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Abstract. By rigorously accounting for dimensional homo-
geneity in physical laws, the 5 theorem and the related self-
similarity hypotheses allow us to achieve a dimensionless re-
formulation of scientific hypotheses in a lower-dimensional
context. This paper presents applications of these concepts
to the partitioning of water and soil on terrestrial landscapes.
For such processes, their complexity and lack of first princi-
ple formulation make dimensional analysis an excellent tool
to formulate theories that are amenable to empirical testing
and analytical developments. The resulting scaling laws help
reveal the dominant environmental controls for these par-
titionings. In particular, we discuss how the dryness index
and the storage index affect the long-term rainfall partition-
ing, the key nonlinear control of the dryness index in global
datasets of weathering rates, and the existence of new macro-
scopic relations among average variables in landscape evolu-
tion statistics. The scaling laws for the partitioning of sedi-
ments, the elevation profile, and the spectral scaling of self-
similar topographies also unveil tantalizing analogies with
turbulent flows.

1 Introduction

Galileo is credited as the first scientist to have used dimen-
sional analysis and scaling. In his 1638 “Dialogues Con-
cerning Two New Sciences” (Galilei, 1914), he deduced that
geometrically similar objects are not equally strong under
their own weight: “A small dog could probably carry on
his back two or three dogs of his own size; but I believe
that a horse could not carry even one of his own size”.
Since this discovery of scaling laws for complex biologi-
cal materials, dimensional analysis has continued to fasci-

nate many scientists, from Fourier and Maxwell to Reynolds,
Rayleigh, Kolmogorov, and Taylor, and contributed to nu-
merous new results in several fields (e.g., Barenblatt, 1996;
Szirtes, 2007; Bolster et al., 2011; Katul et al., 2019). These
methods have been extremely useful in complex problems
lacking closed-form solutions due to nonlinear interactions
and multi-physics as well as in design of experiments and
numerical simulations and the rational interpretation of their
results.

Looking at some of the most striking applications of the
5 theorem and self-similarity (e.g., the famous example of
the atomic bomb of Taylor; Taylor, 1950a, b; Barenblatt,
1996, and the Kolmogorov spectrum of turbulence; Kol-
mogorov, 1941; Katul et al., 2019), it is easy to be lured
by the promise of a mathematical structure offering a pow-
erful dimension reduction in the space of variables and pa-
rameters, even for vaguely formulated problems. In spite of
the straightforward steps for its application, a brute force
approach to dimensional analysis rarely leads to useful re-
sults (and too often leaves one with too many dimensionless
groups). These failures are probably at the origin of some
of the backlash in the literature, hailing these methods as
nothing more than fancy tricks, capable only of recasting
already-known solutions. What is true is that applications of
dimensional analysis cannot be done automatically but re-
quire careful consideration of the problem at hand. The re-
sults, which follow from the initial hypotheses, have to be
scrutinized using the available data or simulations. In other
words, when performing dimensional analysis, one cannot
avoid the necessary iterative process of hypothesis formula-
tion and subsequent verification, which forms the basis of
any mathematical modeling (Logan, 2013). Its results, like a
good dish, depend on its ingredients as much as on its recipe.
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356 A. Porporato: Hydrology without dimensions

The presence of emerging scaling laws in geophysics has
been widely recognized for a long time, and the related power
laws have been observed in rainfall and streamflow statistics,
in landscape and river-network geometry, as well as in the ag-
gregation properties of soils and aquifers (among many oth-
ers, see, e.g., Rodríguez-Iturbe and Rinaldo, 2001, Gagnon
et al., 2006, and Sposito, 2008, and references therein).
Notwithstanding these numerous examples, the presence of
only a few applications of the 5 theorem in geophysics ap-
pears to be at odds with the early conclusion of Strahler
(1958) that “dimensional analysis will become increasingly
useful in empirical, quantitative studies in geomorphology by
offering a systematic means of describing and comparing the
form elements of the landscape”.

In this paper, we revisit a series of fundamental problems
in hydrology and geomorphology and scrutinize them un-
der the common lens of dimensional analysis with the goal
of sharpening our intuition of the underlying physical pro-
cesses. After a brief review of the concepts of dimensional
analysis and scaling in Sect. 2, in Sect. 3 we consider three
different instances of the partitioning of water and soils in
natural landscapes. Because of their complexity, availability
of global data, and the lack of governing equations from first
principles, these phenomena provide a particularly fertile test
bed for dimensional techniques.

2 From group theory to street-fighting hydrology

Dimensional analysis is a chapter of the more general group
theory (Gilmore, 2012), based on the elegant formalism of
generalized homogeneous functions (Barenblatt, 1996) and
their underlying linear algebra (Logan, 2013). It formalizes
the principle of dimensional homogeneity, which expresses
the fact that physical equations should be valid independently
of the system of units chosen. Taking this principle to its
rigorous consequences allows us to exploit the dimensional
symmetries of the problem in a way that may lead to useful
results.

On the theoretical front, the5 theorem provides a system-
atic recipe to find self-similar solutions of partial differential
equations (PDEs); these underlie the local Lie groups under
which the PDEs are invariant (Barenblatt, 1996; Bluman and
Cole, 2012). On the more practical side, in data analysis and
design of experiments (Barenblatt, 1996; Szirtes, 2007; Shen
et al., 2014), dimensional analysis helps make the so-called
“Fermi reasoning” (i.e., privileging good reasoning to ac-
curacy to achieve fair estimates) more methodical (Bhaskar
and Nigam, 1990; Persico, 2004; Efthimiou and Llewellyn,
2007). By offering a rigorous way to organize physical hy-
potheses about a problem, perform dimension reduction in
terms of fundamental governing groups, and verify and re-
fine the hypotheses with available information, dimensional
analysis is an asset for “street-fighting” mathematical guess-
ing (Mahajan, 2010).

2.1 Scaling and power laws

The word scaling, in the sense used here, refers to the ex-
istence of a property that allows one to go from one scale
to another (upscaling or downscaling) using the same math-
ematical law and, therefore, it is related to the absence of
a preferred scale or unit of measure. From a mathematical
viewpoint, this property is linked to the fact that the solu-
tions of dimensional physical problems are generalized ho-
mogeneous functions (Hankey and Stanley, 1972; Widom,
2009) and that dimension functions are power-law monomi-
als (Barenblatt, 1996).

The defining property of a homogeneous function of de-
gree n,

f (λx)= λnf (x), (1)

makes it evident that, apart from a scale coefficient, λn, the
same function is used to go from one scale (x) to another
scale (λx). The linkage to power laws becomes evident when
setting λ= 1/x, which transforms the previous equation in

f (x)= xnf (1)= axn, (2)

where a = f (1) is a constant. Power-law functions, f (x)=
axn, satisfy Eq. (1)1.

As we will see, scaling laws appear naturally in the appli-
cation of the5 theorem and are not limited to space and time
variables but can involve any dimensional quantity. Scaling
is often connected to fractal properties of the underlying pro-
cesses and also appears in the related fields of critical phe-
nomena and anomalous scaling (Hankey and Stanley, 1972;
Sornette, 2006), renormalization group theory (Goldenfeld,
2018), and complete and incomplete self-similarity (Baren-
blatt, 1996). Sornette (2006) has several examples of power
laws ensuing from different mechanisms.

2.2 The powerful dimension reduction of the
5 theorem

The starting point of a dimensional analysis is the formula-
tion of a “physical law”,

a = f (a1, . . ., an) , (3)

1For the purposes of this article, it may be useful to note how
in mathematics one almost always assumes to deal with dimen-
sionless quantities. For example, in Eqs. (1) and (2), the argu-
ment of the function f is assumed dimensionless (we know that
if the function is transcendental, its argument should be dimen-
sionless; see, e.g., Barenblatt (1996)). When thinking dimension-
ally, λ as a scale factor should have the dimension of the inverse
of x. Thus, either one considers the scaling in Eq. (1) with regard
to dimensionless quantities (then λ, x, and f are all dimensionless)
or assumes the presence of unit factors to take care of the units:
f (λ× x)= (1× a)nf (1× x), where the different “1” have differ-
ent dimensions. Similarly, with x dimensional, log(x) only makes
sense if one implies log(x/1), and the same is true when we develop
a function in power series.
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A. Porporato: Hydrology without dimensions 357

which relates a quantity of interest, a, the so-called governed
quantity, to n other governing quantities, a1, . . . , an. Equa-
tion (3) embeds formally our scientific hypothesis about the
physical problem and serves as a mathematical placeholder
to collect the initial ingredients, on which the recipe of the
5 theorem then operates.

With Eq. (3) established, the next step is to take stock of
the dimension (i.e., the factor by which a physical quantity
changes upon passage from the original system of units to
another) of the quantities present in the physical law (Eq. 3).
According to Maxwell’s convention, the dimension of a vari-
able q is indicated as [q]. For example, the dimension of the
velocity v is [v] = LT −1 (as is well known, in mechanics the
dimensions of length mass and time – LMT – are used as a
class of system of units). As a result of dimensional homo-
geneity, dimension functions are always power-law mono-
mials (Barenblatt, 1996); thus, in mechanics a generic vari-
able q has dimension function [q] = LαMβT γ . The latter is
a specific instance of Bridgman’s equation (Bridgman, 1922;
Panton, 2006), in which LMT are the chosen principal di-
mensions. It follows that the dimension of the argument of
transcendental functions is unity (i.e., they are dimensionless
quantities), so that their numerical value is identical in all
systems of units.

