and anthroposphere. To better represent the root zone, we advocate for a paradigm shift towards ecosystem-centred modelling.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Hubert H. G. Savenije
Proc. IAHS, 385, 1–4, https://doi.org/10.5194/piahs-385-1-2024, https://doi.org/10.5194/piahs-385-1-2024, 2024
Short summary
Short summary
Hydrology is the bloodstream of the Earth, acting as a living organism, with the ecosystem as its active agent. The ecosystem optimises its survival within the constraints of energy, water, climate and nutrients. It is capable of adjusting the hydrological system and, through evolution, adjust its efficiency of carbon sequestration and moisture uptake. In trying to understand future functioning of hydrology, we have to take into account the adaptability of the ecosystem.
Jiaxing Liang, Hongkai Gao, Fabrizio Fenicia, Qiaojuan Xi, Yahui Wang, and Hubert H. G. Savenije
EGUsphere, https://doi.org/10.5194/egusphere-2024-550, https://doi.org/10.5194/egusphere-2024-550, 2024
Short summary
Short summary
The root zone storage capacity (Sumax) is a key element in hydrology and land-atmospheric interaction. In this study, we utilized a hydrological model and a dynamic parameter identification method, to quantify the temporal trends of Sumax for 497 catchments in the USA. We found that 423 catchments (85 %) showed increasing Sumax, which averagely increased from 178 to 235 mm between 1980 and 2014. The increasing trend was also validated by multi-sources data and independent methods.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 12, 155–169, https://doi.org/10.5194/gi-12-155-2023, https://doi.org/10.5194/gi-12-155-2023, 2023
Short summary
Short summary
The study investigates how low-cost technology can be applied in data-scarce catchments to improve water resource management. More specifically, we investigate how drone technology can be combined with low-cost real-time kinematic positioning (RTK) global navigation satellite system (GNSS) equipment and subsequently applied to a 3D hydraulic model so as to generate more physically based rating curves.
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023, https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Short summary
It is a deeply rooted perception that soil is key in hydrology. In this paper, we argue that it is the ecosystem, not the soil, that is in control of hydrology. Firstly, in nature, the dominant flow mechanism is preferential, which is not particularly related to soil properties. Secondly, the ecosystem, not the soil, determines the land–surface water balance and hydrological processes. Moving from a soil- to ecosystem-centred perspective allows more realistic and simpler hydrological models.
Nutchanart Sriwongsitanon, Wasana Jandang, James Williams, Thienchart Suwawong, Ekkarin Maekan, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2149–2171, https://doi.org/10.5194/hess-27-2149-2023, https://doi.org/10.5194/hess-27-2149-2023, 2023
Short summary
Short summary
We developed predictive semi-distributed rainfall–runoff models for nested sub-catchments in the upper Ping basin, which yielded better or similar performance compared to calibrated lumped models. The normalised difference infrared index proves to be an effective proxy for distributed root zone moisture capacity over sub-catchments and is well correlated with the percentage of evergreen forest. In validation, soil moisture simulations appeared to be highly correlated with the soil wetness index.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
Chuntan Han, Chao Kang, Chengxian Zhao, Jianhua Luo, and Rensheng Chen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-241, https://doi.org/10.5194/tc-2022-241, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper presents analysis results of temperatures collected at three monitoring stations on a reservoir along Irtysh River. Temperatures close to ice surface were analyzed and correlated with air temperature. Ice thickness was correlated with temperatures, variations of temperature and AFDD. Regression models were proposed and compared using the dataset in this study which was then validated using data from stations in Russia and Finland.
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022, https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary
Short summary
Neural ODEs fuse physics-based models with deep learning: neural networks substitute terms in differential equations that represent the mechanistic structure of the system. The approach combines the flexibility of machine learning with physical constraints for inter- and extrapolation. We demonstrate that neural ODE models achieve state-of-the-art predictive performance while keeping full interpretability of model states and processes in hydrologic modelling over multiple catchments.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Petra Hulsman, Nick van de Giesen, Imasiku Nyambe, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-114, https://doi.org/10.5194/hess-2022-114, 2022
Manuscript not accepted for further review
Short summary
Short summary
We compare performance of evaporation models in the Luangwa Basin located in a semi-arid and complex Miombo ecosystem in Africa. Miombo plants changes colour, drop off leaves and acquire new leaves during the dry season. In addition, the plant roots go deep in the soil and appear to access groundwater. Results show that evaporation models with structure and process that do not capture this unique plant structure and behaviour appears to have difficulties to correctly estimating evaporation.
Laurène J. E. Bouaziz, Emma E. Aalbers, Albrecht H. Weerts, Mark Hegnauer, Hendrik Buiteveld, Rita Lammersen, Jasper Stam, Eric Sprokkereef, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 26, 1295–1318, https://doi.org/10.5194/hess-26-1295-2022, https://doi.org/10.5194/hess-26-1295-2022, 2022
Short summary
Short summary
Assuming stationarity of hydrological systems is no longer appropriate when considering land use and climate change. We tested the sensitivity of hydrological predictions to changes in model parameters that reflect ecosystem adaptation to climate and potential land use change. We estimated a 34 % increase in the root zone storage parameter under +2 K global warming, resulting in up to 15 % less streamflow in autumn, due to 14 % higher summer evaporation, compared to a stationary system.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, https://doi.org/10.5194/gi-11-1-2022, 2022
Short summary
Short summary
The study was conducted along the Luangwa River in Zambia. It combines low-cost instruments such as UAVs and GPS kits to collect data for the purposes of water management. A novel technique which seamlessly merges the dry and wet bathymetry before application in a hydraulic model was applied. Successful implementation resulted in water authorities with small budgets being able to monitor flows safely and efficiently without significant compromise on accuracy.
Yong Yang, Rensheng Chen, Guohua Liu, Zhangwen Liu, and Xiqiang Wang
Hydrol. Earth Syst. Sci., 26, 305–329, https://doi.org/10.5194/hess-26-305-2022, https://doi.org/10.5194/hess-26-305-2022, 2022
Short summary
Short summary
A comprehensive assessment of snowmelt is missing for China. Trends and variability in snowmelt in China under climate change are investigated using historical precipitation and temperature data (1951–2017) and projection scenarios (2006–2099). The snowmelt and snowmelt runoff ratio show significant spatial and temporal variability in China. The spatial variability in snowmelt changes may lead to regional differences in the impact of snowmelt on the water supply.
Marco Dal Molin, Dmitri Kavetski, and Fabrizio Fenicia
Geosci. Model Dev., 14, 7047–7072, https://doi.org/10.5194/gmd-14-7047-2021, https://doi.org/10.5194/gmd-14-7047-2021, 2021
Short summary
Short summary
This paper introduces SuperflexPy, an open-source Python framework for building flexible conceptual hydrological models. SuperflexPy is available as open-source code and can be used by the hydrological community to investigate improved process representations, for model comparison, and for operational work.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-264, https://doi.org/10.5194/hess-2021-264, 2021
Manuscript not accepted for further review
Short summary
Short summary
Permafrost hydrology is one of the 23 major unsolved problems in hydrology. In this study, we used a stepwise modeling and dynamic parameter method to examine the impact of permafrost on streamflow in the Hulu catchment in western China. We found that: topography and landscape are dominant controls on catchment response; baseflow recession is slower than other regions; precipitation-runoff relationship is non-stationary; permafrost impacts on streamflow mostly at the beginning of melting season.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Petra Hulsman, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 957–982, https://doi.org/10.5194/hess-25-957-2021, https://doi.org/10.5194/hess-25-957-2021, 2021
Short summary
Short summary
Satellite observations have increasingly been used for model calibration, while model structural developments largely rely on discharge data. For large river basins, this often results in poor representations of system internal processes. This study explores the combined use of satellite-based evaporation and total water storage data for model structural improvement and spatial–temporal model calibration for a large, semi-arid and data-scarce river system.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Bart Schilperoort, Adriana del Pilar González-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 25, 619–635, https://doi.org/10.5194/hess-25-619-2021, https://doi.org/10.5194/hess-25-619-2021, 2021
Short summary
Short summary
During rainfall events, evaporation from tropical forests is usually ignored. However, the water retained in the canopy during rainfall increases the evaporation despite the high-humidity conditions. In a tropical wet forest in Costa Rica, it was possible to depict vapor plumes rising from the forest canopy during rainfall. These plumes are evidence of forest evaporation. Also, we identified the conditions that allowed this phenomenon to happen using time-lapse videos and meteorological data.
Bart Schilperoort, Miriam Coenders-Gerrits, César Jiménez Rodríguez, Christiaan van der Tol, Bas van de Wiel, and Hubert Savenije
Biogeosciences, 17, 6423–6439, https://doi.org/10.5194/bg-17-6423-2020, https://doi.org/10.5194/bg-17-6423-2020, 2020
Short summary
Short summary
With distributed temperature sensing (DTS) we measured a vertical temperature profile in a forest, from the forest floor to above the treetops. Using this temperature profile we can see which parts of the forest canopy are colder (thus more dense) or warmer (and less dense) and study the effect this has on the suppression of turbulent mixing. This can be used to improve our knowledge of the interaction between the atmosphere and forests and improve carbon dioxide flux measurements over forests.
Lei Zheng, Chunxia Zhou, Tingjun Zhang, Qi Liang, and Kang Wang
The Cryosphere, 14, 3811–3827, https://doi.org/10.5194/tc-14-3811-2020, https://doi.org/10.5194/tc-14-3811-2020, 2020
Short summary
Short summary
Snowmelt plays a key role in mass and energy balance in polar regions. In this study, we report on the spatial and temporal variations in the surface snowmelt over the Antarctic sea ice and ice sheet (pan-Antarctic region) based on AMSR-E and AMSR2. Melt detection on sea ice is improved by excluding the effect of open water. The decline in surface snowmelt on the Antarctic ice sheet was very likely linked with the enhanced summer Southern Annular Mode.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020, https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Short summary
Our objective is to investigate how satellite microwave sensors, particularly Soil Moisture and Ocean Salinity (SMOS), may help to reduce errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. We assimilated a long time series of SMOS observations into a hydro-meteorological model and showed that this helps to improve model predictions. This work therefore contributes to the development of faster and more accurate drought prediction tools.
Petra Hulsman, Hessel C. Winsemius, Claire I. Michailovsky, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 24, 3331–3359, https://doi.org/10.5194/hess-24-3331-2020, https://doi.org/10.5194/hess-24-3331-2020, 2020
Short summary
Short summary
In the absence of discharge data in ungauged basins, remotely sensed river water level data, i.e. altimetry, may provide valuable information to calibrate hydrological models. This study illustrated that for large rivers in data-scarce regions, river altimetry data from multiple locations combined with GRACE data have the potential to fill this gap when combined with estimates of the river geometry, thereby allowing a step towards more reliable hydrological modelling in data-scarce regions.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Jochen Wenninger, Adriana Gonzalez-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 24, 2179–2206, https://doi.org/10.5194/hess-24-2179-2020, https://doi.org/10.5194/hess-24-2179-2020, 2020
Short summary
Short summary
Tropical forest ecosystems are able to export a lot of water to the atmosphere by means of evaporation. However, little is known on how their complex structure affects this water flux. This paper analyzes the contribution of three canopy layers in terms of water fluxes and stable water isotope signatures. During the dry season in 2018 the two lower canopy layers provide 20 % of measured evaporation, highlighting the importance of knowing how forest structure can affect the hydrological cycle.
