Articles | Volume 26, issue 2
https://doi.org/10.5194/hess-26-355-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-355-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrology without dimensions
Amilcare Porporato
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, USA
Invited contribution by Amilcare Porporato, recipient of the EGU John Dalton Medal 2020.
Related authors
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Cited articles
Anand, S. K., Hooshyar, M., and Porporato, A.: Linear layout of multiple
flow-direction networks for landscape-evolution simulations, Environ. Model. Softw., 133, 104804, https://doi.org/10.1016/j.envsoft.2020.104804, 2020. a
Aronson, D. G. and Graveleau, J.: A selfsimilar solution to the focusing
problem for the porous medium equation, Eur. J. Appl. Math., 4, 65–81, 1993. a
Barenblatt, G. I., Chorin, A. J., and Prostokishin, V. M.: Scaling laws for fully developed turbulent flow in pipes: Discussion of experimental data, P. Natl. Acad. Sci. USA, 94, 773–776, https://doi.org/10.1073/pnas.94.3.773, 1997. a
Barr, D. I.: Consolidation of basics of dimensional analysis, J. Eng. Mech., 110, 1357–1376, 1984. a
Bell Jr., T.: Statistical features of sea-floor topography, in: Deep Sea
Research and Oceanographic Abstracts, vol. 22, Elsevier, 883–892, https://doi.org/10.1016/0011-7471(75)90090-X, 1975. a
Bhaskar, R. and Nigam, A.: Qualitative physics using dimensional analysis,
Artific. Intel., 45, 73–111, 1990. a
Bluman, G. W. and Cole, J. D.: Similarity methods for differential equations,
in: vol. 13, Springer Science & Business Media, ISBN 978-0-387-90107-7, 2012. a
Bolster, D., Hershberger, R. E., and Donnelly, R. J.: Dynamic similarity, the
dimensionless science, Phys. Today, 64, 42–47, 2011. a
Bonetti, S., Bragg, A., and Porporato, A.: On the theory of drainage area for
regular and non-regular points, P. Roy. Soc. A, 474, 20170693, https://doi.org/10.1098/rspa.2017.0693, 2018. a, b
Buckingham, E.: The principle of similitude, Nature, 96, 396–397, 1915. a
Burton, J. and Taborek, P.: Two-dimensional inviscid pinch-off: An example of
self-similarity of the second kind, Phys. Fluids, 19, 102109, https://doi.org/10.1063/1.2800387, 2007. a
Calabrese, S. and Porporato, A.: Wetness controls on global chemical
weathering, Environ. Res. Commun., 2, 085005, https://doi.org/10.1088/1748-9326/abedea, 2020. a, b, c, d
Daly, E. and Porporato, A.: A note on groundwater flow along a hillslope, Water Resour. Res., 40, W01601, https://doi.org/10.1029/2003WR002438, 2004a. a
Daly, E. and Porporato, A.: Similarity solutions of nonlinear diffusion
problems related to mathematical hydraulics and the Fokker-Planck equation,
Phys. Rev. E, 70, 056303, https://doi.org/10.1103/PhysRevE.70.056303, 2004b. a, b, c
Davy, P. and Lague, D.: Fluvial erosion/transport equation of landscape
evolution models revisited, J. Geophys. Res.-Earth, 114, F03007, https://doi.org/10.1029/2008JF001146, 2009. a
Dietrich, W. E. and Perron, J. T.: The search for a topographic signature of
life, Nature, 439, 411–418, 2006. a
Dimitrakopoulos, E. G. and DeJong, M. J.: Revisiting the rocking block:
closed-form solutions and similarity laws, P. Roy. Soc. A, 468, 2294–2318, 2012. a
Dooge, J. C.: Sensitivity of runoff to climate change: A Hortonian approach,
B. Am. Meteorol. Soc., 73, 2013–2024, 1992. a
Efthimiou, C. J. and Llewellyn, R. A.: Cinema, Fermi problems and general
education, Phys. Educ., 42, 253–261, 2007. a
Eggers, J. and Fontelos, M. A.: The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22, R1–R44, https://doi.org/10.1088/0951-7715/22/1/R01, 2008. a
Eyink, G. L.: Dissipative anomalies in singular Euler flows, Physica D, 237, 1956–1968, 2008. a
Feng, X., Vico, G., and Porporato, A.: On the effects of seasonality on soil
water balance and plant growth, Water Resour. Res., 48, W05543,
https://doi.org/10.1029/2011WR011263, 2012. a, b
Feng, X., Porporato, A., and Rodriguez-Iturbe, I.: Stochastic soil water