The number k of fundamental quantities in the physical
law (Eq. 3) plays a key role in the 5 theorem. Such fun-
damental quantities, also called repeating variables, must be
dimensionally independent (Barenblatt, 1996): that is, none
of their dimensions can be represented in terms of a product
of powers of the dimensions of the remaining k−1 quantities
(in turn, this is true only if the determinant formed with the
exponents of the dimension functions is different from zero).
Often k is equal to the fewest independent dimensions re-
quired to specify the dimensions of all quantities involved in
Eq. (3), but in a few cases the number of primary dimensions
differs when the variables are expressed in terms of differ-
ent systems of dimensions (e.g., LMT, FLT – force, length,
and time – or any other combination). In any case, the value
of k is given by the rank of the dimensional matrix, formed
by listing all the exponents of the primary dimensions of
each variable in Eq. (3); see, e.g., Panton (2006) and Logan
(2013). Once it has been ascertained that the problem admits
k dimensionally independent quantities among the governing
quantities, the k repeating variables may be chosen and the
physical law (Eq. 3) may be formally re-arranged as

a = f (a1, . . ., ak;ak+1, . . ., an) , (4)

where conventionally the semicolon separates the repeating
variables from the other ones.

Enforcing dimensional homogeneity in Eq. (4) leads to the
main outcome of the 5 theorem (Barenblatt, 1996), namely,
that the physical law, if true, can be written in the form

5= ϕ (5k+1, . . ., 5n) (5)

in terms of the dimensionless 5 groups

5=
a

a
α1
1 , a

α2
2 , . . ., a

αk
k

,

5k+1 =
ak+1

a
α1,k+1
1 , a

α2,k+1
2 , . . ., a

αk,k+1
k

,

. . .

5n =
an

a
α1,n
1 , a

α2,n
2 , . . ., a

αk,n
k

. (6)

A comparison of Eqs. (3) and (5) clearly shows the great
achievement of the 5 theorem in re-expressing a general
mathematical relationship between a quantity of interest
and n dimensional quantities as a new relationship between
n−k dimensionless quantities in a more manageable, lower-
dimensional space. The most striking applications in the lit-
erature (e.g., Barenblatt, 1996) are in fact linked to a drastic
dimension reduction (in the problem of the pendulum n= 2
and k = 2, while for the atomic bomb n= 3 and k = 3, so
that n− k = 0 and one is left with a dimensionless func-
tion which is a constant). In nonlinear PDEs this may al-
low them to be transformed into ordinary differential equa-
tions (ODEs), with much greater chances of finding a so-
lution, either analytically or numerically. While this hap-
pens more frequently in one spatial dimension (e.g., Baren-
blatt, 1996; Daly and Porporato, 2004b; Eggers and Fontelos,
2008), sometimes it also works in higher dimensions (Hills
and Moffatt, 2000; Xue and Stone, 2020).

Depending on the governing variables involved in the
physical law, there may be freedom in choosing the k govern-
ing repeating variables. Each admissible choice leads to di-
mensionless groups that are related to the ones obtained from
a different admissible set. As we will see, while in general the
different ensuing representations are equivalent, some com-
bination may be more revealing of the underlying dynamics
and afford a more parsimonious representation. In PDEs, this
freedom may lead to different phase-space representations,
some of which could be more amenable to analysis (Gratton
and Minotti, 1990; Daly and Porporato, 2004b).

In summary, starting from a physically meaningful law (1),
the5 theorem not only provides a mathematically more spe-
cific and elegant expression for it, but also helps reveal the ac-
tual physical controls of the problem, which emerge through
it in the form of the 5 numbers obtained: these, and not the
single variables listed in the original law, are the actual quan-
tities governing the physical phenomenon (for example, the
Reynolds, Mach, and Froude numbers and the many other
ones, including those that we will see later in this article).

2.2.1 Self-similarity

When one or more of the 5 groups attain very large or
very small values, the function ϕ in Eq. (5) may reach an
asymptotic form related to a self-similar regime. In the sim-
plest form of self-similarity, called complete or of the first
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kind (see Barenblatt, 1996), the function ϕ reaches a con-
stant plateau for either very small or very large values of
the governing groups. As a result, the physical problem does
not change even if the values of these groups change, and
the “self-similar group” can then be eliminated from Eq. (5),
allowing for further dimension reduction. In more compli-
cated cases the self-similarity is of the second type, or incom-
plete, because the function ϕ still depends on the self-similar
5 group according to a power law with an exponent, which
is not directly related to any of the dimension functions of
the governing quantities.

Thus, assuming for example self-similarity with respect to
the group 5k+1, Eq. (5) becomes

5= lim
5k+1→0 or∞

ϕ (5k+1, 5k+2, . . ., 5n)

=5
β

1ψ (5k+2, . . ., 5n) , (7)

where β = 0 in the case of complete self-similarity. Thus
complete self-similarity allows us to further reduce the di-
mensionality of the problem by as many dimensions as
there are self-similar groups. This type of similarity is
frequently encountered in near-wall turbulence, where the
global Reynolds number and the dimensionless distance
from the wall appear as self-similar groups. As we will see
later on, complete self-similarity is also present in land-
scape channelization, when fluvial erosion dominates over
soil creep.

Incomplete self-similarity seems to be more rare and is
often difficult to distinguish from the case of complete self-
similarity, especially for experimental or numerical problems
where there are transitions to different regimes (Spagnoli,
2005) or in which the available data are not sufficiently pre-
cise (Barenblatt et al., 1997; Smits et al., 2011; Yin et al.,
2019). In self-similar solutions of PDEs, incomplete self-
similarity typically results from a nonlinear eigenvalue prob-
lem and leads to power laws that control the temporal or spa-
tial behavior of the problem with exponents that are irrational
numbers that are not directly related to the dimension func-
tions of any of the variables or initial and boundary condi-
tions (e.g., Gratton and Minotti, 1990; Aronson and Grav-
eleau, 1993; Barenblatt, 1996; Burton and Taborek, 2007;
Zheng et al., 2014). It is also worth noting that, starting from
different physical laws with or without a certain variable, one
sometimes arrives at different final forms of self-similar be-
havior. As we will see in the example of weathering in Sect.
3.2, it appears that such cases are actually related to prob-
lems of complete self-similarity, because the alternative for-
mulation as an incomplete self-similarity problem is char-
acterized by integer exponents, which allow simplifications
among variables, which in turn lead to the complete self-
similarity obtained with the other choice of variables.

2.3 Augmented and directional dimensional analysis

It is not infrequent in the literature to come across a point
of view, made explicit by Bridgman (1922), that “there is
nothing sacrosanct” about the choice of primary dimensions
and that “dimensional analysis is merely a man-made tool
that may be manipulated at will”. This is indeed in line with
modern physics, which links length, time, mass, and energy
to the different descriptions of reality depending on the scale
of observation. Once a free choice of the primary units is
accepted, then the question remains of what choice will be of
maximum utility (Moon and Spencer, 1949).

Compared to the aforementioned (Sect. 2.2) freedom of
choosing repeating variables or classes of systems of units
(e.g., the length, force, and time, LFT, instead of the length,
mass, and time, LMT), the augmented dimensional analy-
sis refers to a more drastic freedom of “inventing” the type
and number of primary dimensions. It is related to the origi-
nal observation that “dimensions of quantities do not always
afford a test of their identity” (Lodge, 1888). Since this ul-
timately affects the number of dimensionless groups and the
extent of dimension reduction, the practical implications may
be significant.

As the reader may imagine, this line of reasoning has at-
tracted both stern skepticism and enthusiastic support, lead-
ing to interesting debates and controversies, with defenders
of rigor and objectivity on one side and advocates of a flexi-
ble approach on the other. In the writer’s experience, the sub-
ject is always a source of interesting discussion, if not else
because, when one writes in favor of it, the editors somehow
always manage to select a reviewer who belongs to the skep-
tical camp.

The most emblematic case of controversy is perhaps the
well-known Rayleigh–Riabouchinsky controversy (e.g., Gib-
bings, 1982; Butterfield, 2001). Dealing with a problem of
heat transfer between a body and a fluid stream, Rayleigh
(1915a) solved it within the domain of thermodynamics, i.e.,
including temperature as a primary dimension and obtaining
one governing dimensionless group. Riabouchinsky (1915)
objected that, adopting the more advanced point of view of
statistical mechanics, according to which temperature is the
mean molecular kinetic energy, one could more parsimo-
niously limit the primary dimensions to length, time, and en-
ergy without involving temperature. As a result, he obtained
two dimensionless groups, reaching the paradoxical conclu-
sion that apparently more detailed knowledge of the problem
yields a less informative result.

