Articles | Volume 26, issue 12
https://doi.org/10.5194/hess-26-3177-2022
https://doi.org/10.5194/hess-26-3177-2022
Research article
 | 
22 Jun 2022
Research article |  | 22 Jun 2022

Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing

Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer

Related authors

An extension of the BROOK90 hydrological model for estimation of subdaily water and energy fluxes
Rico Kronenberg, Ivan Vorobevskii, Thi Thanh Luong, Uwe Spank, Dongkyun Kim, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2025-2084,https://doi.org/10.5194/egusphere-2025-2084, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
High-resolution operational soil moisture monitoring for forests in central Germany
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, and Rainer Petzold
Hydrol. Earth Syst. Sci., 28, 3567–3595, https://doi.org/10.5194/hess-28-3567-2024,https://doi.org/10.5194/hess-28-3567-2024, 2024
Short summary
Seasonal forecasting of local-scale soil moisture droughts with Global BROOK90: a case study of the European drought of 2018
Ivan Vorobevskii, Thi Thanh Luong, and Rico Kronenberg
Nat. Hazards Earth Syst. Sci., 24, 681–697, https://doi.org/10.5194/nhess-24-681-2024,https://doi.org/10.5194/nhess-24-681-2024, 2024
Short summary
Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024,https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Estimation of joint return periods of compound precipitation-discharge extremes for small catchments
Ivan Vorobevskii, Rico Kronenberg, and Christian Bernhofer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-27,https://doi.org/10.5194/hess-2020-27, 2020
Preprint withdrawn
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025,https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting
Peyman Abbaszadeh, Fatemeh Gholizadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 29, 2407–2427, https://doi.org/10.5194/hess-29-2407-2025,https://doi.org/10.5194/hess-29-2407-2025, 2025
Short summary
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025,https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting over the source region of the Yangtze River
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 29, 2023–2042, https://doi.org/10.5194/hess-29-2023-2025,https://doi.org/10.5194/hess-29-2023-2025, 2025
Short summary
High-resolution land surface modelling over Africa: the role of uncertain soil properties in combination with forcing temporal resolution
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025,https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary

Cited articles

Ad-hoc-AG Boden: Bodenkundliche Kartieranleitung, Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Staatlichen Geologischen Dienstender Bundesrepublik Deutschland, Hannover, https://www.bgr.bund.de/DE/Themen/Boden/Netzwerke/AGBoden/Downloads/methodenkatalog.pdf?__blob=publicationFile&v=2 (last access: 20 November 2021), 2005. 
Alessandri, A., Catalano, F., De Felice, M., van den Hurk, B., and Balsamo, G.: Varying snow and vegetation signatures of surface albedo feedback on the Northern Hemisphere land warming, Environ. Res. Lett., https://doi.org/10.1088/1748-9326/abd65f, 2020. 
Allen, R., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements – FAO Irrigation and drainage paper 56, FAO – Food and Agriculture Organization of the United Nations, Rome, ISBN 92-5-104219-5, 1998. 
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas, W. P.: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, J. Geophys. Res., 112, https://doi.org/10.1029/2006JD007506, 2007. 
Anderson, M. C., Norman, J. M., Kustas, W. P., Houborg, R., Starks, P. J., and Agam, N.: A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales, Remote Sens. Environ., 112, 4227–4241, https://doi.org/10.1016/j.rse.2008.07.009, 2008. 
Download
Short summary
In the study we analysed the uncertainties of the meteorological data and model parameterization for evaporation modelling. We have taken a physically based lumped BROOK90 model and applied it in three different frameworks using global, regional and local datasets. Validating the simulations with eddy-covariance data from five stations in Germany, we found that the accuracy model parameterization plays a bigger role than the quality of the meteorological forcing.
Share