Junfeng Liu, Rensheng Chen, Yongjian Ding, Chuntan Han, Yong Yang, Zhangwen Liu, Xiqiang Wang, Shuhai Guo, Yaoxuan Song, and Wenwu Qing
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-67, https://doi.org/10.5194/tc-2020-67, 2020
Preprint withdrawn
Short summary
Short summary
we try to investigate the spatial and temporal variability of albedo, micro scale surface roughness, and LAIs, with the objective to better understanding and simulating surface albedo variability over snow and dirty ice surface at the August-one ice cap in Qilian Mountain. Snow and ice surface albedo parameterization methods are established based on either surface roughness or both surface roughness and LAIs.
Marco Dal Molin, Mario Schirmer, Massimiliano Zappa, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 24, 1319–1345, https://doi.org/10.5194/hess-24-1319-2020, https://doi.org/10.5194/hess-24-1319-2020, 2020
Junfeng Liu, Rensheng Chen, and Chuntan Han
The Cryosphere, 14, 967–984, https://doi.org/10.5194/tc-14-967-2020, https://doi.org/10.5194/tc-14-967-2020, 2020
Short summary
Short summary
Glacier surface roughness during melting season was observed by manual and automatic photogrammetry. Surface roughness was larger at the snow and ice transition zone than in fully snow- or ice-covered areas. Persistent snowfall and rainfall both reduce surface roughness. High or rising turbulent heat as a component of surface energy balance tended to produce a smooth ice surface; low or decreasing turbulent heat tended to produce a rougher surface.
Nutchanart Sriwongsitanon, Wasana Jandang, Thienchart Suwawong, and Hubert H.~G. Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-82, https://doi.org/10.5194/hess-2020-82, 2020
Manuscript not accepted for further review
Short summary
Short summary
In this paper we present a method to distribute crucial model parameters over subcatchments so as to enhance overall rainfall-runoff performance. We also analyse how soil moisture indicators can be used to distribute root zone moisture capacity over subcatchments. NDII proves to be very effective for this purpose, resulting in better overall model performance, good temporal correspondence between modelled soil moisture and the SWI, and improved recession behavior and dry season flow.
Zhilin Zhang and Hubert Savenije
Earth Syst. Dynam., 10, 667–684, https://doi.org/10.5194/esd-10-667-2019, https://doi.org/10.5194/esd-10-667-2019, 2019
Short summary
Short summary
Natural systems evolve towards a state of maximum power, including estuarine circulation. The energy of lighter fresh water drives circulation, while it dissipates by friction. This rotational flow causes the spread of salinity, which is represented by the dispersion coefficient. In this paper, the maximum power concept provides a new equation for this coefficient. Together with the steady-state equation, this results in a new analytical model for density-driven salinity intrusion.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Thom Bogaard, Erika Vatiero, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-344, https://doi.org/10.5194/hess-2019-344, 2019
Revised manuscript not accepted
Short summary
Short summary
Knowing the isotopic composition of water vapor in the air is a difficult task. The estimation of δ18O and δ2H has to be done carefully, because it is accompanied by a high risk of methodological errors (if it is sampled) or wrong assumptions that can lead to incorrect values (if it is modeled). The aim of this work was to compare available sampling methods for water vapor in the air and estimate their isotopic composition, comparing the results against direct measurements of the sampled air.
Huayang Cai, Hubert H. G. Savenije, Erwan Garel, Xianyi Zhang, Leicheng Guo, Min Zhang, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 23, 2779–2794, https://doi.org/10.5194/hess-23-2779-2019, https://doi.org/10.5194/hess-23-2779-2019, 2019
Short summary
Short summary
Tide–river dynamics play an essential role in large-scale river deltas as they exert a tremendous impact on delta morphodynamics, salt intrusion and deltaic ecosystems. For the first time, we illustrate that there is a critical river discharge, beyond which tidal damping is reduced with increasing river discharge, and we explore the underlying mechanism using an analytical model. The results are useful for guiding sustainable water management and sediment transport in tidal rivers.
Lorenz Ammann, Fabrizio Fenicia, and Peter Reichert
Hydrol. Earth Syst. Sci., 23, 2147–2172, https://doi.org/10.5194/hess-23-2147-2019, https://doi.org/10.5194/hess-23-2147-2019, 2019
Short summary
Short summary
The uncertainty of hydrological models can be substantial, and its quantification and realistic description are often difficult. We propose a new flexible probabilistic framework to describe and quantify this uncertainty. It is show that the correlation of the errors can be non-stationary, and that accounting for temporal changes in correlation can lead to strongly improved probabilistic predictions. This is a promising avenue for improving uncertainty estimation in hydrological modelling.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Martijn Westhoff, Axel Kleidon, Stan Schymanski, Benjamin Dewals, Femke Nijsse, Maik Renner, Henk Dijkstra, Hisashi Ozawa, Hubert Savenije, Han Dolman, Antoon Meesters, and Erwin Zehe
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-6, https://doi.org/10.5194/esd-2019-6, 2019
Publication in ESD not foreseen
Short summary
Short summary
Even models relying on physical laws have parameters that need to be measured or estimated. Thermodynamic optimality principles potentially offer a way to reduce the number of estimated parameters by stating that a system evolves to an optimum state. These principles have been applied successfully within the Earth system, but it is often unclear what to optimize and how. In this review paper we identify commonalities between different successful applications as well as some doubtful applications.
Hongkai Gao, Christian Birkel, Markus Hrachowitz, Doerthe Tetzlaff, Chris Soulsby, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 23, 787–809, https://doi.org/10.5194/hess-23-787-2019, https://doi.org/10.5194/hess-23-787-2019, 2019
Short summary
Short summary
Supported by large-sample ecological observations, a novel, simple and topography-driven runoff generation module (HSC-MCT) was created. The HSC-MCT is calibration-free, and therefore it can be used to predict in ungauged basins, and has great potential to be generalized at the global scale. Also, it allows us to reproduce the variation of saturation areas, which has great potential to be used for broader hydrological, ecological, climatological, and biogeochemical studies.
Kang Wang, Elchin Jafarov, Irina Overeem, Vladimir Romanovsky, Kevin Schaefer, Gary Clow, Frank Urban, William Cable, Mark Piper, Christopher Schwalm, Tingjun Zhang, Alexander Kholodov, Pamela Sousanes, Michael Loso, and Kenneth Hill
Earth Syst. Sci. Data, 10, 2311–2328, https://doi.org/10.5194/essd-10-2311-2018, https://doi.org/10.5194/essd-10-2311-2018, 2018
Short summary
Short summary
Ground thermal and moisture data are important indicators of the rapid permafrost changes in the Arctic. To better understand the changes, we need a comprehensive dataset across various sites. We synthesize permafrost-related data in the state of Alaska. It should be a valuable permafrost dataset that is worth maintaining in the future. On a wider level, it also provides a prototype of basic data collection and management for permafrost regions in general.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Laurène Bouaziz, Albrecht Weerts, Jaap Schellekens, Eric Sprokkereef, Jasper Stam, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 22, 6415–6434, https://doi.org/10.5194/hess-22-6415-2018, https://doi.org/10.5194/hess-22-6415-2018, 2018
Short summary
Short summary
We quantify net intercatchment groundwater flows in the Meuse basin in a complementary three-step approach through (1) water budget accounting, (2) testing a set of conceptual hydrological models and (3) evaluating against remote sensing actual evaporation data. We show that net intercatchment groundwater flows can make up as much as 25 % of mean annual precipitation in the headwaters and should therefore be accounted for in conceptual models to prevent overestimating actual evaporation rates.
Dirk-Jan D. Kok, Saket Pande, Jules B. van Lier, Angela R. C. Ortigara, Hubert Savenije, and Stefan Uhlenbrook
Hydrol. Earth Syst. Sci., 22, 5781–5799, https://doi.org/10.5194/hess-22-5781-2018, https://doi.org/10.5194/hess-22-5781-2018, 2018
Short summary
Short summary
Phosphorus (P) is important to global food security. Thus it is concerning that natural P reserves are predicted to deplete within the century. Here we explore the potential of P recovery from wastewater (WW) at global scale. We identify high production and demand sites to determine optimal market prices and trade flows. We show that 20 % of the agricultural demand can be met, yet only 4 % can be met economically. Nonetheless, this recovery stimulates circular economic development in WW treatment.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
César~Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Thom Bogaard, Erika Vatiero, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-538, https://doi.org/10.5194/hess-2018-538, 2018
Manuscript not accepted for further review
Short summary
Short summary
The measurement of stable isotopes in water vapor has been improved with the use of laser technologies. Its direct application in the field depends on the availability of infrastructure or the budget of the project. For those cases when it is not possible, we provide an alternative method to sample the air for its later measurement. This method is based on the use of a low-cost polyethylene bag, getting stable measurements with a volume of 450 mL of air reducing the risk of sample deterioration.
Petra Hulsman, Thom A. Bogaard, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 5081–5095, https://doi.org/10.5194/hess-22-5081-2018, https://doi.org/10.5194/hess-22-5081-2018, 2018
Short summary
Short summary
In many river basins, the development of hydrological models is challenged by poor discharge data availability and quality. In contrast, water level data are more reliable, as these are direct measurements and are unprocessed. In this study, an alternative calibration method is presented using water-level time series and the Strickler–Manning formula instead of discharge. This is applied to a semi-distributed rainfall-runoff model for the semi-arid, poorly gauged Mara River basin in Kenya.
Lan Wang-Erlandsson, Ingo Fetzer, Patrick W. Keys, Ruud J. van der Ent, Hubert H. G. Savenije, and Line J. Gordon
Hydrol. Earth Syst. Sci., 22, 4311–4328, https://doi.org/10.5194/hess-22-4311-2018, https://doi.org/10.5194/hess-22-4311-2018, 2018
Short summary
Short summary
Winds carry air moisture from one place to another. Thus, land-use change that alters air moisture content can also modify downwind rainfall and distant river flows. This aspect has rarely been taken into account in studies of river flow changes. We show here that remote land-use change effect on rainfall can exceed that of local, and that foreign nation influence on river flows is much more prevalent than previously thought. This has important implications for both land and water governance.
Andreas Moser, Devon Wemyss, Ruth Scheidegger, Fabrizio Fenicia, Mark Honti, and Christian Stamm
Hydrol. Earth Syst. Sci., 22, 4229–4249, https://doi.org/10.5194/hess-22-4229-2018, https://doi.org/10.5194/hess-22-4229-2018, 2018
Short summary
Short summary
Many chemicals such as pesticides, pharmaceuticals or household chemicals impair water quality in many areas worldwide. Measuring pollution everywhere is too costly. Models can be used instead to predict where high pollution levels are expected. We tested a model that can be used across large river basins. We find that for the selected chemicals predictions are generally within a factor of 2 to 4 from observed concentrations. Often, knowledge about the chemical use limits the predictions.
Huayang Cai, Marco Toffolon, Hubert H. G. Savenije, Qingshu Yang, and Erwan Garel
Ocean Sci., 14, 769–782, https://doi.org/10.5194/os-14-769-2018, https://doi.org/10.5194/os-14-769-2018, 2018
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 1911–1916, https://doi.org/10.5194/hess-22-1911-2018, https://doi.org/10.5194/hess-22-1911-2018, 2018
Short summary
Short summary
This paper provides the connection between two simple equations describing groundwater flow at different scales: the Darcy equation describes groundwater flow at pore scale, the linear reservoir equation at catchment scale. The connection between the two appears to be very simple. The two parameters of the equations are proportional, depending on the porosity of the subsoil and the resistance for the groundwater to enter the surface drainage network.