The resolution of this controversy (see Appendix A for
more details) shows that it is not a matter of the arbitrari-
ness of which dimensions are considered but of the level
of description intended for a problem. Whether to include
the specifics of the molecular motion depends on the size
of the considered object. If one, following Rayleigh, accepts
a thermodynamic approach, then the details of the disor-
derly molecular energy are irrelevant and temperature can be
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A. Porporato: Hydrology without dimensions 359

treated as an independent quantity compared to the kinetic
energy of the mean motion. Formally, choosing a greater
number of fundamental units (i.e., the number of primary di-
mensions) is made possible by the addition of correspond-
ing dimensional unifiers (Panton, 2006). The confusion of-
ten arises in those cases where the structure of the equation
is such that the dimensional unifier can be tacitly eliminated
or taken for granted.

Of a similar nature, and perhaps even more subtle and con-
troversial, is directional dimensional analysis, which is based
on the fact that in some cases distinguishing between ver-
tical and horizontal dimensions provides more informative
results (i.e., fewer dimensionless groups). Williams (1890)
argued that “owing to the dimensions of space, the unit of
length is involved in different ways, according to the dif-
ferent relative directions in which it may be taken.” While
for some authors it remains controversial (see, e.g., Barr,
1984; Gibbings, 1980; Kader and Yaglom, 1990, and ref-
erences therein), others have worked to link these exten-
sions of dimensional analysis more solidly to group theory
(Moran and Marshek, 1972). Directional dimensional anal-
ysis works, provided that the ratio of the length dimensions
does not play a role in the physics of the problem (e.g., in
the original equations); this happens, for example, in cases
that assume incompressibility where one of the lengths may
be simply related to mass flow because the mass dimen-
sion has been canceled out of the equations. As we will see,
the variable z in the landscape evolution model, analyzed in
Sect. 3.3, falls within this category.

Directional dimensional analysis and its generalizations
have been used successfully in a variety of problems, in-
cluding applications in mechanics and atmospheric sciences
(e.g., Huntley, 1967; Moran and Marshek, 1972; Kader and
Yaglom, 1990; Siano, 1985; Daly and Porporato, 2004a, b;
Dimitrakopoulos and DeJong, 2012; Bonetti et al., 2020;
Hooshyar et al., 2020; Sun, 2020; Hooshyar et al., 2021).
Notwithstanding we do not have rigorous criteria to assess
whether and when the “tricks” of augmented dimensional
analysis can be applied, there are certainly several cases in
which extending the set of primary dimensions is useful.
Even in case of failure, the negative results can always be
used to sharpen our physical laws and improve our starting
point for dimensional analysis.

3 Water and soil mineral partitioning in the critical
zone

Some of the most important questions of terrestrial geo-
physics are related to the partitioning of water and soil min-
erals at the land surface. Figure 1 shows the three cases that
we will analyze in this section: the partitioning of rainfall
into evapotranspiration and percolation plus runoff, the soil
partitioning of minerals either lost by chemical dissolution
(weathering) or transported away, and the related geomor-

Figure 1. The three partitionings analyzed in this paper using di-
mensional analysis: the rainfall partitioning taking place at the
land surface, the soil mineral partitioning by chemical dissolution
(weathering) and transport processes, and the related partitioning of
soil sediments responsible for landscape evolution and the forma-
tion of drainage networks.

phologic partitioning of soil over the landscape due to soil
creep and fluvial erosion. Since their complexity prevents us
from writing the governing equations and boundary condi-
tions in detail, these problems are excellent candidates for
dimensional analysis, applied in combination with available
data and numerical simulations of simplified models. For
simplicity, we focus on the dominant components of such
partitionings and consider only long-term averages, assum-
ing stationary conditions.

The scaling laws obtained from dimensional analysis shed
light on the dominant soil, vegetation and climate controls
for these hydrologic partitionings. Specifically, in the first ap-
plication it will be seen how the dimensionless dryness and
storage indices determine the long-term rainfall partitioning.
The second application will reveal the key nonlinear control
of the dryness index on weathering rates, while the third ap-
plication will analyze new macroscopic relations among av-
erage variables’ landscape evolution, uncovering an intrigu-
ing analogy between self-similar topographies and turbulent
flow fields.

3.1 Rainfall partitioning

The rainfall reaching the soil surface is either lost by runoff
or infiltrates into the soil, where in turn it is lost either by
evapotranspiration or percolation. The fate of this partition-
ing is essentially controlled by the properties of the soil–plant
system, which – in a sense – acts as a geophysical valve, not
only for the entire hydrologic cycle, but also for the energy
and carbon cycles. This fundamental hydrological problem
presents robust behaviors for its macroscopic (i.e., averaged)
patterns as well as rich and complex controls at the detail
level, where the role of temporal fluctuations and spatial het-
erogeneities becomes important.

We will indicate the mean rainfall rate as R and consider
together the main losses: the evapotranspiration rate (ET) and
the mean rate of percolation plus runoff (LQ); see Fig. 1.
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360 A. Porporato: Hydrology without dimensions

Assuming stationarity over long timescales and referring to
a given area, the input balances the outputs:

R = ET+LQ. (8)

It should be clear that, depending on the area chosen and
whether the latter is homogeneous in terms of land cover,
soil properties, and topography, the actual meaning of the
term LQ in Eq. (8) may be very different. In particular, if
the control volume for our water balance is the rooting zone
of a small homogeneous plot of vegetated soil, then LQ will
be the average of a very intermittent term given by the sum of
surface runoff and percolation to soil layers below the root-
ing zone, while if we consider an entire river basin, it will
be mostly the average of the streamflow draining the area.
How these processes scale with the land area is an interest-
ing open question, which is outside of our scope (see Fig. 4
by Yin et al., 2019, for an analysis of this effect). We specif-
ically focus on ET, as many have done before, but here we
adopt the special lens offered by the 5 theorem to explore
the implications of different hypotheses in the physical laws
used as starting points.

3.1.1 Turc and Budyko spaces: dryness and humidity
as the main controls of rainfall partitioning

While they did not use dimensional analysis, Turc and
Budyko started their work by making what is perhaps the
simplest hypothesis of a physical law for the rainfall parti-
tioning (see Dooge, 1992; Daly et al., 2019, and references
therein),

ET= fTB (R, ETmax) , (9)

where ETmax is a reference (e.g., potential or maximum)
evapotranspiration. The rank of the dimension matrix

ET R ETmax
L 1 1 1
T −1 −1 −1

(10)

is 1, which leads to a total of two dimensionless groups, one
governed and one governing. Note that the same result is ob-
tained adopting a system of units with the only dimension of
flux, say 8, for which the dimension matrix

ET R ETmax
8 1 1 1 (11)

also has rank 1.
If one chooses R as the repeating variable, applying the

5 theorem then gives the so-called Budyko hypothesis

5B = ϕB (DI) , (12)

where

5B =
ET
R

and DI =
ETmax

R
(13)

is Budyko’s dryness (or aridity) index. If instead one
chooses ETmax, then Turc’s hypothesis follows (Daly et al.,
2019):

5T = ϕT (HI) , (14)

where

5T =
ET

ETmax
and HI =

R

ETmax
=

1
DI

(15)

is the humidity index. Which representation to use is mostly
a matter of convenience, since they are related by 5T =

5B/DI and ϕT = ϕB/DI. However, Budyko’s hypothesis
may be more suitable for emphasizing the dry end of the hy-
drologic spectrum, while Turc’s privileges the humid end.

Budyko’s hypothesis is tested in Fig. 2 using the MOPEX
data for several river basins in the continental USA and
plotted along with the original Budyko interpolating curve.
Clearly, as shown many times before, the main controls on
the rainfall partitioning are captured by the dryness index.

3.1.2 Storage index: the role of the hydrologic active
depth and the variability timescale

While the dryness index captures the main variability of the
data, the scatter in Fig. 2 also suggests additional controls,
which prompt us to revisit the physical law (Eq. 9) by con-
sidering additional governing quantities. There are several
quantities that capture the different properties of the hydro-
logic system and its climatic forcing, such as storage capac-
ity, areal extension, vegetation type, and seasonality. Among
these candidates, the storage depth (the storage volume di-
vided by the area) is probably the first one to consider, as
suggested by the dramatic effects of paving a vegetated field
on the rainfall partitioning.

To account for this effect, we may add a quantity w0 with
dimensions of length (L), which is a volume divided by an
area. This leads to a physical law of the type

ET= fET (R, ETmax, w0) . (16)

However, when trying to apply the 5 theorem, it becomes
immediately apparent that, if w0 is chosen as a repeating
variable, it actually drops from the dimensionless formula-
tion (similarly to the way the mass disappears from the list
of variables when applying the 5 theorem to the pendulum
– Barenblatt, 1996). Physically, this tells us that to see a dif-
ference in the partitioning among the hydrologic balance of
a parking lot, a crusted soil, and a deep vegetated soil, the
role of the soil depth must be associated with other variables,
which include a timescale to account for the variability of the
hydrologic balance, for otherwise all the other influences are
already contained in the dryness index.