balance under seasonal climates, P. Roy. Soc. A, 471, 20140623, https://doi.org/10.1098/rspa.2014.0623, 2015. a, b
Feng, X., Ackerly, D. D., Dawson, T. E., Manzoni, S., Skelton, R. P., Vico, G., and Thompson, S. E.: The ecohydrological context of drought and
classification of plant responses, Ecol. Lett., 21, 1723–1736, 2018. a
Gagnon, J.-S., Lovejoy, S., and Schertzer, D.: Multifractal earth topography, Nonlin. Processes Geophys., 13, 541–570, https://doi.org/10.5194/npg-13-541-2006, 2006. a
Galilei, G.: Dialogues concerning two new sciences, Dover, 1914. a
Garrels, R. M.: The carbonate-silicate geochemical cycle and its effect on
atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641–683, 1983. a
Gibbings, J.: On dimensional analysis, J. Phys. A, 13, 75–89,
https://doi.org/10.1088/0305-4470/13/1/010, 1980. a, b
Gibbings, J.: A logic of dimensional analysis, J. Phys. A, 15, 1991–2002,
https://doi.org/10.1088/0305-4470/15/7/011, 1982. a
Gilmore, R.: Lie groups, Lie algebras, and some of their applications, Courier Corporation, ISBN 0-486-44529-1, 2012. a
Goldenfeld, N.: Lectures on phase transitions and the renormalization group,
CRC Press, ISBN 9780429962042, 2018. a
Hankey, A. and Stanley, H. E.: Systematic application of generalized
homogeneous functions to static scaling, dynamic scaling, and universality,
Phys. Rev. B, 6, 3515, https://doi.org/10.1103/PhysRevB.6.3515, 1972. a, b
Hills, C. P. and Moffatt, H.: Rotary honing: a variant of the Taylor
paint-scraper problem, J. Fluid Mech., 418, 119–135, 2000. a
Hooshyar, M. and Porporato, A.: Mean Dynamics and Elevation-Contributing Area
Covariance in Landscape Evolution Models, Water Resour. Res., 57, e2021WR029727, https://doi.org/10.1029/2021WR029727, 2021. a
Howard, A. D.: A detachment-limited model of drainage basin evolution, Water
Resour. Res., 30, 2261–2285, 1994. a
Hunt, A.: Soil formation, vegetation growth, and water balance: A theory for
Budyko, in: Hydrogeology, Chemical Weathering, and Soil Formation, edited by:
Hunt, A. G., Egli, M., and Faybishenko, B., American Geophysical Union, 67–80, https://doi.org/10.1002/9781119563952.ch3, 2021. a
Huntley, H. E.: Dimensional analysis, Dover Publications, Open Library OL14610272MLC Control Number 67017978 Library Thing 2164960, 1967. a
Kolmogorov, A. N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, CR Acad. Sci. URSS, 30, 301–305, 1941. a
Koutsoyiannis, D., Dimitriadis, P., Lombardo, F., and Stevens, S.: From
fractals to stochastics: Seeking theoretical consistency in analysis of
geophysical data, in: Advances in nonlinear geosciences, Springer, 237–278, https://doi.org/10.13140/RG.2.2.34215.55209, 2018. a
Kramer, M. G. and Chadwick, O. A.: Climate-driven thresholds in reactive
mineral retention of soil carbon at the global scale, Nat. Clim. Change, 8, 1104–1108, 2018. a
Lodge, A.: The Multiplication And Division Of Concrete Quantities, General
Report, Association for the Improvement of Geometrical Teaching, 14, 47–70,
1888. a
Mahajan, S.: Street-fighting mathematics: the art of educated guessing and
opportunistic problem solving, The MIT Press, ISBN 9780262514293, 2010. a
Maher, K. and Chamberlain, C.: Hydrologic regulation of chemical weathering and the geologic carbon cycle, Science, 343, 1502–1504, 2014. a
Montgomery, D. R. and Foufoula-Georgiou, E.: Channel network source
representation using digital elevation models, Water Resour. Res., 29,
3925–3934, 1993. a
Moon, P. and Spencer, D. E.: A modern approach to “dimensions”, J. Franklin Inst., 248, 495–521, 1949. a
Newman, W. I. and Turcotte, D. L.: Cascade model for fluvial geomorphology,
Geophys. J. Int., 100, 433–439, 1990. a
Or, D. and Lehmann, P.: Surface evaporative capacitance: How soil type and
rainfall characteristics affect global-scale surface evaporation, Water Resour. Res., 55, 519–539, 2019. a
Passalacqua, P., Porté-Agel, F., Foufoula-Georgiou, E., and Paola, C.:
Application of dynamic subgrid-scale concepts from large-eddy simulation to