Zhilin Zhang and Hubert H. G. Savenije
Earth Syst. Dynam., 9, 241–247, https://doi.org/10.5194/esd-9-241-2018, https://doi.org/10.5194/esd-9-241-2018, 2018
Short summary
Short summary
This paper presents a new equation for the dispersion of salinity in alluvial estuaries based on the maximum power concept. The new equation is physically based and replaces previous empirical equations. It is very useful for application in practice because in contrast to previous methods it no longer requires a calibration parameter, turning the method into a predictive method. The paper presents successful applications in more than 23 estuaries in different parts of the world.
Dirk-Jan Daniel Kok, Saket Pande, Angela Renata Cordeiro Ortigara, Hubert Savenije, and Stefan Uhlenbrook
Proc. IAHS, 376, 83–86, https://doi.org/10.5194/piahs-376-83-2018, https://doi.org/10.5194/piahs-376-83-2018, 2018
Short summary
Short summary
Phosphorus is necessary for the development of crops and is therefore essential in safeguarding our food security. Several studies predict that our rock phosphate reserves, used to create synthetic, phosphatic fertilizers, may become depleted within this century. This study roughly approximates for which areas in Africa we can instead recover phosphorus from wastewater in order to reduce our dependancy on unsustainable rock phosphate.
Bart Schilperoort, Miriam Coenders-Gerrits, Willem Luxemburg, César Jiménez Rodríguez, César Cisneros Vaca, and Hubert Savenije
Hydrol. Earth Syst. Sci., 22, 819–830, https://doi.org/10.5194/hess-22-819-2018, https://doi.org/10.5194/hess-22-819-2018, 2018
Short summary
Short summary
Using the
DTStechnology, we measured the evaporation of a forest using fibre optic cables. The cables work like long thermometers, with a measurement every 12.5 cm. We placed the cables vertically along the tower, one cable being dry, the other kept wet. By looking at the dry and wet cable temperatures over the height we are able to study heat storage and the amount of water the forest is evaporating. These results can be used to better understand the storage and heat exchange of forests.
Xinyue Zhong, Tingjun Zhang, Shichang Kang, Kang Wang, Lei Zheng, Yuantao Hu, and Huijuan Wang
The Cryosphere, 12, 227–245, https://doi.org/10.5194/tc-12-227-2018, https://doi.org/10.5194/tc-12-227-2018, 2018
Axel Kleidon and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-674, https://doi.org/10.5194/hess-2017-674, 2017
Revised manuscript not accepted
Short summary
Short summary
At larger scales, the flow of rivers can often be described by a relatively simple, exponential decay, and it is unclear how such simple behaviour can be explained given that river basins show such vast complexity. Here, we use a highly idealised model to show that such simple behaviour can be explained by viewing it as the emergent consequence of the groundwater system (which feeds river flow) minimising its energy dissipation.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Zhilin Zhang and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 21, 3287–3305, https://doi.org/10.5194/hess-21-3287-2017, https://doi.org/10.5194/hess-21-3287-2017, 2017
Short summary
Short summary
An estuary is where fresh water rivers meet the salty open sea. This mixture of salty fresh water leads to a varying water quality. There a model works well showing how far the salty water can travel, with an empirical parameter that needs to be calibrated every time. This paper provides a possible solution for this parameter to make the model predictive. Also, the model was improved by considering 2-D exchange flow. This new model was supported by observations in 18 estuaries around the world.
Xiaoqing Peng, Tingjun Zhang, Oliver W. Frauenfeld, Kang Wang, Bin Cao, Xinyue Zhong, Hang Su, and Cuicui Mu
The Cryosphere, 11, 1059–1073, https://doi.org/10.5194/tc-11-1059-2017, https://doi.org/10.5194/tc-11-1059-2017, 2017
Short summary
Short summary
Previous research has paid significant attention to permafrost, e.g. active layer thickness, soil temperature, area extent, and associated degradation leading to other changes. However, less focus has been given to seasonally frozen ground and vast area extent. We combined data from more than 800 observation stations, as well as gridded data, to investigate soil freeze depth across China. The results indicate that soil freeze depth decreases with climate warming.
Catchments as meta-organisms – a new blueprint for hydrological modelling
Hubert H. G. Savenije and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 21, 1107–1116, https://doi.org/10.5194/hess-21-1107-2017, https://doi.org/10.5194/hess-21-1107-2017, 2017
Short summary
Short summary
The natural environment that we live in is the result of evolution. This does not only apply to ecosystems, but also to the physical environment through which the water flows. This has resulted in the formation of flow patterns that obey sometimes surprisingly simple mathematical laws. Hydrological models should represent the physics of these patterns and should account for the fact that the ecosystem adjusts itself continuously to changing circumstances. Physics-based models are alive!
Qin Zheng, Rensheng Chen, Chuntan Han, Junfeng Liu, Yaoxuan Song, Zhangwen Liu, Yong Yang, Lei Wang, Xiqiang Wang, Xiaojiao Liu, Shuhai Guo, and Guohua Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-8, https://doi.org/10.5194/hess-2017-8, 2017
Revised manuscript not accepted
Short summary
Short summary
In this study, we analyzed the losses of TRwS204, and found that the contributions from specific and systematic errors are different for different precipitation types. Regression analyses show that both systematic and specific errors of TRwS204 measurements are affected by meteorological variables. With the development and popularization of automatic weather stations, the quantification for these two kinds of errors can promote the work of precipitation correction of automatic weighing gauges.
Tanja de Boer-Euser, Laurène Bouaziz, Jan De Niel, Claudia Brauer, Benjamin Dewals, Gilles Drogue, Fabrizio Fenicia, Benjamin Grelier, Jiri Nossent, Fernando Pereira, Hubert Savenije, Guillaume Thirel, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 423–440, https://doi.org/10.5194/hess-21-423-2017, https://doi.org/10.5194/hess-21-423-2017, 2017
Short summary
Short summary
In this study, the rainfall–runoff models of eight international research groups were compared for a set of subcatchments of the Meuse basin to investigate the influence of certain model components on the modelled discharge. Although the models showed similar performances based on general metrics, clear differences could be observed for specific events. The differences during drier conditions could indeed be linked to differences in model structures.
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016, https://doi.org/10.5194/hess-20-4775-2016, 2016
Short summary
Short summary
The core component of many hydrological systems, the moisture storage capacity available to vegetation, is typically treated as a calibration parameter in hydrological models and often considered to remain constant in time. In this paper we test the potential of a recently introduced method to robustly estimate catchment-scale root-zone storage capacities exclusively based on climate data to reproduce the temporal evolution of root-zone storage under change (deforestation).
Ali D. Abdullah, Jacqueline I. A. Gisen, Pieter van der Zaag, Hubert H. G. Savenije, Usama F. A. Karim, Ilyas Masih, and Ioana Popescu
Hydrol. Earth Syst. Sci., 20, 4031–4042, https://doi.org/10.5194/hess-20-4031-2016, https://doi.org/10.5194/hess-20-4031-2016, 2016
Short summary
Short summary
A comprehensive and detailed data set of the salinity distribution over an entire year in a complex and dynamic (because heavily utilized and modified) deltaic river system was thoroughly analysed, and formed the basis for a validated analytical model that can predict the extent of seawater among other salinity sources in an estuary. The procedure can be applied to other estuaries.
Nutchanart Sriwongsitanon, Hongkai Gao, Hubert H. G. Savenije, Ekkarin Maekan, Sirikanya Saengsawang, and Sansarith Thianpopirug
Hydrol. Earth Syst. Sci., 20, 3361–3377, https://doi.org/10.5194/hess-20-3361-2016, https://doi.org/10.5194/hess-20-3361-2016, 2016
Short summary
Short summary
We demonstrated that the readily available NDII remote sensing product is a very useful proxy for moisture storage in the root zone of vegetation. We compared the temporal variation of the NDII with the root zone storage in a hydrological model of eight catchments in the Upper Ping River in Thailand, yielding very good results. Having a reliable NDII product that can help us to estimate the actual moisture storage in catchments is a major contribution to prediction in ungauged basins.
Nadja I. den Besten, Saket Pande, and Hubert H. G. Savenije
Proc. IAHS, 373, 115–118, https://doi.org/10.5194/piahs-373-115-2016, https://doi.org/10.5194/piahs-373-115-2016, 2016
Short summary
Short summary
Maharashtra is one of the states in India that has witnessed highest rates of farmer suicides as proportion of total number of suicides. We interpret the crisis using a socio-hydrological model in two adjoining regions in Maharashtra, Marathwada and Desh, with higher farmer suicide rates in the former. The analysis confirms existing narratives: low (soil) water storage capacities, no irrigation and access to alternative sources of incomes are to blame for the crisis.
Lan Wang-Erlandsson, Wim G. M. Bastiaanssen, Hongkai Gao, Jonas Jägermeyr, Gabriel B. Senay, Albert I. J. M. van Dijk, Juan P. Guerschman, Patrick W. Keys, Line J. Gordon, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 20, 1459–1481, https://doi.org/10.5194/hess-20-1459-2016, https://doi.org/10.5194/hess-20-1459-2016, 2016
Short summary
Short summary
We present an "Earth observation-based" method for estimating root zone storage capacity – a critical parameter in land surface modelling that represents the maximum amount of soil moisture available for vegetation. Variability within a land cover type is captured, and a global model evaporation simulation is overall improved, particularly in sub-humid to humid regions with seasonality. This new method can eliminate the need for unreliable soil and root depth data in land surface modelling.
Huayang Cai, Hubert H. G. Savenije, Chenjuan Jiang, Lili Zhao, and Qingshu Yang
Hydrol. Earth Syst. Sci., 20, 1177–1195, https://doi.org/10.5194/hess-20-1177-2016, https://doi.org/10.5194/hess-20-1177-2016, 2016
Short summary
Short summary
In this paper, an analytical model for tide-river dynamics has been used to understand the influence of tide and fresh water discharge on the rise of mean water level along the estuary, which remains poorly understood. It is shown that the mean water level is influenced primarily by the tide-river interaction in the tide-dominated region, while it is mainly controlled by the river flow in the upstream part of the estuary.
Remko C. Nijzink, Luis Samaniego, Juliane Mai, Rohini Kumar, Stephan Thober, Matthias Zink, David Schäfer, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 1151–1176, https://doi.org/10.5194/hess-20-1151-2016, https://doi.org/10.5194/hess-20-1151-2016, 2016
Short summary
Short summary
The heterogeneity of landscapes in river basins strongly affects the hydrological response. In this study, the distributed mesoscale Hydrologic Model (mHM) was equipped with additional processes identified by landscapes within one modelling cell. Seven study catchments across Europe were selected to test the value of this additional sub-grid heterogeneity. In addition, the models were constrained based on expert knowledge. Generally, the modifications improved the representation of low flows.
Demetris Koutsoyiannis, Günter Blöschl, András Bárdossy, Christophe Cudennec, Denis Hughes, Alberto Montanari, Insa Neuweiler, and Hubert Savenije
Hydrol. Earth Syst. Sci., 20, 1081–1084, https://doi.org/10.5194/hess-20-1081-2016, https://doi.org/10.5194/hess-20-1081-2016, 2016
R. Chen, J. Liu, E. Kang, Y. Yang, C. Han, Z. Liu, Y. Song, W. Qing, and P. Zhu
The Cryosphere, 9, 1995–2008, https://doi.org/10.5194/tc-9-1995-2015, https://doi.org/10.5194/tc-9-1995-2015, 2015
Short summary
Short summary
The catch ratio of Chinese standard precipitation gauge vs. wind speed relationship for different precipitation types was well quantified by cubic polynomials and exponential functions using 5-year field data in the high-mountain environment of the Tibetan Plateau. The daily precipitation measured by shielded gauges increases linearly with that of unshielded gauges. The pit gauge catches the most local precipitation in rainy season and could be used as a reference in most regions of China.