Thus, to achieve a further refinement in the Pi-theorem for-
mulation, in combination with the storage depth w0, Porpo-
rato et al. (2004) introduced a timescale related to the mean
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Figure 2. Rainfall partitioning. (a) Test of Budyko’s hypothesis using the MOPEX data (Porporato and Yin, 2022). The solid line shows the
original semi-empirical curve used by Budyko, 5B = (DI tanhD−1

I (1− e−DI))1/2. (b) Different solutions of the mean partitioning of the
minimalist soil moisture balance model of Porporato et al. (2004), showing the role of the storage index, γ = w0/α, and seasonality (Feng
et al., 2012). The red dotted line is the original curve of Budyko.

time between rainfall events or – better – its inverse, the fre-
quency of rainfall events, say λ. Since the frequency of rain-
fall times the mean rainfall depth per event α is equal to the
mean rainfall rate R = αλ, the presence of the mean rainfall
rate in the list becomes redundant if one already includes the
mean rainfall depth α. With these additions, the physical law
becomes

ET= fET (λ, α, ETmax, w0) , (17)

with the dimension matrix of rank 2 given by

ET λ α ETmax w0
L 1 0 1 1 1
T −1 −1 0 −1 0

. (18)

It is instructive to explore the full range of choices related
to the three possible dimensionless groups given by the five
variables minus the rank 2 of the matrix. In turn, this im-
plies five possibilities (of the six potential pairs of repeating
variables, (α, w0) obviously must be excluded because of di-
mensional dependence), which can all be brought back to the
dryness index DI and the storage index γ = w0/α, as shown
in the following table:

Repeating var. Pi theorem Group relation
(α,λ) ET

αλ
= ϕ1

(
Emax
αλ

,
w0
α

)
5B = ϕ1 (DI, γ )

(λ, Emax)
ET
Emax
= ϕ2

(
αλ
Emax

,
w0λ
Emax

)
5BD

−1
I = ϕ2

(
D−1

I , γD−1
I

)
(α, Emax)

ET
Emax
= ϕ3

(
Emax
αλ

,
w0
α

)
5BD

−1
I = ϕ3

(
D−1

I , γ
)

(λ, w0)
ET
λw0
= ϕ4

(
Emax
λw0

, α
w0

)
5Bγ

−1
= ϕ4

(
DIγ

−1, γ−1)
(Emax,w0)

ET
Emax
= ϕ5

(
α
w0
,
λw0
Emax

)
5BD

−1
I = ϕ5

(
γ−1, γD−1

I

)
. (19)

These five hydrologic spaces provide different, if related,
scaling laws that allow us to focus on the role of specific
combinations of parameters and emphasize different hydro-
logic conditions. It is useful to note that the dimensionless
group ϑ = γD−1

I =
λw0

EETmax
appears often as an independent

variable. The latter can also be written as ϑ = λ
η

, which un-
covers an interpretation of it as a ratio of timescales, one re-
lated to the mean time between rainfall occurrence, 1/λ, and

one related to the time of depletion of the soil store reser-
voir of depth w0 at the maximum evapotranspiration rate,
i.e., η = Emax/w0. Note also that ϑ = λ

η
appears naturally

in the normalized form of the evolution equation of the prob-
ability distributions of soil moisture dynamics in minimalist
stochastic models (Porporato et al., 2004; Rodríguez-Iturbe
and Porporato, 2005). Figure 2b reports different partitioning
curves for different values of the storage index γ , obtained
by solving a minimalist stochastic soil moisture model with
only four dimensional parameters as in Eq. (17).

With the goal of analyzing the suitability of different hy-
drologic spaces for capturing the information available in
global datasets on hydrologic partitioning, Daly et al. (2019)
analyzed a physical law focused on hydrologic fluxes (i.e.,
rates) only. Accordingly, they considered an extension of
Budyko and Turc physical laws (Eq. 9) by hypothesizing an
additional control by a governing variable φ with the dimen-
sions of a flux, [φ] = LT −1

=8,

ET= fET (R, ETmax, φ) . (20)

Since each of the fluxes (L/T =8) can be used as a re-
peating variable, three hydrologic spaces are obtained. As-
suming further that φ is a flux related to the storage capac-
ity and the frequency of rainfall, φ = λw0, the three spaces
(Daly et al., 2019) are found to coincide with specific cases in
Eq. (19): case 1 if R is chosen as a repeating variable, case 2
if ETmax is chosen, and case 4 if φ is chosen.

The analysis by Daly et al. (2019) shows that by account-
ing for the ability of a catchment to store water to supply
evapotranspiration, the flux φ (referred to as the maximum
storage rate) serves as a modulator for the relationships of ET
with R and ETmax for very dry and very wet catchments. In
this way, accounting for it, it allows us to expand the Budyko
and Turc frameworks, suggesting that they are not equivalent,
as often assumed in parametric models, unless φ→∞. Thus
the variable φ helps group catchments with similar evapo-
transpiration rates with respect to different combinations of
the dimensionless groups φ/ETmax = (λw0)/ETmax = ϑ =

γD−1
I and φ/R = w0/λ= γ , which account for key catch-
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Figure 3. Transient trajectories of the time-varying ratio 〈ETt 〉/〈Rt 〉 as a function of the time-varying dryness index 〈Dt 〉 and time of year
for Mediterranean and tropical dry climates. Brackets indicate ensemble averages for a given time of year, taken over the rainfall variability
due to a time-dependent (i.e., seasonal) marked Poisson process of rainfall and seasonal potential evapotranspiration. Each loop is derived
from the same climate inputs, with the exception of the phase difference between rainfall and potential evapotranspiration, with the thick grey
lines showing results for out-of-phase and thick black lines for in-phase. The +1 on the time-of-year axis corresponds to when maximum
rainfall occurs (wet season), and −1 corresponds to timing of minimum rainfall (dry season). The annual average value for each loop falls
on a single point on the annual Budyko curves, shown as dashed lines (black and grey) for those that account for climate seasonality and as
thin black lines for the classical curve which considers only annually averaged climate values. After Feng et al. (2015).

ment and hydrologic characteristics. It also facilitates the
analysis of the partitioning in catchments with intermediate
values of the dryness index, while Budyko’s and Turc’s hy-
potheses help in the analysis of very dry and wet catchments,
respectively (Daly et al., 2019).

3.1.3 Seasonality, variable coevolution, and
higher-order effects

It is logical to wonder about the effects of adding other poten-
tially important variables to the physical law of rainfall parti-
tioning. These could include variables describing seasonality,
soil and vegetation properties, and other details of the cli-
matic forcing. With the goal of investigating the role of sea-
sonality in rainfall and evapotranspiration, Feng et al. (2012)
considered the duration of the wet season and the intensity
of rainfall seasonality. The effect of the new dimensionless
groups obtained on the long-term partitioning is shown in
Fig. 2b. Depending on the degree and type of seasonality, a
reduction of evapotranspiration is typically observed due to
an increase in percolation during the wet season compared
to the homogeneous case with no seasonality. At the level of
approximation afforded by the long-term averaging, the ef-
fects of seasonality are hardly distinguishable from those of
a decrease in the storage index γ . To disentangle the various
effects and more clearly see the effects of seasonality, the
temporal variability in the rainfall partitioning must be con-
sidered. An example of this is presented in Fig. 3, where the
Budyko curve is plotted parametrically as a function of time
and the non-uniqueness related to seasonal storage becomes
evident (Feng et al., 2015).

It is clear that more detailed analyses to disentangle the
role of different ecohydrological variables in the rainfall par-
titioning should focus on specific aspects of the space–time

variability of evapotranspiration, which instead are lost in
the spatially lumped, long-term evapotranspiration rates of
Budyko’s type analyses. The combination with simple phys-
ically based models may be a valuable way to sharpen the hy-
potheses of the physical laws, especially when trying to un-
ravel the effects of the covariation of some of the variables.
These regard questions of how the rooting depth, and thus
the storage capacity of the active soil layer, may depend on
the dryness index and whether such covariations may imply
some adaptation of vegetation and soil properties to the hy-
droclimatic characteristics. Along these lines, the minimal-
ist stochastic model developed by Porporato et al. (2004)
pointed to a tendency, for the points lying on the Budyko
curve, to converge towards typical values of the storage in-
dex of 5–6, in turn suggesting a root-depth adaptation to the
intensity of rainfall. Similarly, Or and Lehmann (2019) at-
tributed the convergence of the rainfall partitioning to typ-
ical evaporative depths, while Hunt (2021) connected a de-
pendence of the storage index with hydroclimatic character-
istics, γ (DI), to an adaptation brought about by constraints
linked to percolation statistics.

Shedding light on the role of higher-order controls in rain-
fall partitioning requires charting of more detailed model–
data investigations, branching off the beaten path of Budyko-
type analyses. Long-term averages may only contain a weak
signal of those interactions, which may be easily over-
whelmed by noise and other data limitations. This suggests
a need for adapting dimensional analysis to these other as-
pects of the rainfall partitioning and formulating more so-
phisticated physical laws that capture the more subtle con-
trols by the soil–plant–atmosphere system (see Feng et al.,
2018, for an example).
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3.2 Soil formation, weathering, and loss

A partitioning of the soil mineral component also takes place,
on much larger timescales, on the land surface (Riebe et al.,
2004). The loss of minerals at the land surface is controlled
by a series of tightly connected chemico-physical processes
with interesting geomorphology and hydrologic interactions
(Maher and Chamberlain, 2014), which in turn have a cru-
cial impact on the surface energy and water balances as well
as several biogeochemical, ecological, and climate processes
(Garrels, 1983; Richter and Billings, 2015).