modeling landscape evolution, Water Resour. Res., 42, W06D11,
https://doi.org/10.1029/2006WR004879, 2006. a, b
Pelletier, J. D.: Fluvial and slope-wash erosion of soil-mantled landscapes:
detachment-or transport-limited?, Earth Surf. Proc. Land., 37, 37–51, 2012. a
Persico, E.: Commemoration of Enrico Fermi, Enrico Fermi: His Work and Legacy, in: Enrico Fermi: his work and legacy, edited by: Bernardini, C. and Bonolis, L., Springer, p. 36, ISBN 978-3-642-06053-3, 2004. a
Pexton, M.: How dimensional analysis can explain, Synthese, 191, 2333–2351,
2014. a
Porporato, A. and Yin, J.: Ecohydrology, Cambridge University Press, Cambridge, ISBN 978-1-108-84054-5, 2022. a
Rayleigh, L.: Reply, Nature, 95, 644, 1915b. a
Richter, D. D. and Billings, S. A.: `One physical system': Tansley's
ecosystem as Earth's critical zone, New Phytol., 206, 900–912, 2015. a
Rodríguez-Iturbe, I. and Porporato, A.: Ecohydrology of water-controlled
ecosystems: soil moisture and plant dynamics, Cambridge University Press,
ISBN 9780511535727, https://doi.org/10.1017/CBO9780511535727, 2005. a
Shen, W., Davis, T., Lin, D. K., and Nachtsheim, C. J.: Dimensional analysis
and its applications in statistics, J. Qual. Technol., 46, 185–198, 2014. a
Siano, D. B.: Orientational analysis – a supplement to dimensional
analysis – I, J. Franklin Inst.e, 320, 267–283, 1985. a
Smits, A. J., McKeon, B. J., and Marusic, I.: High–Reynolds number wall
turbulence, Annu. Rev. Fluid Mech., 43, 353–375, 2011. a
Spagnoli, A.: Self-similarity and fractals in the Paris range of fatigue crack growth, Mech. Mater., 37, 519–529, 2005. a
Sposito, G.: Scale dependence and scale invariance in hydrology, Cambridge
University Press, ISBN 13:978-0521571258, ISBN 10:0521571251, 2008. a
Sun, B.-H.: Scaling law for the propagation speed of domino toppling, AIP
Adv., 10, 095124, https://doi.org/10.1063/5.0017928, 2020. a
Taylor, G. I.: The formation of a blast wave by a very intense explosion
I. Theoretical discussion, P. Roy. Soc. Lond. A, 201, 159–174, 1950a. a
Taylor, G. I.: The formation of a blast wave by a very intense explosion. – II. The atomic explosion of 1945, P. Roy. Soc. Lond A, 201, 175–186, 1950b. a
Theodoratos, N., Seybold, H., and Kirchner, J. W.: Scaling and similarity of a stream-power incision and linear diffusion landscape evolution model, Earth Surf. Dynam., 6, 779–808, https://doi.org/10.5194/esurf-6-779-2018, 2018. a
Turcotte, D. L.: A fractal interpretation of topography and geoid spectra on
the Earth, Moon, Venus, and Mars, J. Geophys. Res.-Solid, 92, E597–E601, 1987. a
Voss, R. F.: Random fractal forgeries, in: Fundamental algorithms for computer graphics, Springer, 805–835, https://doi.org/10.1007/978-3-642-84574-1_34, 1985. a
Widom, B.: Scaling laws, revision #91749, Scholarpedia, 4, 9054,
https://doi.org/10.4249/scholarpedia.9054, 2009. a
Williams, W.: On the relation of the dimensions of physical quantities to
directions in space, P. Phys. Soc. Lond., 11, 357–398, 1890. a
Xue, N. and Stone, H. A.: Self-Similar Draining near a Vertical Edge, Phys. Rev. Lett., 125, 064502, https://doi.org/10.1103/PhysRevLett.125.064502, 2020. a
Zheng, Z., Christov, I. C., and Stone, H. A.: Influence of heterogeneity on
second-kind self-similar solutions for viscous gravity currents, J. Fluid Mech., 747, 218–246, https://doi.org/10.1017/jfm.2014.148, 2014. a
Short summary
Applying dimensional analysis to the partitioning of water and soil on terrestrial landscapes reveals their dominant environmental controls. We discuss how the dryness index and the storage index affect the long-term rainfall partitioning, the key nonlinear control of the dryness index in global datasets of weathering rates, and the existence of new macroscopic relations among average variables in landscape evolution statistics with tantalizing analogies with turbulent fluctuations.
Applying dimensional analysis to the partitioning of water and soil on terrestrial landscapes...