K. Wang, T. Zhang, and X. Zhong
The Cryosphere, 9, 1321–1331, https://doi.org/10.5194/tc-9-1321-2015, https://doi.org/10.5194/tc-9-1321-2015, 2015
J. I. A. Gisen, H. H. G. Savenije, and R. C. Nijzink
Hydrol. Earth Syst. Sci., 19, 2791–2803, https://doi.org/10.5194/hess-19-2791-2015, https://doi.org/10.5194/hess-19-2791-2015, 2015
Short summary
Short summary
We revised the predictive equations for two calibrated parameters in salt intrusion model (the Van der Burgh coefficient K and dispersion coefficient D) using an extended database of 89 salinity profiles including 8 newly conducted salinity measurements. The revised predictive equations consist of easily measured parameters such as the geometry of estuary, tide, friction and the Richardson number. These equations are useful in obtaining the first estimate of salinity distribution in an estuary.
D. Diederen, H. H. G. Savenije, and M. Toffolon
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-925-2015, https://doi.org/10.5194/osd-12-925-2015, 2015
Revised manuscript not accepted
S. Pande, L. Arkesteijn, H. Savenije, and L. A. Bastidas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-3945-2015, https://doi.org/10.5194/hessd-12-3945-2015, 2015
Revised manuscript not accepted
J. D. Edixhoven, J. Gupta, and H. H. G. Savenije
Earth Syst. Dynam., 5, 491–507, https://doi.org/10.5194/esd-5-491-2014, https://doi.org/10.5194/esd-5-491-2014, 2014
Short summary
Short summary
Phosphate rock is a finite resource required for fertilizer production. Following a debate over the PR depletion timeline, global PR reserves were recently increased 4-fold based mainly on a restatement of Moroccan reserves. We review whether this restatement is methodologically compatible with resource terminology used in major resource classifications, whether resource classification nomenclature is sufficiently understood in the literature, and whether the recent restatements are reliable.
S. Gharari, M. Hrachowitz, F. Fenicia, H. Gao, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4839–4859, https://doi.org/10.5194/hess-18-4839-2014, https://doi.org/10.5194/hess-18-4839-2014, 2014
S. Gharari, M. Shafiei, M. Hrachowitz, R. Kumar, F. Fenicia, H. V. Gupta, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4861–4870, https://doi.org/10.5194/hess-18-4861-2014, https://doi.org/10.5194/hess-18-4861-2014, 2014
L. Wang-Erlandsson, R. J. van der Ent, L. J. Gordon, and H. H. G. Savenije
Earth Syst. Dynam., 5, 441–469, https://doi.org/10.5194/esd-5-441-2014, https://doi.org/10.5194/esd-5-441-2014, 2014
Short summary
Short summary
We investigate the temporal characteristics of partitioned evaporation on land, and we present STEAM (Simple Terrestrial Evaporation to Atmosphere Model) -- a hydrological land-surface model developed to provide inputs to moisture tracking. The terrestrial residence timescale of transpiration (days to months) has larger inter-seasonal variation and is substantially longer than that of interception (hours). This can cause differences in moisture recycling, which is investigated more in Part 2.
R. J. van der Ent, L. Wang-Erlandsson, P. W. Keys, and H. H. G. Savenije
Earth Syst. Dynam., 5, 471–489, https://doi.org/10.5194/esd-5-471-2014, https://doi.org/10.5194/esd-5-471-2014, 2014
T. H. M. van Emmerik, Z. Li, M. Sivapalan, S. Pande, J. Kandasamy, H. H. G. Savenije, A. Chanan, and S. Vigneswaran
Hydrol. Earth Syst. Sci., 18, 4239–4259, https://doi.org/10.5194/hess-18-4239-2014, https://doi.org/10.5194/hess-18-4239-2014, 2014
H. Cai, H. H. G. Savenije, and C. Jiang
Hydrol. Earth Syst. Sci., 18, 4153–4168, https://doi.org/10.5194/hess-18-4153-2014, https://doi.org/10.5194/hess-18-4153-2014, 2014
M. Valk, H. H. G. Savenije, C. C. J. M. Tiberius, and W. M. J. Luxemburg
Hydrol. Earth Syst. Sci., 18, 2599–2613, https://doi.org/10.5194/hess-18-2599-2014, https://doi.org/10.5194/hess-18-2599-2014, 2014
C. Volta, S. Arndt, H. H. G. Savenije, G. G. Laruelle, and P. Regnier
Geosci. Model Dev., 7, 1271–1295, https://doi.org/10.5194/gmd-7-1271-2014, https://doi.org/10.5194/gmd-7-1271-2014, 2014
G. Blöschl, A. Bárdossy, D. Koutsoyiannis, Z. W. Kundzewicz, I. Littlewood, A. Montanari, and H. Savenije
Hydrol. Earth Syst. Sci., 18, 2433–2435, https://doi.org/10.5194/hess-18-2433-2014, https://doi.org/10.5194/hess-18-2433-2014, 2014
H. Gao, M. Hrachowitz, F. Fenicia, S. Gharari, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 1895–1915, https://doi.org/10.5194/hess-18-1895-2014, https://doi.org/10.5194/hess-18-1895-2014, 2014
X. Zhong, T. Zhang, and K. Wang
The Cryosphere, 8, 785–799, https://doi.org/10.5194/tc-8-785-2014, https://doi.org/10.5194/tc-8-785-2014, 2014
S. Pande, L. Arkesteijn, H. H. G. Savenije, and L. A. Bastidas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-2555-2014, https://doi.org/10.5194/hessd-11-2555-2014, 2014
Manuscript not accepted for further review
H. H. G. Savenije, A. Y. Hoekstra, and P. van der Zaag
Hydrol. Earth Syst. Sci., 18, 319–332, https://doi.org/10.5194/hess-18-319-2014, https://doi.org/10.5194/hess-18-319-2014, 2014
H. Cai, H. H. G. Savenije, and M. Toffolon
Hydrol. Earth Syst. Sci., 18, 287–304, https://doi.org/10.5194/hess-18-287-2014, https://doi.org/10.5194/hess-18-287-2014, 2014
R. J. van der Ent, O. A. Tuinenburg, H.-R. Knoche, H. Kunstmann, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013, https://doi.org/10.5194/hess-17-4869-2013, 2013
W. R. van Esse, C. Perrin, M. J. Booij, D. C. M. Augustijn, F. Fenicia, D. Kavetski, and F. Lobligeois
Hydrol. Earth Syst. Sci., 17, 4227–4239, https://doi.org/10.5194/hess-17-4227-2013, https://doi.org/10.5194/hess-17-4227-2013, 2013
B. M. C. Fischer, M. L. Mul, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 2161–2170, https://doi.org/10.5194/hess-17-2161-2013, https://doi.org/10.5194/hess-17-2161-2013, 2013
T. Euser, H. C. Winsemius, M. Hrachowitz, F. Fenicia, S. Uhlenbrook, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-1893-2013, https://doi.org/10.5194/hess-17-1893-2013, 2013
A. M. J. Coenders-Gerrits, L. Hopp, H. H. G. Savenije, and L. Pfister
Hydrol. Earth Syst. Sci., 17, 1749–1763, https://doi.org/10.5194/hess-17-1749-2013, https://doi.org/10.5194/hess-17-1749-2013, 2013
M. Hrachowitz, H. Savenije, T. A. Bogaard, D. Tetzlaff, and C. Soulsby
Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, https://doi.org/10.5194/hess-17-533-2013, 2013
Related subject area
Subject: Hillslope hydrology | Techniques and Approaches: Modelling approaches
Technical note: Monitoring discharge of mountain streams by retrieving image features with deep learning
Investigation of the functional relationship between antecedent rainfall and the probability of debris flow occurrence in Jiangjia Gully, China
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Understanding hydrologic controls of sloping soil response to precipitation through machine learning analysis applied to synthetic data
Elucidating the role of soil hydraulic properties on aspect-dependent landslide initiation
Recession discharge from compartmentalized bedrock hillslopes
On the similarity of hillslope hydrologic function: a clustering approach based on groundwater changes
Spatiotemporal changes in flow hydraulic characteristics and soil loss during gully headcut erosion under controlled conditions
Estimation of rainfall erosivity based on WRF-derived raindrop size distributions
Physically based model for gully simulation: application to the Brazilian semiarid region
Assessing the perturbations of the hydrogeological regime in sloping fens due to roads
A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates
Hybridizing Bayesian and variational data assimilation for high-resolution hydrologic forecasting
Multi-source data assimilation for physically based hydrological modeling of an experimental hillslope
A new method, with application, for analysis of the impacts on flood risk of widely distributed enhanced hillslope storage
Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem
Reconstructing long-term gully dynamics in Mediterranean agricultural areas
Evaluating performance of simplified physically based models for shallow landslide susceptibility
Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory
Determinants of modelling choices for 1-D free-surface flow and morphodynamics in hydrology and hydraulics: a review
Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale
Quantification of the influence of preferential flow on slope stability using a numerical modelling approach
Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models
Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach
Stable water isotope tracing through hydrological models for disentangling runoff generation processes at the hillslope scale
Analysis of landslide triggering conditions in the Sarno area using a physically based model
The influence of grid resolution on the prediction of natural and road-related shallow landslides
Incipient subsurface heterogeneity and its effect on overland flow generation – insight from a modeling study of the first experiment at the Biosphere 2 Landscape Evolution Observatory
Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the Southern Appalachians, USA
Predicting subsurface stormflow response of a forested hillslope – the role of connected flow paths
Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian West Africa (northern Benin)
A model-based assessment of the potential use of compound-specific stable isotope analysis in river monitoring of diffuse pesticide pollution
A paradigm shift in stormflow predictions for active tectonic regions with large-magnitude storms: generalisation of catchment observations by hydraulic sensitivity analysis and insight into soil-layer evolution
Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems
Statistical analysis and modelling of surface runoff from arable fields in central Europe
Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data
Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico
Characterization of groundwater dynamics in landslides in varved clays
A critical assessment of simple recharge models: application to the UK Chalk
The effect of spatial throughfall patterns on soil moisture patterns at the hillslope scale
Snow accumulation/melting model (SAMM) for integrated use in regional scale landslide early warning systems
Suspended sediment concentration–discharge relationships in the (sub-) humid Ethiopian highlands
A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide
Scale effect on overland flow connectivity at the plot scale
Physical models for classroom teaching in hydrology
Coupling the modified SCS-CN and RUSLE models to simulate hydrological effects of restoring vegetation in the Loess Plateau of China
Effects of peatland drainage management on peak flows
A conceptual model of the hydrological influence of fissures on landslide activity
A structure generator for modelling the initial sediment distribution of an artificial hydrologic catchment
A novel explicit approach to model bromide and pesticide transport in connected soil structures
Chenqi Fang, Genyu Yuan, Ziying Zheng, Qirui Zhong, and Kai Duan
Hydrol. Earth Syst. Sci., 28, 4085–4098, https://doi.org/10.5194/hess-28-4085-2024, https://doi.org/10.5194/hess-28-4085-2024, 2024
Short summary
Short summary
Measuring discharge at steep, rocky mountain streams is challenging due to the difficulties in identifying cross-section characteristics and establishing stable stage–discharge relationships. We present a novel method using only a low-cost commercial camera and deep learning algorithms. Our study shows that deep convolutional neural networks can automatically recognize and retrieve complex stream features embedded in RGB images to achieve continuous discharge monitoring.