The input of solid material to the soil from breaking up
parent rock is called rock denudation. While the dissolved
minerals and the very fine particles resulting from denuda-
tion can be transported away by water, the remaining parti-
cles stay in the ground, where they continue to be weathered
until they too can be transported away. As the soil ages and
transforms chemically, the soil may also be deformed by the
action of internal stresses and move as creeping flow. As a re-
sult, if one assumes, for simplicity, that the input and output
balance (Riebe et al., 2004), denudationD equals soil forma-
tion rate. These in turn balance the losses by weathering W
and erosion plus creep, which are lumped here into a single
term E (Fig. 1), yielding the following soil partitioning:

D =W +E. (21)

To analyze this partitioning and help resolve the complex
interaction between chemical weathering, climate, and the
hydrologic cycle, Calabrese and Porporato (2020) used di-
mensional analysis. This allowed them to obtain a theoret-
ical framework to organize the existing data on weathering
rates. Because of the crucial role of leaching of dissolved
inorganic carbon on the sites of weathering, the problem
strongly depends on the rainfall partitioning at the surface
discussed in the previous section. Accordingly, focusing on
the weathering rate as the governed quantity, Calabrese and
Porporato (2020) wrote a physical law assuming that weath-
ering rates are a function of the input given by the denudation
rate, a maximum weathering rate (which includes the effects
of type of parent material, temperature, etc.), the concentra-
tion of dissolved inorganic carbon [DIC], and the percolation
flux LQ (see Eq. 3). Further assuming that both [DIC] and
LQ only depend on the surface rainfall partitioning through
the dryness index, as in Budyko’s hypothesis (Eq. 12), they
wrote

W = fW (D, Wmax, DI) . (22)

Formally, apart from the presence of the dimensionless dry-
ness index, the situation is similar to the one of Eq. (3),
since W , D, and Wmax all have the same dimensions of a
flux of mineral per time. Choosing the input D as the re-
peating variable in Eq. (21), as Budyko did in the rainfall
partitioning, the 5 theorem gives

W

D
= ϕW

(
Wmax

D
, DI

)
. (23)

To verify this functional relationship, Calabrese and Por-
porato (2020) used literature data including granitic, basaltic,
and shale terrains and encompassing a broad range of envi-
ronmental settings. After normalizing the data by their max-
imum rate and assuming for the range of data available that
W ≤D, the results (Fig. 4a) show a remarkable linear trend
of the type

W

D
=

(
Wmax

D

)m
ψW (DI) . (24)

Since the exponent m of the power law is very close to 1, the
expression can be further simplified to the final form

W

Wmax
= ψW (DI) . (25)

Both these expressions are suggestive of self-similarity.
At a first glance, looking at Eq. (24), one would be led to
conclude that we are in the presence of self-similarity of
the second type with respect to Wmax/D. However, an ex-
ponent practically equal to one, unlike the typical irrational
numbers expected in incomplete self-similarity (Barenblatt,
1996), leads to a simplification which eliminates the govern-
ing variable D. As a result, the final expression (Eq. 25) can
be interpreted as a case of complete self-similarity with re-
spect to D/Wmax, when Wmax is chosen as a repeating vari-
able in Eq. (22) instead ofD. Alternatively, the same expres-
sion can be obtained directly from the 5 theorem starting
from an abbreviated physical law W = fWa (Wmax,DI). The
precise meaning of this self-similarity remains an open prob-
lem to be investigated. The physical message however is that
the denudation rate is not a relevant quantity compared to the
maximum weathering.

Equation (25) provides a mathematical structure to ana-
lyze how the water cycle affects the chemical depletion frac-
tion through the dryness index. The empirical data fit pro-
vides an equation with only one parameter,

ψW (DI)= 1−
ln
(
DαI + 1

)
1+ ln

(
DαI + 1

) , (26)

which emphasizes the strongly nonlinear relation between
water availability and weathering rate (see Fig. 4b). Start-
ing from high DI values, the normalized weathering rate in-
creases only slightly up until DI ∼ 2, after which it steeply
increases before plateauing at DI ∼ 0.5. The increase re-
gion corresponds to the establishment of grassland, savanna,
and shrubland ecosystems, emphasizing the important role of
vegetation in acidifying the soil and in turn enhancing weath-
ering rates. A similar nonlinear dependence on wetness has
been observed in the global distribution of soil organic car-
bon (Kramer and Chadwick, 2018).

The scatter shown by the data in Fig. 4b is not unexpected,
because of the large datasets used, which are obtained from
different locations and different methods. While it is likely
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Figure 4. (a) Analysis of the self-similarity hypothesis in Eq. (24); (b) specific weathering rates as a function of the dryness index; dashed
line shows Eq. (26). After Calabrese and Porporato (2020).

that part of it may be attributable to noise, it would also be
interesting to consider whether adding other quantities in the
physical law might help explain more of this variability. A
logical starting point could be the analysis of the effects of
the soil depth and water-storage capacity, which could be ex-
plored by correlating the data with estimates of the storage
index γ . It is likely that this will reveal further linkages be-
tween surface hydrology, soil formation, and weathering.

3.3 Landscape self-similarity

Besides the macroscopic effects of wetness on weathering
discussed in the previous section, the loss of minerals driven
by the coupled water and sediment fluxes on the topographic
surface is also responsible for the formation of complex to-
pographic patterns, which in turn impact ecohydrologic pro-
cesses (Dietrich and Perron, 2006). In this section, we fo-
cus on the dendritic morphology of interlocked ridges and
valleys, which often displays a self-similar scaling linked to
the fractal behavior of landscapes (Rodríguez-Iturbe and Ri-
naldo, 2001). While on the one hand the complexity of these
patterns hinders analytical results, on the other hand it also
helps with the investigation of macroscopic (i.e., averaged)
behavior, giving rise, as we will see, to emergent scaling be-
haviors for the large-scale statistics of the sediment budget,
the mean elevation profile, and the landscape spectral prop-
erties.

Towards the goal of performing dimensional and self-
similarity analyses, here we will consider only (spatially) av-
eraged quantities in idealized geometries for which the so-
lutions may be expected to depend only on a limited num-
ber of dimensionless quantities. The effort of formulating
meaningful physical laws for average landscape quantities
is facilitated by the existence of simplified, semi-empirical
landscape evolution models (LEMs) (Chen et al., 2014),
which can be inspected to infer the main governing quan-
tities of the problems. We specifically refer to a minimalist
landscape evolution model in detachment-limited conditions
(Howard, 1994), although many considerations also apply to
transport-limited and other intermediate formulations (Davy
and Lague, 2009; Pelletier, 2012). Accordingly, the equation

for the evolution of the landscape elevation z(x,y, t) is (Chen
et al., 2014)

∂z

∂t
= δ∇2z−Kam|∇z| +U, (27)

where t is time, δ is the diffusion coefficient used to repre-
sent the intensity of soil creep, K is the fluvial erosion coef-
ficient, a(x,y, t) is the specific drainage area, m is a dimen-
sionless coefficient (for simplicity we assume the exponent
of the gradient in the erosion term to be equal to 1), and
U is the surface-growth term due to tectonic uplift. Equa-
tion (27) is coupled to the “conservation” equation for the
specific drainage area:

∇ ·

(
a
∇z

|∇z|

)
= 1. (28)

The latter was derived by Bonetti et al. (2018) as an ideal-
ized representation of the water flow, following the steepest
descent lines of a topographic surface with a given charac-
teristic speed (see also Bonetti et al., 2020). Mathematically,
a = lim

w→0
A/w, where A is the contributing area and w is a

finite portion of a contour (iso-elevation); hence, the spe-
cific drainage area has dimensions of length, [a] = L, and
is defined at a point on the landscape, whereas the contribut-
ing area A, [A] = L2, is actually zero when considered at a
point, unless the topographic surface is discontinuous (see
Bonetti et al., 2018, for details). The use of the nonlocal
quantity A instead of a in Eq. (27) is therefore incorrect and
leads to grid-dependent results in mathematical codes. Since
the equation of a is not very well known, and given the mis-
use of A in the literature, we present a short derivation of
Eq. (28) in Appendix B.

The coupled Eqs. (27) and (28) form a closed system once
the initial and boundary conditions are specified. Figure 5
shows simulation results producing complex patterns (Anand
et al., 2020) that resemble real landscapes, with characteris-
tic branching and channelization instability. A dimensional
analysis of terms in a LEM in detachment-limited condi-
tions was presented by Theodoratos et al. (2018), although
they use A instead of a in the evolution equation for h.
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Figure 5. Steady-state simulation of landscape elevation given by Eqs. (27) and (28) for m= 0.5 and different channelization indices,
Eq. (33), CI = 103 in (a) and CI = 104 in (b). The elevation along A–A and B–B transects is shown in (c) and (d). After Hooshyar et al.
(2021).

Throughout this section, we will also see how the statistics
of landscape elevation bear a striking resemblance to those
of streamwise velocity in near-wall turbulence (Hooshyar
et al., 2020). For comparison, Appendix C briefly reports
the Navier–Stokes equations for the case of channel flow be-
tween two parallel plates, which corresponds to the case of
the landscape evolution between two parallel boundaries at
fixed elevation (e.g., Fig. 5).

