Articles | Volume 26, issue 2
https://doi.org/10.5194/hess-26-355-2022
https://doi.org/10.5194/hess-26-355-2022
Research article
 | Highlight paper
 | 
24 Jan 2022
Research article | Highlight paper |  | 24 Jan 2022

Hydrology without dimensions

Amilcare Porporato

Related authors

Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022,https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration
Stefano Manzoni, Arjun Chakrawal, Thomas Fischer, Joshua P. Schimel, Amilcare Porporato, and Giulia Vico
Biogeosciences, 17, 4007–4023, https://doi.org/10.5194/bg-17-4007-2020,https://doi.org/10.5194/bg-17-4007-2020, 2020
Short summary
Evaluating the effect of nutrient redistribution by animals on the phosphorus cycle of lowland Amazonia
Corina Buendía, Axel Kleidon, Stefano Manzoni, Björn Reu, and Amilcare Porporato
Biogeosciences, 15, 279–295, https://doi.org/10.5194/bg-15-279-2018,https://doi.org/10.5194/bg-15-279-2018, 2018
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Theory development
The natural abundance of stable water isotopes method may overestimate deep-layer soil water use by trees
Shaofei Wang, Xiaodong Gao, Min Yang, Gaopeng Huo, Xiaolin Song, Kadambot H. M. Siddique, Pute Wu, and Xining Zhao
Hydrol. Earth Syst. Sci., 27, 123–137, https://doi.org/10.5194/hess-27-123-2023,https://doi.org/10.5194/hess-27-123-2023, 2023
Short summary
Contribution of cryosphere to runoff in the transition zone between the Tibetan Plateau and arid region based on environmental isotopes
Juan Gui, Zongxing Li, Qi Feng, Qiao Cui, and Jian Xue
Hydrol. Earth Syst. Sci., 27, 97–122, https://doi.org/10.5194/hess-27-97-2023,https://doi.org/10.5194/hess-27-97-2023, 2023
Short summary
Vegetation optimality explains the convergence of catchments on the Budyko curve
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022,https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Differential response of plant transpiration to uptake of rainwater-recharged soil water for dominant tree species in the semiarid Loess Plateau
Yakun Tang, Lina Wang, Yongqiang Yu, and Dongxu Lu
Hydrol. Earth Syst. Sci., 26, 4995–5013, https://doi.org/10.5194/hess-26-4995-2022,https://doi.org/10.5194/hess-26-4995-2022, 2022
Short summary
Isotopic offsets between bulk plant water and its sources are larger in cool and wet environments
Javier de la Casa, Adrià Barbeta, Asun Rodríguez-Uña, Lisa Wingate, Jérôme Ogée, and Teresa E. Gimeno
Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022,https://doi.org/10.5194/hess-26-4125-2022, 2022
Short summary

Cited articles

Anand, S. K., Hooshyar, M., and Porporato, A.: Linear layout of multiple flow-direction networks for landscape-evolution simulations, Environ. Model. Softw., 133, 104804, https://doi.org/10.1016/j.envsoft.2020.104804, 2020. a
Aronson, D. G. and Graveleau, J.: A selfsimilar solution to the focusing problem for the porous medium equation, Eur. J. Appl. Math., 4, 65–81, 1993. a
Barenblatt, G. I.: Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics, 14, Cambridge University Press, https://doi.org/10.1017/CBO9781107050242, 1996. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u
Barenblatt, G. I., Chorin, A. J., and Prostokishin, V. M.: Scaling laws for fully developed turbulent flow in pipes: Discussion of experimental data, P. Natl. Acad. Sci. USA, 94, 773–776, https://doi.org/10.1073/pnas.94.3.773, 1997. a
Barr, D. I.: Consolidation of basics of dimensional analysis, J. Eng. Mech., 110, 1357–1376, 1984. a
Download
Short summary
Applying dimensional analysis to the partitioning of water and soil on terrestrial landscapes reveals their dominant environmental controls. We discuss how the dryness index and the storage index affect the long-term rainfall partitioning, the key nonlinear control of the dryness index in global datasets of weathering rates, and the existence of new macroscopic relations among average variables in landscape evolution statistics with tantalizing analogies with turbulent fluctuations.