Shaojie Zhang, Xiaohu Lei, Hongjuan Yang, Kaiheng Hu, Juan Ma, Dunlong Liu, and Fanqiang Wei
Hydrol. Earth Syst. Sci., 28, 2343–2355, https://doi.org/10.5194/hess-28-2343-2024, https://doi.org/10.5194/hess-28-2343-2024, 2024
Short summary
Short summary
Antecedent effective precipitation (AEP) plays an important role in debris flow formation, but the relationship between AEP and the debris flow occurrence (Pdf) is still not quantified. We used numerical calculation and the Monte Carlo integration method to solve this issue. The relationship between Pdf and AEP can be described by the piecewise function, and debris flow is a small-probability event comparing to rainfall frequency because the maximum Pdf in Jiangjia Gully is only 15.88 %.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023, https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Short summary
To overcome the computational cost of numerical models, we propose a deep-learning approach inspired by hydraulic models that can simulate the spatio-temporal evolution of floods. We show that the model can rapidly predict dike breach floods over different topographies and breach locations, with limited use of ground-truth data.
Daniel Camilo Roman Quintero, Pasquale Marino, Giovanni Francesco Santonastaso, and Roberto Greco
Hydrol. Earth Syst. Sci., 27, 4151–4172, https://doi.org/10.5194/hess-27-4151-2023, https://doi.org/10.5194/hess-27-4151-2023, 2023
Short summary
Short summary
This study shows a methodological approach using machine learning techniques to disentangle the relationships among the variables in a synthetic dataset to identify suitable variables that control the hydrologic response of the slopes. It has been found that not only is the rainfall responsible for the water accumulation in the slope; the ground conditions (soil water content and aquifer water level) also indicate the activation of natural slope drainage mechanisms.
Yanglin Guo and Chao Ma
Hydrol. Earth Syst. Sci., 27, 1667–1682, https://doi.org/10.5194/hess-27-1667-2023, https://doi.org/10.5194/hess-27-1667-2023, 2023
Short summary
Short summary
In a localized area with the same vegetation, an overwhelming propensity of shallow landslides on the south-facing slope over the north-facing slope could not be attributed to plant roots. We provide new evidence from the pore water pressure of failing mass, unsaturated hydraulic conductivity, water storage, and drainage and the hillslope stability fluctuation to prove that the infinite slope model may be suitable for elucidating the aspect-dependent landslide distribution in the study area.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022, https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Short summary
We propose a hillslope clustering approach based on the seasonal changes in groundwater levels and test its performance by comparing it to several common clustering approaches (aridity index, topographic wetness index, elevation, land cover, and machine-learning clustering). The proposed approach is robust as it reasonably categorizes hillslopes with similar elevation, land cover, hydroclimate, land surface processes, and subsurface hydrodynamics, hence a similar hydrologic function.
Mingming Guo, Zhuoxin Chen, Wenlong Wang, Tianchao Wang, Qianhua Shi, Hongliang Kang, Man Zhao, and Lanqian Feng
Hydrol. Earth Syst. Sci., 25, 4473–4494, https://doi.org/10.5194/hess-25-4473-2021, https://doi.org/10.5194/hess-25-4473-2021, 2021
Short summary
Short summary
Gully headcut erosion is always a difficult issue in soil erosion, which hinders the revelation of gully erosion mechanisms and the establishment of a gully erosion model. This study clarified the spatiotemporal changes in flow properties, energy consumption, and soil loss, confirming that gully head consumed the most of flow energy (78 %) and can contribute 89 % of total soil loss. Critical energy consumption initiating soil erosion of the upstream area, gully head, and gully bed is confirmed.
Qiang Dai, Jingxuan Zhu, Shuliang Zhang, Shaonan Zhu, Dawei Han, and Guonian Lv
Hydrol. Earth Syst. Sci., 24, 5407–5422, https://doi.org/10.5194/hess-24-5407-2020, https://doi.org/10.5194/hess-24-5407-2020, 2020
Short summary
Short summary
Rainfall is a driving force that accounts for a large proportion of soil loss around the world. Most previous studies used a fixed rainfall–energy relationship to estimate rainfall energy, ignoring the spatial and temporal changes of raindrop microphysical processes. This study proposes a novel method for large-scale and long-term rainfall energy and rainfall erosivity investigations based on rainfall microphysical parameterization schemes in the Weather Research and Forecasting (WRF) model.
Pedro Henrique Lima Alencar, José Carlos de Araújo, and Adunias dos Santos Teixeira
Hydrol. Earth Syst. Sci., 24, 4239–4255, https://doi.org/10.5194/hess-24-4239-2020, https://doi.org/10.5194/hess-24-4239-2020, 2020
Short summary
Short summary
Soil erosion by water has been emphasized as a key problem to be faced in the 21st century. Thus, it is critical to understand land degradation and to answer fundamental questions regarding how and why such processes occur. Here, we present a model for gully erosion (channels carved by rainwater) based on existing equations, and we identify some major variables that influence the initiation and evolution of this process. The successful model can help in planning soil conservation practices.
Fabien Cochand, Daniel Käser, Philippe Grosvernier, Daniel Hunkeler, and Philip Brunner
Hydrol. Earth Syst. Sci., 24, 213–226, https://doi.org/10.5194/hess-24-213-2020, https://doi.org/10.5194/hess-24-213-2020, 2020
Short summary
Short summary
Roads in sloping fens constitute a hydraulic barrier for surface and subsurface flow. This can lead to the drying out of downslope areas of the fen as well as gully erosion. By combining fieldwork and numerical models, this study presents an assessment of the hydrogeological impact of three road structures especially designed to limit their impact. The study shows that the impact of roads on the hydrological regime in fens can be significantly reduced by using appropriate engineering measures.
Rubianca Benavidez, Bethanna Jackson, Deborah Maxwell, and Kevin Norton
Hydrol. Earth Syst. Sci., 22, 6059–6086, https://doi.org/10.5194/hess-22-6059-2018, https://doi.org/10.5194/hess-22-6059-2018, 2018
Short summary
Short summary
Soil erosion is a global problem and models identify vulnerable areas for management. One such model is the Revised Universal Soil Loss Equation. We review its different sub-factors and compile studies and equations that modified it for local conditions. The limitations of RUSLE include its data requirements and exclusion of gullying and landslides. Future directions include accounting for these erosion types. This paper serves as a reference for others working with RUSLE and related approaches.
Felipe Hernández and Xu Liang
Hydrol. Earth Syst. Sci., 22, 5759–5779, https://doi.org/10.5194/hess-22-5759-2018, https://doi.org/10.5194/hess-22-5759-2018, 2018
Short summary
Short summary
Predicting floods requires first knowing the amount of water in the valleys, which is complicated because we cannot know for sure how much water there is in the soil. We created a unique system that combines the best methods to estimate these conditions accurately based on the observed water flow in the rivers and on detailed simulations of the valleys. Comparisons with popular methods show that our system can produce realistic predictions efficiently, even for very detailed river networks.
Anna Botto, Enrica Belluco, and Matteo Camporese
Hydrol. Earth Syst. Sci., 22, 4251–4266, https://doi.org/10.5194/hess-22-4251-2018, https://doi.org/10.5194/hess-22-4251-2018, 2018
Short summary
Short summary
We present a multivariate application of the ensemble Kalman filter (EnKF) in hydrological modeling of a real-world hillslope test case with dominant unsaturated dynamics and strong nonlinearities. Overall, the EnKF is able to correctly update system state and soil parameters. However, multivariate data assimilation may lead to significant tradeoffs between model predictions of different variables, if the observation data are not high quality or representative.
Peter Metcalfe, Keith Beven, Barry Hankin, and Rob Lamb
Hydrol. Earth Syst. Sci., 22, 2589–2605, https://doi.org/10.5194/hess-22-2589-2018, https://doi.org/10.5194/hess-22-2589-2018, 2018
Short summary
Short summary
Flooding is a significant hazard and extreme events in recent years have focused attention on effective means of reducing its risk. An approach known as natural flood management (NFM) seeks to increase flood resilience by a range of measures that work with natural processes. The paper develops a modelling approach to assess one type NFM of intervention – distributed additional hillslope storage features – and demonstrates that more strategic placement is required than has hitherto been applied.
Abraham Endalamaw, W. Robert Bolton, Jessica M. Young-Robertson, Don Morton, Larry Hinzman, and Bart Nijssen
Hydrol. Earth Syst. Sci., 21, 4663–4680, https://doi.org/10.5194/hess-21-4663-2017, https://doi.org/10.5194/hess-21-4663-2017, 2017
Short summary
Short summary
This study applies plot-scale and hill-slope knowledge to a process-based mesoscale model to improve the skill of distributed hydrological models to simulate the spatially and basin-integrated hydrological processes of complex ecosystems in the sub-arctic boreal forest. We developed a sub-grid parameterization method to parameterize the surface heterogeneity of interior Alaskan discontinuous permafrost watersheds.
Antonio Hayas, Tom Vanwalleghem, Ana Laguna, Adolfo Peña, and Juan V. Giráldez
Hydrol. Earth Syst. Sci., 21, 235–249, https://doi.org/10.5194/hess-21-235-2017, https://doi.org/10.5194/hess-21-235-2017, 2017
Short summary
Short summary
Gully erosion is one of the most important erosion processes. In this study, we provide new data on gully dynamics over long timescales with an unprecedented temporal resolution. We apply a new Monte Carlo based method for calculating gully volumes based on orthophotos and, especially, for constraining uncertainties of these estimations. Our results show that gully erosion rates are highly variable from year to year and significantly higher than other erosion processes.
Giuseppe Formetta, Giovanna Capparelli, and Pasquale Versace
Hydrol. Earth Syst. Sci., 20, 4585–4603, https://doi.org/10.5194/hess-20-4585-2016, https://doi.org/10.5194/hess-20-4585-2016, 2016
Short summary
Short summary
This paper focuses on performance evaluation of simplified, physically based landslide susceptibility models. It presents a new methodology to systemically and objectively calibrate, verify, and compare different models and models performances indicators in order to individuate and select the models whose behavior is more reliable for a certain case study. The procedure was implemented in a package for landslide susceptibility analysis and integrated the open-source hydrological model NewAge.
Carlotta Scudeler, Luke Pangle, Damiano Pasetto, Guo-Yue Niu, Till Volkmann, Claudio Paniconi, Mario Putti, and Peter Troch
Hydrol. Earth Syst. Sci., 20, 4061–4078, https://doi.org/10.5194/hess-20-4061-2016, https://doi.org/10.5194/hess-20-4061-2016, 2016
Short summary
Short summary
Very few studies have applied a physically based hydrological model with integrated and distributed multivariate observation data of both flow and transport phenomena. In this study we address this challenge for a hillslope-scale unsaturated zone isotope tracer experiment. The results show how model complexity evolves as the number and detail of simulated responses increases. Possible gaps in process representation for simulating solute transport phenomena in very dry soils are discussed.
Bruno Cheviron and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 3799–3830, https://doi.org/10.5194/hess-20-3799-2016, https://doi.org/10.5194/hess-20-3799-2016, 2016
Short summary
Short summary
This review paper investigates the determinants of modelling choices for numerous applications of 1-D free-surface flow and morphodynamics in hydrology and hydraulics. Each case study has a signature composed of given contexts (spatiotemporal scales, flow typology, and phenomenology) and chosen concepts (refinement and subscales of the flow model). This review proposes a normative procedure possibly enriched by the community for a larger, comprehensive and updated image of modelling strategies.