3.3.1 Sediment budget and soil partitioning

In steady state, spatial averaging leads to the partitioning of
soil material into soil creep (SC) and the soil loss by stream
erosion (SL),

U = CR+SL. (29)

This equation is obviously related to Eq. (21), since at steady
state the rate of uplift needs to equal the denudation rate,
while the losses may be grouped by focusing on differ-
ent features of the underlying processes. Equation (21) em-
phasizes chemical weathering while lumping all the other
losses (mainly erosion and creep) into the term E, while here
Eq. (29) draws attention to the water-erosion term SL (pos-
sibly including also weathering), with the rest lumped into a

diffusive term, CR, representing soil creep and other smooth-
ing processes.

Averaging spatially Eqs. (27) and (28), the mean sediment
balance equation can be written as (see Hooshyar and Porpo-
rato, 2021, for details)

δ
(
2ly
)−1
〈∇z⊥〉�︸ ︷︷ ︸

−CR

−K
(
(1−m)

〈
κca

mz
〉
+m

〈
am−1z

〉)
︸ ︷︷ ︸

SL

+U = 0, (30)

where ly is the domain width, ∇z⊥ is the component of the
elevation gradient normal to the domain contour �, κc is the
plane or contour curvature, the brackets 〈·〉 indicate the spa-
tial average, and 〈·〉� is the average over the domain contour.
While this is an exact result, the terms in brackets are un-
known because of the complexity of the landscape surface.
This is where dimensional analysis comes in handy.

Bonetti et al. (2020) tackled the problem of these spatial
averages by adopting a directional dimensional analysis (see
Sect. 2.3), considering independent dimensions for horizon-
tal lengths,L, and the vertical length,Lz. Physically, a justifi-
cation for the use of directional dimensional analysis may be
found in the fact that Eq. (27) is the sediment budget equa-
tion at a point written in terms of volume of sediments per
unit ground area. For sediments of constant density, the same
equation can be written in terms of mass per unit ground area,
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say ρz, which then can be considered a new variable with
its independent dimensions. Indicating the unknown average
slope at the boundary as S∗ = 〈∇z⊥〉�, the physical law can
be written as

S∗ = f
(
ly, K, U ; δ, m

)
, (31)

where the various quantities are suggested by inspection of
the governing equations and the type of boundary condi-
tions. For this problem, [S∗] = LzL−1, [U ] = LzT −1, [δ] =
L2T −1, [K] = L1−mT −1, and [m] = 1. Choosing ly , K , and
U as repeating variables, the 5 theorem then yields

δS∗

Uly
=

2CR
U
= ϕCR

(
C−1

I , m
)
= ψCR (CI,m), (32)

where

CI =
Klm+1

δ
(33)

is the global channelization index. Figure 6 shows the plot of
the function (Eq. 32) obtained from a set of simulations with
different CI and m values.

These results suggest a tantalizing analogy with the anal-
ysis of wall-bounded turbulent shear flows. In fact, the regu-
lar behavior of ϕ(CI,m) reminds one of the behavior of the
Darcy friction factor plotted in the Moody diagram for pipe
flow (Munson et al., 2013). For a detailed description of di-
mensional analysis in turbulence, see Barenblatt (1996) and
Katul et al. (2019). In this analogy, the slope of the elevation
profile and the slope of the velocity profile play a similar role.
As is well known, in turbulence, the mean velocity profile at
the wall is proportional to the wall shear stress and relates to
the partitioning of viscous and turbulent stresses; this is anal-
ogous here to the partitioning of soil coming from uplift into
creep and stream erosion – see Eq. (30). We will highlight
further links with the dimensional analysis of wall-bounded
turbulent flows in the subsequent developments.

It is also useful to note that in Bonetti et al. (2020) the
5 theorem was applied to Eq. (31) considering ly ,U , and δ to
be repeating variables, which instead leads to 5δ = ϕδ(CI),
with 5δ =5CRCI and ϕδ(CI)= ψCR(CI)C

−1
I . In the turbu-

lence analogy, the present analysis corresponds to choosing
viscosity instead of density (which is the typical choice; see
Katul et al., 2019) as one of the repeating variables in the
physical law for the wall-shear stress. Thus, for the wall-
shear stress, τ = µ6∗, where µ is the dynamic viscosity
and 6∗ is the slope of the streamwise velocity profile at
the wall, the physical law is τ = fτ (V ,L,ρ,µ,ε), where
ρ is the density, V the mean velocity, L the characteris-
tic lateral dimension, and ε the roughness height. Using V ,
L, and µ as repeating variables, one has τL

µV
= Re · τ

ρV 2 =

Re · fDarcy
(
Re, ε

L

)
, where Re = ρVL

µ
is the bulk Reynolds

number.
A second interesting fact is the plateauing of the curves

at large values of CI for both the analytical solution in the

Figure 6. Average sediment partitioning according to Eq. (32) as a
function of the channelization index for different values ofm. Points
refer to numerical simulations and solid line refers to the analytical
solution for the unchannelized regime (courtesy of Sara Bonetti).

unchannelized case and the numerical results in the channel-
ized regime. This suggests the existence of complete self-
similarity for CI→∞, again analogous to the self-similarity
observed in the Moody diagram for the friction factor in the
fully rough regime (Munson et al., 2013). Thus, while ero-
sion dominates over creep, the effect of diffusion does not
fully disappear but remains present, probably concentrated
in an area of zero measure corresponding to the network of
ridges and valleys. Again, this singular limit bears similar-
ities to the much investigated limit of the viscous Navier–
Stokes equations for Reynolds numbers tending to infinity as
well as the hypothesis of dissipative anomalies in the inviscid
Euler equations (e.g., Eyink, 2008).

3.3.2 Mean elevation profile

Hooshyar et al. (2020) analyzed the profile of the mean el-

evation, z(y)= limlx→∞
1
lx

lx∫
0
z(x,y)dx, of channelized land-

scapes. Based on the inspection of the governing equations
and again using directional dimensional analysis, the physi-
cal law for the slope of the profile was assumed to be

dz
dy
= f dz

dy

(
y, δ, z∗; ly, K, U, m

)
, (34)

where y is the distance from the boundary and z∗ is an eleva-
tion scale. Choosing y, δ, and z∗ as repeating variables and
with simple manipulation of the dimensionless groups, the
5 theorem gives

(m+ 1)η
dϕ
dη
= f3 (η, CI, ζ, m), (35)

where ϕ = z
z∗

. In addition to the global channelization in-
dex, CI, reflecting the relative impact of fluvial erosion to
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Figure 7. Mean elevation profiles for increasing values of CI (from
blue to red lines) and, on the right, coefficient of the logarithmic
profile as a function of the exponent m for simulations, the XLE
laboratory experiments (Hooshyar et al., 2019), and the landscape
at the Calhoun Critical Zone Observatory (CCZO). Modified after
Hooshyar et al. (2020).

diffusive transport, η = Kym+1

δ
is a local variable with a sim-

ilar form to CI but capturing the local relative contribution

of those two processes, while ζ =
Ul2y
δz∗

describes the relative
impact of tectonic uplift on diffusive transport.

In a system with relatively small diffusive transport and
dominated by erosion and uplift, CI and ζ take high values.
The same argument also applies to η except for locations at
an intermediate distance from the boundary. Thus, when the
variables η, CI, and ζ reach such an asymptotic condition,
one may assume complete self-similarity (Barenblatt, 1996)
according to which the function f3 is independent of these
quantities

η
dϕ
dη
= κ(m), (36)

where κ is only a function of m. Integrating Eq. (36) yields

ϕ = κ(m) lnη+C, (37)

where C is independent of η but may still depend on m, CI,
and ζ . Equation (37) describes the logarithmic scaling of the
mean-elevation profile with respect to η. The emergence of
such a logarithmic profile was confirmed in numerical simu-
lations, laboratory experiments, and real landscapes as well
as in other models of complex branching such as the optimal
channel networks and directed percolation (Hooshyar et al.,
2020). Figure 7 shows the flattening of mean elevation pro-
files with increasing CI (recall that a similar effect is also
observed in turbulent velocity profiles) along with the values
of the coefficient κ of the logarithmic profile.

As observed by Hooshyar et al. (2020), the presence of a
mean logarithmic profile of elevation at an intermediate dis-
tance from the domain boundaries is similar to the classic
results for the turbulent velocity profile (see also Barenblatt,
1996). In wall-bounded turbulence (Katul et al., 2019), the
logarithmic profile for the mean velocity profile is obtained
from the 5 theorem applied to the physical law for the mean
gradient, du

dy = f (y,u∗,ρ,L,µ,ε), where u∗ =
√
τ
ρ

is the

friction velocity (the other quantities have the same mean-
ing as in the previous subsection) and then assuming com-
plete self-similarity with respect to both the bulk and local

Reynolds numbers. From a phenomenological point of view,
the analogy between the two phenomena is found in the re-
semblance between progressive penetration to smaller scales
of ridges and valleys into the landscape and the intensifica-
tion of vorticity producing smaller and smaller vortices (i.e.,
smaller Kolmogorov scales). The increased turbulent mixing
and the progressive land-surface dissection with sharper se-
quences of ridges and valley surface dissection with increas-
ing channelization index and Reynolds number, respectively,
produce in both cases a flattening of the mean profile ob-
served in the turbulence mean velocity and the mean eleva-
tion (see Fig. 5a) as well as a logarithmic scaling. The fact
that a logarithmic region is found in different contexts, in-
cluding directed percolation (Hooshyar et al., 2020), hints at
the generality of such self-similar scaling as a robust out-
come in dynamically different complex systems, appearing
as a dimensional consequence of length-scale independence
in spatially bounded complex systems.

3.3.3 Spectral analysis of elevation fluctuations

Our final example follows Hooshyar et al. (2021), who ana-
lyzed the power spectral density (PSD) of elevation transects
at a given y (see Fig. 5),

Py(ω)=
1
lx
|ẑy(ω)|

2, (38)

for lx→∞, where

ẑy(ω)=

lx∫
0

zy(x)e
−2πiωdx (39)

is the Fourier transform of zy(x) and ω is the longitudi-
nal wavenumber or inverse scale. These PSDs peak at a
wavenumber (i.e., the most energetic mode) which provides
a characterization of the typical valley spacing. Beyond such
wavenumbers, a power-law scaling is typically visible in sim-
ulations, producing an asymptotic behavior which can be col-
lapsed onto a single curve at high CI.

Hooshyar et al. (2021) analyzed the PSD spectral scal-
ing with the aid of directional dimensional analysis. They
argued that for a longitudinal elevation series at a given y,
the amount of “energy” (i.e., variance of the elevation fluc-
tuations) at a wavenumber ω must depend on the following
variables:

Py(ω)= g1
(
ω, y, ly, δ, K, U, m

)
, (40)

where g1 is the physical law. The energy Py(ω) is defined
over the fluctuations along the x axis (see Eq. 38) and has
dimension L2

zL. The wavenumber along the x direction has
dimension [ω] = L−1, while δ, K , and U have dimensions
L2T −1, L1−mT −1, and LzT −1, respectively; y and ly have
dimension L.
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368 A. Porporato: Hydrology without dimensions

Given three dimensions Lz, L, and T and seven dimen-
sional governing variables and choosing K , U , and ω as re-
peating variables, the 5 theorem yields

Py(ω)K2ω3−2m

U2 = g2

(
Kω−(m+1)

δ
, ωly, ωy, m

)
. (41)

A manipulation of Eq. (41) leads to

Py(ω)K2ω3−2m

U2 = g3 (CI, η, ηω, m) . (42)

The quantity η =Kym+1/δ has the same form as that of CI
but defined locally at y distance from the boundary, and ηω =
Kω−(m+1)/δ is equivalent to η but defined in the frequency
domain.

In the asymptotic limit of relatively high CI, η and ηω at-
tain a near-constant limit away from the boundary, implying
complete self-similarity,

Py(ω)∝ ω2m−3, (43)

where the proportionality coefficient is (U/K)2g3(m). Equa-
tion (43) predicts an exponent of the power spectral den-
sity which is independent of δ and has a power-law decay.
The condition of high CI, η, and ηω is expected in systems
that are dominated by erosion (high CI), far enough from the
boundary (high η), and within small enough scales (high ηω).
Again, a parallel with the Kolmogorov spectrum of turbu-
lence (Pope, 2000; Katul et al., 2019) can be drawn with
the channelization index playing the role of the Reynolds
number. Moreover, at a sufficient distance from the domain
boundary, it may be assumed that the information regarding
the domain geometry and direction is lost, becoming statis-
tically isotropic. This is similar to the local isotropy at small
scales (or eddies detached from the boundary) of fully devel-
oped turbulent flow.

Figure 8a shows the exponent of the power fits to PSDs for
simulations with CI ≥ 105, denoted by α, for different m val-
ues. This finding agrees with the relation α = 2m− 3 in the
intermediate range of m and supports the validity of the as-
sumption of complete self-similarity with respect to ηω. The
inset of Fig. 8b also shows the function g3(m) from numeri-
cal simulations. The spectral scaling was also confirmed in
the laboratory experiments and the real topography at the
Calhoun Critical Zone Observatory (Fig. 8c–f).

From a geomorphological point of view, the connection
between the exponent α and the parameter m in the ero-
sion term provides a useful link to landscape processes, since
steep landscapes with debris-flow-dominated channels have
been associated with smaller m, while flatter fluvial land-
scapes are characterized by larger values of m (Montgomery
and Foufoula-Georgiou, 1993). The values of the spectral
exponent are also interesting from a more theoretical point
of view in relation to the role of nonlinearities as a func-
tion of scale. Our analysis has shown consistently values

of α ∼−2.5, while several studies previously reported ex-
ponents near −2 (Newman and Turcotte, 1990; Huang and
Turcotte, 1989; Passalacqua et al., 2006); the latter corre-
sponds to a fractal dimension Dm = 1.5 (Huang and Tur-
cotte, 1989; Voss, 1985) and to the presence of an underlying
fractional Brownian noise (Turcotte, 1987; Bell, 1975) with
a Lorentzian spectrum and an exponential decay of the eleva-
tion autocorrelation. These models with α =−2 would there-
fore imply linear stochastic dynamics at odds with the known
presence of nonlinear terms responsible for the very forma-
tion of the channel network. On the one hand, α =−2.5
would mean an erosion exponent m= 0.25, therefore pre-
serving the nonlinearity of the dynamics also for macro-
scopic scaling relationships, like the PSD scaling. On the
other hand, the fact that the observed value is not far from
α =−2 might mean that averages taken over complex land-
scape patterns cause an effective reduction of nonlinearity,
whereby the activation of many degrees of freedom at high
channelization regimes causes a statistical regularity which
muffles the small-scale nonlinearities. This is certainly an in-
teresting topic that deserves further investigation.

Finally, from a practical point of view, the spectral scaling
of landscape elevation could be profitably utilized in devel-
oping efficient numerical simulations of landscape evolution
(Passalacqua et al., 2006). Such numerical schemes would
potentially resemble large eddy simulation methods used in
fluid turbulence (Pope, 2000), where the unsolved dynamics
at finer scales are approximated by extrapolating the PSD.
The improved speed would be a great asset for large-scale
simulations of landscape evolution under different scenarios.

4 Conclusions

We have presented several examples of applications of the
5 theorem and self-similar scaling to the partitioning of wa-
ter and sediments driven by the terrestrial water cycle. It is
time to draw to a close and ask ourselves whether by us-
ing dimensional analysis we have learned anything useful
regarding these problems. An answer in the affirmative is
suggested by considering that dimensional analysis helped
reveal the dominant controls of the dryness index and stor-
age index in the long-term rainfall partitioning, while in the
weathering analysis it allowed us to extract the key nonlin-
ear control of the dryness index, making order in the vast
amount of information contained in global datasets from dif-
ferent experiments and environmental conditions. Finally, the
analysis of the complex geometries obtained from landscape
evolution models allowed us to discover new macroscopic
relations among macroscopic variables in the partitioning of
sediments, the elevation profile, and the spectral scaling. The
analogy between landscape elevation and turbulent velocity
fluctuations has also been fruitful and promises further re-
sults.
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Figure 8. (a) PSDs of elevation longitudinal series for different values of m at an intermediate distance from the boundary. (b) Slope of the
power fit to the declining part of the PSD from simulations with CI ≥ 105, denoted by α, as a function of the exponent m. The data from the
XLE physical experiment are also shown. The black line is the relation α = 2m− 3 derived from dimensional and self-similarity arguments
in Eq. (43). The inset shows the function g3(m) from numerical simulations. Panel (c) shows an example of the XLE experimental landscape
(Hooshyar et al., 2019), of which panel (d) shows the PSD. (e) Portion of the landscape at the Calhoun Critical Zone Observatory in South
Carolina, USA, from 1 m resolution lidar data. (f) The PSD is computed from one-dimensional transects within the area contained by the two
parallel lines that are located at an intermediate distance from the main channel showing two distinct power-law scaling regions with similar
exponents. After Hooshyar et al. (2021).

If these observations confirm the utility of dimensional
analysis, it should also be clear that these methods are not a
foolproof set of rules to achieve miraculous solutions. Rather,
they are an iterative procedure to sharpen our hypotheses on
physical processes. Thinking of dimensional arguments as a
form of modeling allows an “explication of the role abstrac-

tion and multiple realisability; not as compatibility with other
possible worlds but as compatibility with different fictional
descriptions of our own world” (Pexton, 2014). The emer-
gence of scaling laws is often only asymptotic (Koutsoyian-
nis et al., 2018), as in the self-similarity approximations of
Sect. 2.2.1, while in several instances it is either difficult to
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reduce the number of variables in the starting physical law
or the problems are hard to formalize in terms of standard
dimensions (e.g., in problems interfacing with the social sci-
ences and economics). These challenges notwithstanding, we
hope however that these considerations will help breathe new
life into Strahler’s view (Strahler, 1958) that dimensional
analysis will become increasingly useful in hydrology, ge-
omorphology, and beyond.