F. Todisco, L. Brocca, L. F. Termite, and W. Wagner
Hydrol. Earth Syst. Sci., 19, 3845–3856, https://doi.org/10.5194/hess-19-3845-2015, https://doi.org/10.5194/hess-19-3845-2015, 2015
Short summary
Short summary
We developed a new formulation of USLE, named Soil Moisture for Erosion (SM4E), that directly incorporates soil moisture information. SM4E is applied here by using modeled data and satellite observations obtained from the Advanced SCATterometer (ASCAT). SM4E is found to outperform USLE and USLE-MM models in silty–clay soil in central Italy. Through satellite data, there is the potential of applying SM4E for large-scale monitoring and quantification of the soil erosion process.
W. Shao, T. A. Bogaard, M. Bakker, and R. Greco
Hydrol. Earth Syst. Sci., 19, 2197–2212, https://doi.org/10.5194/hess-19-2197-2015, https://doi.org/10.5194/hess-19-2197-2015, 2015
Short summary
Short summary
The effect of preferential flow on the stability of landslides is studied through numerical simulation of two types of rainfall events on a hypothetical hillslope. A model is developed that consists of two parts. The first part is a model for combined saturated/unsaturated subsurface flow and is used to compute the spatial and temporal water pressure response to rainfall. Preferential flow is simulated with a dual-permeability continuum model consisting of a matrix/preferential flow domain.
O. Fovet, L. Ruiz, M. Hrachowitz, M. Faucheux, and C. Gascuel-Odoux
Hydrol. Earth Syst. Sci., 19, 105–123, https://doi.org/10.5194/hess-19-105-2015, https://doi.org/10.5194/hess-19-105-2015, 2015
Short summary
Short summary
We studied the annual hysteretic patterns observed between stream flow and water storage in the saturated and unsaturated zones of a hillslope and a riparian zone. We described these signatures using a hysteresis index and then used this to assess conceptual hydrological models. This led us to identify four hydrological periods and a clearly distinct behaviour between riparian and hillslope groundwaters and to provide new information about the model performances.
D. J. Peres and A. Cancelliere
Hydrol. Earth Syst. Sci., 18, 4913–4931, https://doi.org/10.5194/hess-18-4913-2014, https://doi.org/10.5194/hess-18-4913-2014, 2014
Short summary
Short summary
A Monte Carlo approach, combining rainfall-stochastic models and hydrological and slope stability physically based models, is used to derive rainfall thresholds of landslide triggering. The uncertainty in threshold assessment related to variability of rainfall intensity within events and to past rainfall (antecedent rainfall) is analyzed and measured via ROC-based indexes, with a specific focus dedicated to the widely used power-law rainfall intensity-duration (I-D) thresholds.
D. Windhorst, P. Kraft, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 18, 4113–4127, https://doi.org/10.5194/hess-18-4113-2014, https://doi.org/10.5194/hess-18-4113-2014, 2014
G. Capparelli and P. Versace
Hydrol. Earth Syst. Sci., 18, 3225–3237, https://doi.org/10.5194/hess-18-3225-2014, https://doi.org/10.5194/hess-18-3225-2014, 2014
D. Penna, M. Borga, G. T. Aronica, G. Brigandì, and P. Tarolli
Hydrol. Earth Syst. Sci., 18, 2127–2139, https://doi.org/10.5194/hess-18-2127-2014, https://doi.org/10.5194/hess-18-2127-2014, 2014
G.-Y. Niu, D. Pasetto, C. Scudeler, C. Paniconi, M. Putti, P. A. Troch, S. B. DeLong, K. Dontsova, L. Pangle, D. D. Breshears, J. Chorover, T. E. Huxman, J. Pelletier, S. R. Saleska, and X. Zeng
Hydrol. Earth Syst. Sci., 18, 1873–1883, https://doi.org/10.5194/hess-18-1873-2014, https://doi.org/10.5194/hess-18-1873-2014, 2014
J. Tao and A. P. Barros
Hydrol. Earth Syst. Sci., 18, 367–388, https://doi.org/10.5194/hess-18-367-2014, https://doi.org/10.5194/hess-18-367-2014, 2014
J. Wienhöfer and E. Zehe
Hydrol. Earth Syst. Sci., 18, 121–138, https://doi.org/10.5194/hess-18-121-2014, https://doi.org/10.5194/hess-18-121-2014, 2014
A. Richard, S. Galle, M. Descloitres, J.-M. Cohard, J.-P. Vandervaere, L. Séguis, and C. Peugeot
Hydrol. Earth Syst. Sci., 17, 5079–5096, https://doi.org/10.5194/hess-17-5079-2013, https://doi.org/10.5194/hess-17-5079-2013, 2013
S. R. Lutz, H. J. van Meerveld, M. J. Waterloo, H. P. Broers, and B. M. van Breukelen
Hydrol. Earth Syst. Sci., 17, 4505–4524, https://doi.org/10.5194/hess-17-4505-2013, https://doi.org/10.5194/hess-17-4505-2013, 2013
Makoto Tani
Hydrol. Earth Syst. Sci., 17, 4453–4470, https://doi.org/10.5194/hess-17-4453-2013, https://doi.org/10.5194/hess-17-4453-2013, 2013
M. N. Papa, V. Medina, F. Ciervo, and A. Bateman
Hydrol. Earth Syst. Sci., 17, 4095–4107, https://doi.org/10.5194/hess-17-4095-2013, https://doi.org/10.5194/hess-17-4095-2013, 2013
P. Fiener, K. Auerswald, F. Winter, and M. Disse
Hydrol. Earth Syst. Sci., 17, 4121–4132, https://doi.org/10.5194/hess-17-4121-2013, https://doi.org/10.5194/hess-17-4121-2013, 2013
R. Greco, L. Comegna, E. Damiano, A. Guida, L. Olivares, and L. Picarelli
Hydrol. Earth Syst. Sci., 17, 4001–4013, https://doi.org/10.5194/hess-17-4001-2013, https://doi.org/10.5194/hess-17-4001-2013, 2013
C. Lepore, E. Arnone, L. V. Noto, G. Sivandran, and R. L. Bras
Hydrol. Earth Syst. Sci., 17, 3371–3387, https://doi.org/10.5194/hess-17-3371-2013, https://doi.org/10.5194/hess-17-3371-2013, 2013
J. E. van der Spek, T. A. Bogaard, and M. Bakker
Hydrol. Earth Syst. Sci., 17, 2171–2183, https://doi.org/10.5194/hess-17-2171-2013, https://doi.org/10.5194/hess-17-2171-2013, 2013
A. M. Ireson and A. P. Butler
Hydrol. Earth Syst. Sci., 17, 2083–2096, https://doi.org/10.5194/hess-17-2083-2013, https://doi.org/10.5194/hess-17-2083-2013, 2013
A. M. J. Coenders-Gerrits, L. Hopp, H. H. G. Savenije, and L. Pfister
Hydrol. Earth Syst. Sci., 17, 1749–1763, https://doi.org/10.5194/hess-17-1749-2013, https://doi.org/10.5194/hess-17-1749-2013, 2013
G. Martelloni, S. Segoni, D. Lagomarsino, R. Fanti, and F. Catani
Hydrol. Earth Syst. Sci., 17, 1229–1240, https://doi.org/10.5194/hess-17-1229-2013, https://doi.org/10.5194/hess-17-1229-2013, 2013
C. D. Guzman, S. A. Tilahun, A. D. Zegeye, and T. S. Steenhuis
Hydrol. Earth Syst. Sci., 17, 1067–1077, https://doi.org/10.5194/hess-17-1067-2013, https://doi.org/10.5194/hess-17-1067-2013, 2013
D. M. Krzeminska, T. A. Bogaard, J.-P. Malet, and L. P. H. van Beek
Hydrol. Earth Syst. Sci., 17, 947–959, https://doi.org/10.5194/hess-17-947-2013, https://doi.org/10.5194/hess-17-947-2013, 2013
A. Peñuela, M. Javaux, and C. L. Bielders
Hydrol. Earth Syst. Sci., 17, 87–101, https://doi.org/10.5194/hess-17-87-2013, https://doi.org/10.5194/hess-17-87-2013, 2013
A. Rodhe
Hydrol. Earth Syst. Sci., 16, 3075–3082, https://doi.org/10.5194/hess-16-3075-2012, https://doi.org/10.5194/hess-16-3075-2012, 2012
G. Y. Gao, B. J. Fu, Y. H. Lü, Y. Liu, S. Wang, and J. Zhou
Hydrol. Earth Syst. Sci., 16, 2347–2364, https://doi.org/10.5194/hess-16-2347-2012, https://doi.org/10.5194/hess-16-2347-2012, 2012
C. E. Ballard, N. McIntyre, and H. S. Wheater
Hydrol. Earth Syst. Sci., 16, 2299–2310, https://doi.org/10.5194/hess-16-2299-2012, https://doi.org/10.5194/hess-16-2299-2012, 2012
D. M. Krzeminska, T. A. Bogaard, Th. W. J. van Asch, and L. P. H. van Beek
Hydrol. Earth Syst. Sci., 16, 1561–1576, https://doi.org/10.5194/hess-16-1561-2012, https://doi.org/10.5194/hess-16-1561-2012, 2012
T. Maurer, A. Schneider, and H. H. Gerke
Hydrol. Earth Syst. Sci., 15, 3617–3638, https://doi.org/10.5194/hess-15-3617-2011, https://doi.org/10.5194/hess-15-3617-2011, 2011
J. Klaus and E. Zehe
Hydrol. Earth Syst. Sci., 15, 2127–2144, https://doi.org/10.5194/hess-15-2127-2011, https://doi.org/10.5194/hess-15-2127-2011, 2011
Cited articles
Andresen, C. G., Lawrence, D. M., Wilson, C. J., McGuire, A. D., Koven, C., Schaefer, K., Jafarov, E., Peng, S., Chen, X., Gouttevin, I., Burke, E., Chadburn, S., Ji, D., Chen, G., Hayes, D., and Zhang, W.: Soil moisture and hydrology projections of the permafrost region – a model intercomparison, The Cryosphere, 14, 445–459, https://doi.org/10.5194/tc-14-445-2020, 2020.
Beven, K. and Binley, A.: The future of distributed models: Model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–298,
https://doi.org/10.1002/hyp.3360060305, 1992.
Blume, T., Zehe, E., and Bronstert, A.: Rainfall-runoff response, event-based
runoff coefficients and hydrograph separation, Hydrol. Sci. J., 52,
843–862, https://doi.org/10.1623/hysj.52.5.843, 2007.
Bring, A., Fedorova, I., Dibike, Y., Hinzman, L., Mård, J., Mernild, S.
H., Prowse, T., Semenova, O., Stuefer, S. L., and Woo, M. K.: Arctic
terrestrial hydrology: A synthesis of processes, regional effects, and
research challenges, J. Geophys. Res.-Biogeo., 121, 621–649,
https://doi.org/10.1002/2015JG003131, 2016.
Brutsaert, W. and Hiyama, T.: The determination of permafrost thawing trends
from long-term streamflow measurements with an application in eastern
Siberia, J. Geophys. Res.-Atmos., 117, 1–10, https://doi.org/10.1029/2012JD018344,
2012.
Brutsaert, W. and Sugita, M.: Is Mongolia's groundwater increasing or
decreasing? The case of the Kherlen River basin, Hydrol. Sci. J., 53,
1221–1229, https://doi.org/10.1623/hysj.53.6.1221, 2008.
Bui, M. T., Lu, J., and Nie, L.: A review of hydrological models applied in
the permafrost-dominated Arctic region, Geosciences, 10, 1–27,
https://doi.org/10.3390/geosciences10100401, 2020.
Cao, B., Zhang, T., Wu, Q., Sheng, Y., Zhao, L., and Zou, D.: Permafrost
zonation index map and statistics over the Qinghai–Tibet Plateau based on
field evidence, Permafrost Periglac., 30, 178–194,
https://doi.org/10.1002/ppp.2006, 2019.
Chadburn, S., Burke, E., Essery, R., Boike, J., Langer, M., Heikenfeld, M., Cox, P., and Friedlingstein, P.: An improved representation of physical permafrost dynamics in the JULES land-surface model, Geosci. Model Dev., 8, 1493–1508, https://doi.org/10.5194/gmd-8-1493-2015, 2015.
Chang, J., Wang, G. X., Li, C. J., and Mao, T. X.: Seasonal dynamics of
suprapermafrost groundwater and its response to the freeing-thawing
processes of soil in the permafrost region of Qinghai-Tibet Plateau, Sci.
China Earth Sci., 58, 727–738, https://doi.org/10.1007/s11430-014-5009-y, 2015.
Chen, R., Song, Y., Kang, E., Han, C., Liu, J., Yang, Y., Qing, W., and Liu,
Z.: A cryosphere-hydrology observation system in a small alpine watershed in
the Qilian mountains of China and its meteorological gradient, Arct.,
Antarct. Alp. Res., 46, 505–523, https://doi.org/10.1657/1938-4246-46.2.505, 2014.
Chen, R., Wang, G., Yang, Y., Liu, J., Han, C., Song, Y., Liu, Z., and Kang,
E.: Effects of Cryospheric Change on Alpine Hydrology: Combining a Model
With Observations in the Upper Reaches of the Hei River, China, J. Geophys.
Res.-Atmos., 123, 3414–3442, https://doi.org/10.1002/2017JD027876, 2018.
Chiasson-Poirier, G., Franssen, J., Lafrenière, M. J., Fortier, D., and
Lamoureux, S. F.: Seasona evolution of active layer thaw depth and
hillslope-stream connectivity in a permafrost watershed, Water Resour. Res.,
56, 1–18, https://doi.org/10.1029/2019WR025828, 2020.
Cuo, L., Zhang, Y., Bohn, T. J., Zhao, L., Li, J., Liu, Q., and Zhou, B.:
Journal of geophysical research, Nature, 175, 238,
https://doi.org/10.1038/175238c0, 2015.
Ding, Y., Zhang, S., Chen, R., Han, T., Han, H., Wu, J., Li, X., Zhao, Q.,
Shangguan, D., Yang, Y., Liu, J., Wang, S., Qin, J., and Chang, Y.:
Hydrological Basis and Discipline System of Cryohydrology: From a
Perspective of Cryospheric Science, Front. Earth Sci., 8, 574707,
https://doi.org/10.3389/feart.2020.574707, 2020.
Dobinski, W.: Permafrost, Earth-Sci. Rev., 108, 158–169, 2011.
Evans, S. G., Ge, S., Voss, C. I., and Molotch, N. P.: The Role of Frozen
Soil in Groundwater Discharge Predictions for Warming Alpine Watersheds,
Water Resour. Res., 54, 1599–1615, https://doi.org/10.1002/2017WR022098, 2018.
Fabre, C., Sauvage, S., Tananaev, N., Srinivasan, R., Teisserenc, R., and
Pérez, J. M. S.: Using modeling tools to better understand permafrost
hydrology, Water (Switzerland), 9, 418, https://doi.org/10.3390/w9060418, 2017.
Farquharson, L. M., Romanovsky, V. E., Cable, W. L., Walker, D. A., Kokelj,
S. V., and Nicolsky, D.: Climate Change Drives Widespread and Rapid
Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic,
Geophys. Res. Lett., 46, 6681–6689, https://doi.org/10.1029/2019GL082187, 2019.
Fenicia, F. and McDonnell, J. J.: Modeling streamflow variability at the
regional scale: (1) perceptual model development through signature analysis,
J. Hydrol., 605, 127287, https://doi.org/10.1016/j.jhydrol.2021.127287,
2022.
Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister, L.: Is the groundwater reservoir linear? Learning from data in hydrological modelling, Hydrol. Earth Syst. Sci., 10, 139–150, https://doi.org/10.5194/hess-10-139-2006, 2006.
Gao, H.: Landscape-based hydrological modelling: understanding the influence
of climate, topography, and vegetation on catchment hydrology, PhD
Dissertation, Delft University of Technology, 2015.
Gao, H., Hrachowitz, M., Sriwongsitanon, N., Fenicia, F., Gharari, S., and Savenije, H. H. G.: Accounting for the influence of vegetation and landscape improves model transferability in a tropical savannah region, Water Resour. Res., 52, 7999–8022, https://doi.org/10.1002/2016WR019574, 2016.
Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., and Savenije, H. H. G.: Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China, Hydrol. Earth Syst. Sci., 18, 1895–1915, https://doi.org/10.5194/hess-18-1895-2014, 2014.
Gao, H., Ding, Y., Zhao, Q., Hrachowitz, M., and Savenije, H. H. G.: The
importance of aspect for modelling the hydrological response in a glacier
catchment in Central Asia, Hydrol. Process., 31, 2842–2859,
https://doi.org/10.1002/hyp.11224, 2017.
Gao, H., Dong, J., Chen, X., Cai, H., Liu, Z., Jin, Z., Mao, D., Yang, Z.,
and Duan, Z.: Stepwise modeling and the importance of internal variables
validation to test model realism in a data scarce glacier basin, J. Hydrol.,
591, 125457, https://doi.org/10.1016/j.jhydrol.2020.125457, 2020.
Gao, H., Wang, J., Yang, Y., Pan, X., Ding, Y., and Duan, Z.: Permafrost
Hydrology of the Qinghai-Tibet Plateau: A Review of Processes and Modeling,
Front. Earth Sci., 8, 576838, https://doi.org/10.3389/feart.2020.576838, 2021.
Gao, J., Xie, Z., Wang, A., Liu, S., Zeng, Y., Liu, B., Li, R., Jia, B.,
Qin, P., and Xie, J.: A New Frozen Soil Parameterization Including Frost and
Thaw Fronts in the Community Land Model, J. Adv. Model. Earth Sy., 11,
659–679, https://doi.org/10.1029/2018MS001399, 2019.
Gharari, S., Hrachowitz, M., Fenicia, F., Gao, H., and Savenije, H. H. G.: Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration, Hydrol. Earth Syst. Sci., 18, 4839–4859, https://doi.org/10.5194/hess-18-4839-2014, 2014.
Gisnås, K., Westermann, S., Schuler, T. V., Melvold, K., and Etzelmüller, B.: Small-scale variation of snow in a regional permafrost model, The Cryosphere, 10, 1201–1215, https://doi.org/10.5194/tc-10-1201-2016, 2016.
Gouttevin, I., Krinner, G., Ciais, P., Polcher, J., and Legout, C.: Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology, The Cryosphere, 6, 407–430, https://doi.org/10.5194/tc-6-407-2012, 2012.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Han, C., Chen, R., Liu, J., Yang, Y., and Liu, Z.: Hydrological characteristics
in non-freezing period at the alpine desert zone of Hulugou watershed,
Qilian Mountains, J. Glaciol. Geocryol., 35, 1536–1544,
2013.
Han, C., Chen, R., Liu, Z., Yang, Y., Liu, J., Song, Y., Wang, L., Liu, G.,
Guo, S., and Wang, X.: Cryospheric Hydrometeorology Observation in the Hulu
Catchment (CHOICE), Qilian Mountains, China, Vadose Zone J., 17, 180058,
https://doi.org/10.2136/vzj2018.03.0058, 2018.
He, Z., Duethmann, D., and Tian, F.: A meta-analysis based review of quantifying
the contributions of runoff components to streamflow in glacierized basins.
J. Hydrol., 603, 126890, https://doi.org/10.1016/j.jhydrol.2021.126890, 2021.
Immerzeel, W. W., Van Beek, L. P. H., and Bierkens, M. F. P.: Climate change
will affect the asian water towers, Science, 328, 1382–1385,
https://doi.org/10.1126/science.1183188, 2010.
Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., and Bierkens, M. F. P.: Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff, Hydrol. Earth Syst. Sci., 19, 4673–4687, https://doi.org/10.5194/hess-19-4673-2015, 2015.
Jarvis, P. G.: Prospects for bottom-up models, in: Scaling Physiological
Processes: Leaf to Globe, edited by: Ehleringer J. R. and Field, C. B., Academic Press,
1993.
Jiang, H., Zheng, G., Yi, Y., Chen, D., Zhang, W., Yang, K., and Miller, C.
E.: Progress and Challenges in Studying Regional Permafrost in the Tibetan
Plateau Using Satellite Remote Sensing and Models, Front. Earth Sci.,
8, 560403, https://doi.org/10.3389/feart.2020.560403, 2020.
Kurylyk, B. L., Hayashi, M., Quinton, W. L., McKenzie, J. M., and Voss, C. I.:
Influence of vertical and lateral heat transfer on permafrost thaw, peatland
landscape transition, and groundwater flow, Water Resour. Res., 52,
1286–1305, https://doi.org/10.1002/2015WR018057, 2016.
Lafrenière, M. J. and Lamoureux, S. F.: Effects of changing permafrost
conditions on hydrological processes and fluvial fluxes, Earth-Sci.
Rev., 191, 212–223, 2019.
Li, X., Wu, T., Zhu, X., Jiang, Y., Hu, G., Hao, J., Ni, R., Li, Y., Qiao, C., Yang, W., Ma, A., and Wen, X. Y.: Improving
the Noah-MP model for simulating hydrothermal regime of the active layer in
the permafrost regions of the Qinghai-Tibet Plateau, J. Geophys.
Res.-Atmos., 125, e2020JD032588,
https://doi.org/10.1029/2020JD032588, 2020.
Lindstrom, G., Bishop, K., and Lofvenius, M. O.: Soil frost and runoff at
Svartberget, northern Sweden – measurements and model analysis, Hydrol.
Process., 16, 3379–3392, 2002.
Liu, Y., Zhao, L., and Li, R.: Simulation of the soil water-thermal features
within the active layerin Tanggula region, Tibetan plateau, by using SHAW
model, J. Glaciol. Geocryol. 35, 280–290, 2013.
Ma, R., Sun, Z., Hu, Y., Chang, Q., Wang, S., Xing, W., and Ge, M.: Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater, Hydrol. Earth Syst. Sci., 21, 4803–4823, https://doi.org/10.5194/hess-21-4803-2017, 2017.
Ma, R., Sun, Z., Chang, Q., Ge, M., and Pan, Z.: Control of the interactions
between stream and groundwater by permafrost and seasonal frost in an alpine
catchment, northeastern Tibet Plateau, China, J. Geophys.
Res.-Atmos., 126, e2020JD033689, https://doi.org/10.1029/2020JD033689, 2021.
McNamara, J. P., Kane, D. L., and Hinzman, L. D.: An analysis of streamflow
hydrology in the Kuparuk River Basin, Arctic Alaska: A nested watershed
approach, J. Hydrol., 206, 39–57, https://doi.org/10.1016/S0022-1694(98)00083-3,
1998.
Nash, J. and Sutcliffe, J. V.: River Flow Forecasting through Conceptual
Models Part I – A Discussion of Principles, J. Hydrol., 10,
282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Niu, G. Y. and Yang, Z. L.: Effects of frozen soil on snowmelt runoff and
soil water storage at a continental scale, J. Hydrometeorol., 7,
937–952, https://doi.org/10.1175/JHM538.1, 2006.