Appendix A: The Rayleigh–Riabouchinsky controversy:
thermodynamic limit as complete self-similarity

In this Appendix we discuss in more detail the Rayleigh–
Riabouchinsky controversy related to augmented dimen-
sional analysis. In particular, after a brief historic back-
ground, we show how the thermodynamic approach of
Rayleigh corresponds to a self-similar solution of the first
kind with respect to the dimensionless group obtained from
the Boltzmann constant, which serves as the dimensional
unifier when augmenting the dimensional analysis from me-
chanics to thermodynamics.

As mentioned in the main text, Rayleigh (1915a)2 consid-
ered the problem of the heat flux h, the governed quantity,
between a body of characteristic dimension ` and a stream
of incompressible and inviscid fluid moving with velocity v.
Besides ` and v, the other governing quantities are the spe-
cific heat capacity c and the thermal conductivity κ . Rayleigh
formulated a physical law with n= 5 governing variables
and adopted length, time, energy, and temperature as pri-
mary dimensions (i.e., kRay = 4), as typical in thermodynam-
ics (of course one could also use LMT plus temperature, us-
ing mass instead of energy). As a result, he obtained one
(n−kRay = 5−4= 1) governing dimensionless group, which
he used successfully to describe the problem.

In a very short comment published soon after Rayleigh’s
paper, Riabouchinsky (1915) objected that, adopting the
more advanced and detailed point of view of statistical me-
chanics, according to which temperature is the mean molec-
ular kinetic energy, one could more parsimoniously limit the
primary dimensions to length, time, and energy without in-
volving temperature. As a result, he obtained two (n−kRia =

5− 3= 2) dimensionless groups. In his response, Rayleigh
rejected Riabouchinsky’s alternative, commenting that

It would indeed be a paradox if the further knowl-
edge of the nature of heat afforded by molecu-
lar theory put us in a worse position than before

2This Nature paper contains the famous quote of Lord Rayleigh:
“I have often been impressed by the scanty attention paid even by
original workers in physics to the great principle of similitude. It
happens not infrequently that results in the form of ‘laws’ are put
forward as novelties on the basis of elaborate experiments, which
might have been predicted a priori after a few minutes’ considera-
tion.”

in dealing with a particular problem. The solution
would seem to be that the Fourier equations em-
body something as to the nature of heat and tem-
perature which is ignored in the alternative argu-
ment (Rayleigh, 1915b).

Rayleigh’s reply was authoritative and sensible but not
completely satisfactory. As pointed out by Buckingham
(1915): “since he does not pursue the subject further and the
reader may feel as if left in mid-air, it seems worth while that
the point raised by M. Riabouchinsky should be somewhat
further elucidated.” Since then the debate has been the sub-
ject of continued discussions. Here, taking a cue from previ-
ous analyses of this controversy (e.g., Gibbings, 1980; But-
terfield, 2001) and adopting the use of a dimensional uni-
fier (Panton, 2006), we show that Rayleigh’s result may be
seen as a complete self-similarity solution of the augmented
physical law obtained by including the Boltzmann constant
as a dimensional unifier to link thermodynamics to mechan-
ics. Starting from a thermodynamic approach to the problem
is tantamount to taking for granted the existence of this limit.

Thus, following Rayleigh, we specifically choose
length (L), time (T ), energy (heat, H ), and temperature (2)
as primary dimensions. With [h] =HT −1, [`] = L, [θ ] =2,
[c] =HL−32−1, [κ] =HL−1T −12−1, [v] = LT −1, and
[kB] =H2

−1, we obtain the dimension matrix

h ` θ c κ v kB
L 0 1 0 −3 −1 1 0
T −1 0 0 0 −1 −1 0
H 1 0 0 1 1 0 1
2 0 0 1 −1 −1 0 −1

(A1)

of rank 4. As a result, the 5 theorem gives 7− 4= 3 dimen-
sionless groups.

Choosing the heat flux h as the governed quantity and se-
lecting `, θ , c, and κ as dimensionally independent (repeat-
ing) variables among the governing quantities leads to the
physical law

h= f (`,θ,c,κ;v,kB) , (A2)

from which the 5 theorem then gives

h

dθκ
= ϕ

(
vc`

κ
,
kB

`3c

)
. (A3)

With a system of units for which kB = 1 and inverting the
second 5 group, one obtains the result of Riabouchinsky
(1915),

h

`θκ
= ϕRia

(
1
`3c

)
. (A4)

This however would imply the use of very small units, be-
cause in the usual SI system, kB = 1.380649× 10−23 J K−1.
As a result, apart from systems at the nanoscale, in normal
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conditions kB/(`
3c)∼ 0. Our everyday experience, on which

thermodynamic concepts are based, shows that we can ne-
glect this term in Eq. (A3) to arrive at the result, originally
obtained by Rayleigh,

h

`θκ
= ϕRay

(
vc`

κ

)
. (A5)

Thus, looking at Eq. (7), it becomes clear that the thermody-
namic limit, which allows us to go from statistical mechanics
to continuum mechanics and thermodynamics, corresponds
to a complete self-similar solution of Eq. (A3) with respect
to kB/(`

3c). It should be stressed that this is not a mathemat-
ical fact based solely on the smallness of the5 group, but an
empirical ascertainment, as for other self-similar asymptotic
regimes (Barenblatt, 1996). Alternatively, the same result is
obtained by straightforward application of the 5 theorem to
the restricted physical law

h= fRay(`,θ,c,κ;v), (A6)

as originally done by Rayleigh.

Appendix B: Derivation of Eq. (28)

We follow here Bonetti et al. (2020) in deriving the equations
for the minimalist LEM. The time evolution of the surface
elevation z(x,y, t) is described by the sediment continuity
equation

∂z

∂t
= U +∇ · f, (B1)

where t is time, U is the uplift rate, and f is the total volu-
metric sediment flux, given by the sum of fluxes related to
runoff erosion (fc) and soil creep processes (fd ). The latter
is assumed to be proportional to the topographic gradient,
fd = δ∇z, δ being a diffusion coefficient. In the so-called
detachment-limited conditions all eroded material is consid-
ered transported outside the model domain. Thus, with no
sediment redeposition, the runoff erosion becomes a sink
term, ∇·fc ≈K ′aqm|∇z|n, whereK ′a is an erosion coefficient,
q is the specific discharge (per unit width of contour line),
and m and n are model parameters. As a result, Eq. (B1) be-
comes

∂z

∂t
= U −K ′aq

m
|∇z|n+ δ1z. (B2)

The surface water flux q is linked to the continuity equa-
tion

∂h

∂t
=Q+∇ · (qn)=Q+∇ · (hvn), (B3)

where h is the water height, n is the direction of the flow,
Q is the part of the rainfall rate that has not infiltrated and
that effectively contributes to runoff production, and v is the

water velocity. Equation (B3) can be simplified assuming
steady-state conditions with constant, representative runoff
rate, Q≈Q0, and speed of water flow v0 in the direction
opposite to the landscape gradient (i.e., n=−∇z/|∇z|). In
such conditions, with the specific discharge being propor-
tional to the water height, q = v0h, Eq. (B3) becomes

∂h

∂t
= 0=Q0+∇ ·

(
v0h

∇z

|∇z|

)
. (B4)

Dividing it by Q0, Eq. (B4) becomes the equation for the
specific catchment area, Eq. (28), with a = v0h/Q0. Finally,
since q = aQ0, one can write K ′aq =Kaa

m, where Ka =
K ′aQ

m
0 , thus obtaining Eq. (27).

Appendix C: Analogy with the velocity profile in
turbulent flows

Here we report the equation for the streamwise velocity u
for the flow between parallel plates to better understand the
analogy between the statistics of near-wall turbulence and
those of landscape evolution, discussed in Sect. 3.3. We begin
with the Navier–Stokes equations for incompressible fluids
(Munson et al., 2013),

ρ
Dv
Dt
=−∇p+µ1v (C1)

and

∇ · v= 0. (C2)

For the flow between infinite parallel plates, the previous
equations give, for the streamwise component u,

∂u

∂t
=
∂p

∂x
− u

∂u

∂x
− v

∂u

∂y
−w

∂u

∂z
+µ1u. (C3)

Indicating with G the constant pressure gradient and with
q= {v,w} the normal velocity

∂u

∂t
=G−q · ∇u+µ1u (C4)

where the Laplacian is only in y and z, the equation becomes
similar to the LEM equation (Eq. B2) with m= n= 1. Since
here the continuity equation is

∂v

∂y
+
∂w

∂z
= 0, (C5)

we can write q in terms of a single streamfunction, which
automatically satisfies it, i.e.,

v =
∂ψ

∂z
and w =−

∂ψ

∂y
. (C6)

We thus have a direct correspondence between the stream-
wise velocity and the landscape elevation, u↔ z, and an in-
direct one (this is where the equations and the physics ob-
viously differ) between the streamfunction and the specific
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contributing area ψ↔ a. It is also interesting to note that,
in these conditions of steady state and x independence, the
equations for the other two velocity components and thus
also for the streamfunction become decoupled from the equa-
tion of u, which means that, unlike the elevation profile, the
complex velocity profile in turbulence is shaped by nonsta-
tionary terms and streamwise inhomogeneities.
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