Niu, L., Ye, B. S., Li, J., and Yu, S.: Effect of permafrost degradation on
hydrological processes in typical basins with various permafrost coverage in
Western China, Sci. China Earth Sci., 54, 615–624, https://doi.org/10.1007/s11430-010-4073-1, 2010.
Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E., and Boike, J.: Remote
sensing quantifies widespread abundance of permafrost region disturbances
across the Arctic and Subarctic, Nat. Commun., 9, 1–11,
https://doi.org/10.1038/s41467-018-07663-3, 2018.
Nyberg, L.: Soil frost effects on soil water and runoff dynamics along a
boreal forest transect: 1. Field investigations, Hydrol. Process., 15,
909–926, 2001.
Oleson, K. and Lawrence, D.: NCAR / TN-503 + STR NCAR Technical Note July
2013 Technical Description of version 4.5 of the Community Land Model (CLM), (March 2014), 2013.
Osuch, M., Wawrzyniak, T. and Nawrot, A.: Diagnosis of the hydrology of a
small Arctic permafrost catchment using HBV conceptual rainfall-runoff
model, Hydrol. Res., 50, 459–478, https://doi.org/10.2166/nh.2019.031, 2019.
Pan, X., Li, Y., Yu, Q., Shi, X., Yang, D., and Roth, K.: Effects of stratified active layers on high-altitude permafrost warming: a case study on the Qinghai–Tibet Plateau, The Cryosphere, 10, 1591–1603, https://doi.org/10.5194/tc-10-1591-2016, 2016.
Pan, Z., Ma, R., Sun, Z., Hu, Y., Chang, Q., Ge, M., Wang, S., Bu, J., Long, X., Pan, Y., and Zhao, L.: Integrated hydrogeological and hydrogeochemical dataset of an alpine catchment in the northern Qinghai–Tibet Plateau, Earth Syst. Sci. Data, 14, 2147–2165, https://doi.org/10.5194/essd-14-2147-2022, 2022.
Ran, Y., Li, X., Cheng, G., Che, J., Aalto, J., Karjalainen, O., Hjort, J., Luoto, M., Jin, H., Obu, J., Hori, M., Yu, Q., and Chang, X.: New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere, Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, 2022.
Romanovsky, V. E. and Osterkamp, T. E.: Effects of unfrozen water on
heat and mass transport processes in the active layer and permafrost,
Permafrost Periglac., 11, 219–239, 2000.
Savenije, H. H. G.: HESS Opinions “The art of hydrology”, Hydrol. Earth Syst. Sci., 13, 157–161, https://doi.org/10.5194/hess-13-157-2009, 2009.
Savenije, H. H. G.: HESS Opinions “Topography driven conceptual modelling (FLEX-Topo)”, Hydrol. Earth Syst. Sci., 14, 2681–2692, https://doi.org/10.5194/hess-14-2681-2010, 2010.
Seibert, J. and McDonnell, J. J.: On the dialog between experimentalist and
modeler in catchment hydrology: Use of soft data for multicriteria model
calibration, Water Resour. Res., 38, 23-1–23-14,
https://doi.org/10.1029/2001wr000978, 2002.
Shanley, J. B. and Chalmers, A.: The effect of frozen soil on snowmelt
runoff at Sleepers River, Vermont, Hydrol. Process., 13, 1843–1857,
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1843::AID-HYP879>3.0.CO;2-G, 1999.
Sheng, Y.: Map of permafrost distribution in the Qilian Mountains. National
Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Geocry.tpdc.270456, 2020.
Sivapalan, M., Blöschl, G., Zhang, L., and Vertessy, R.: Downward
approach to hydrological prediction, Hydrol. Process., 17, 2101–2111,
https://doi.org/10.1002/hyp.1425, 2003.
Song, C., Wang, G., Mao, T., Dai, J., and Yang, D.: Linkage between permafrost
distribution and river runoff changes across the Arctic and the Tibetan
Plateau, Sci. China Earth Sci., 63, 292–302, 2020.
Streletskiy, D. A., Tananaev, N. I., Opel, T., Shiklomanov, N. I., Nyland,
K. E., Streletskaya, I. D., Tokarev, I., and Shiklomanov, A. I.: Permafrost
hydrology in changing climatic conditions: Seasonal variability of stable
isotope composition in rivers in discontinuous permafrost, Environ. Res.
Lett., 10, 095003, https://doi.org/10.1088/1748-9326/10/9/095003, 2015.
Sun, A., Yu, Z., Zhou, J., Acharya, K., Ju, Q., Xing, R., Huang, D., and Wen, L.: Quantified hydrological responses to permafrost degradation in the headwaters of the Yellow River (HWYR) in High Asia, Sci. Total Environ., 712, 135632, https://doi.org/10.1016/j.scitotenv.2019.135632, 2020.
Tananaev, N., Teisserenc, R., and Debolskiy, M.: Permafrost hydrology
research domain: Process-based adjustment, Hydrology, 7, 6,
https://doi.org/10.3390/hydrology7010006, 2020.
Walvoord, M. A. and Kurylyk, B. L.: Hydrologic Impacts of Thawing
Permafrost-A Review, Vadose Zone J., 15, vzj2016.01.0010,
https://doi.org/10.2136/vzj2016.01.0010, 2016.
Wang, G. X., Mao, T. X., Chang, J., Song, C. L., and Huang, K. W.: Processes
of runoff generation operating during the spring and autumn seasons in a
permafrost catchment on semi-arid plateaus, J. Hydrol. 550, 307–317,
https://doi.org/10.1016/j.jhydrol.2017.05.020, 2017.
Wang, L., Koike, T., Yang, K., Jin, R., and Li, H.: Frozen soil parameterization in a distributed biosphere hydrological model, Hydrol. Earth Syst. Sci., 14, 557–571, https://doi.org/10.5194/hess-14-557-2010, 2010.
Wang, P., Huang, Q., Pozdniakov, S. P., Liu, S., Ma, N., Wang, T., Zhang,
Y., Yu, J., Xie, J., Fu, G., Frolova, N. L., and Liu, C.: Potential role of
permafrost thaw on increasing Siberian river discharge, Environ. Res. Lett.,
16, 034046, https://doi.org/10.1088/1748-9326/abe326, 2021.
Wang, Q. F., Jin, H. J., Zhang, T. J., Wu, Q. B., Cao, B., Peng, X. Q., Wang, K., and Li, L. L. : Active layer seasonal freeze-thaw
processes and influencing factors in the alpine permafrost regions in the
upper reaches of the Heihe River in Qilian Mountains, Chin. Sci.
Bull., 61, 2742–2756, https://doi.org/10.1360/N972015-01237, 2016 (in Chinese).
Wang, T., Yang, D., Yang, Y., Piao, S., Li, X., Cheng, G., and Fu, B.:
Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau,
Sci. Adv., 6, 2–10, https://doi.org/10.1126/sciadv.aaz3513, 2020.
Wang, Y., Yang, H., Gao, B., Wang, T., Qin, Y., and Yang, D.: State Key
Laboratory of Hydroscience and Engineering, Department of Hydraulic School
of Water Resources and Environment, China University of Geosciences, 2018.
Watson, V., Kooi, H., and Bense, V.: Potential controls on cold-season river
flow behavior in subarctic river basins of Siberia, J. Hydrol., 489,
214–226, https://doi.org/10.1016/j.jhydrol.2013.03.011, 2013.
Woo, M.-K.: Permafrost Hydrology, Springer Berlin, Heidelberg, 564 pp., https://doi.org/10.1007/978-3-642-23462-0, 2012.
Wu, T., Li, S., Cheng, G., and Nan, Z.: Using ground-penetrating radar to
detect permafrost degradation in the northern limit of permafrost on the
Tibetan Plateau, Cold Reg. Sci. Technol., 41, 211–219,
https://doi.org/10.1016/j.coldregions.2004.10.006, 2005.
Xiao, Y., Zhao, L., Dai, Y., Li, R., Pang, Q. and Yao, J.: Representing
permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau, Cold
Reg. Sci. Technol., 87, 68–77, https://doi.org/10.1016/j.coldregions.2012.12.004, 2013.
Xie, C. and Gough, W. A.: Short Communication: A Simple Thaw-Freeze Algorithm
for a Multi-Layered Soil using the Stefan Equation, Permafrost Periglac., 24, 252–260, 2013.
Yang, Y., Wu, Q., Jin, H., Wang, Q., Huang, Y., Luo, D., Gao, S., and Jin,
X.: Delineating the hydrological processes and hydraulic connectivities
under permafrost degradation on Northeastern Qinghai-Tibet Plateau, China,
J. Hydrol., 569, 359–372, https://doi.org/10.1016/j.jhydrol.2018.11.068,
2019.
Ye, B., Yang, D., Zhang, Z., and Kane, D. L.: Variation of hydrological
regime with permafrost coverage over Lena Basin in Siberia, J. Geophys. Res.-Atmos., 114, D07102, https://doi.org/10.1029/2008JD010537, 2009.
Zhang, R., Liu, J., Gao, H., and Mao, G.: Can multi-objective calibration of
streamflow guarantee better hydrological model accuracy?, J.
Hydroinformatics, 20, 687–698, https://doi.org/10.2166/hydro.2018.131, 2018.
Zhang, T., Frauenfeld, O. W., Serreze, M. C., Etringer, A., Oelke, C.,
McCreight, J., Barry, R. G., Gilichinsky, D., Yang, D., Ye, H., Ling, F., and
Chudinova, S.: Spatial and temporal variability in active layer thickness
over the Russian Arctic drainage basin, J. Geophys. Res.-Atmos., 110,
1–14, https://doi.org/10.1029/2004JD005642, 2005.
Zhao, L., Zou, D., Hu, G., Du, E., Pang, Q., Xiao, Y., Li, R., Sheng, Y.,
Wu, X., Sun, Z., Wang, L., Wang, C., Ma, L., Zhou, H., and Liu, S.: Changing
climate and the permafrost environment on the Qinghai–Tibet (Xizang)
plateau, Permafrost Periglac., 31, 396–405, https://doi.org/10.1002/ppp.2056,
2020.
Zhou, J., Kinzelbach, W., Cheng, G., Zhang, W., He, X., and Ye, B.:
Monitoring and modeling the influence of snow pack and organic soil on a
permafrost active layer, qinghai-tibetan plateau of china, Cold Reg. Sci.
Technol., 90–91, 38–52, https://doi.org/10.1016/j.coldregions.2013.03.003, 2013.
Zou, D., Zhao, L., Wu, T., Wu, X., Pang, Q., and Wang, Z.: Modeling ground
surface temperature by means of remote sensing data in high-altitude areas:
test in the central Tibetan Plateau with application of moderate-resolution
imaging spectroradiometer Terra/Aqua land surface temperature and
ground-based infrared, J. Appl. Remote Sens., 8, 083516,
https://doi.org/10.1117/1.jrs.8.083516, 2014.
Short summary
Frozen soil hydrology is one of the 23 unsolved problems in hydrology (UPH). In this study, we developed a novel conceptual frozen soil hydrological model, FLEX-Topo-FS. The model successfully reproduced the soil freeze–thaw process, and its impacts on hydrologic connectivity, runoff generation, and groundwater. We believe this study is a breakthrough for the 23 UPH, giving us new insights on frozen soil hydrology, with broad implications for predicting cold region hydrology in future.
Frozen soil hydrology is one of the 23 unsolved problems in hydrology (UPH). In this study, we...