Articles | Volume 26, issue 12
https://doi.org/10.5194/hess-26-3177-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-3177-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Ivan Vorobevskii
CORRESPONDING AUTHOR
Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Hydrology and Meteorology, Chair of Meteorology, Technische Universität
Dresden, Tharandt 01737, Germany
Thi Thanh Luong
Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Hydrology and Meteorology, Chair of Meteorology, Technische Universität
Dresden, Tharandt 01737, Germany
Rico Kronenberg
Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Hydrology and Meteorology, Chair of Meteorology, Technische Universität
Dresden, Tharandt 01737, Germany
Thomas Grünwald
Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Hydrology and Meteorology, Chair of Meteorology, Technische Universität
Dresden, Tharandt 01737, Germany
Christian Bernhofer
Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Hydrology and Meteorology, Chair of Meteorology, Technische Universität
Dresden, Tharandt 01737, Germany
Related authors
Rico Kronenberg, Ivan Vorobevskii, Thi Thanh Luong, Uwe Spank, Dongkyun Kim, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2025-2084, https://doi.org/10.5194/egusphere-2025-2084, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed an improved model to better understand how water and energy move through natural landscapes (forest, grasslands, croplands, etc) throughout the day. By using detailed data from study-site in Germany, we tested the model and found its good agreement with micro-meteorological measurements. Unlike many other tools, this model works without needing new adjustments and offers a powerful way to study fast-changing water processes in different environments.
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, and Rainer Petzold
Hydrol. Earth Syst. Sci., 28, 3567–3595, https://doi.org/10.5194/hess-28-3567-2024, https://doi.org/10.5194/hess-28-3567-2024, 2024
Short summary
Short summary
An introduced high-resolution soil moisture monitoring framework combines a 1D water balance model, real-time meteorological data, and a national soil database to present point-based operational data with a user-friendly web platform. Its significance lies in the improvement of forest management by making informed, local-scale decisions crucial for mitigating climate change impacts. In the paper, we present a technical description and validation of the framework and showcase its features.
Ivan Vorobevskii, Thi Thanh Luong, and Rico Kronenberg
Nat. Hazards Earth Syst. Sci., 24, 681–697, https://doi.org/10.5194/nhess-24-681-2024, https://doi.org/10.5194/nhess-24-681-2024, 2024
Short summary
Short summary
This study presents a new version of a framework which allows us to model water balance components at any site on a local scale. Compared with the first version, the second incorporates new datasets used to set up and force the model. In particular, we highlight the ability of the framework to provide seasonal forecasts. This gives potential stakeholders (farmers, foresters, policymakers, etc.) the possibility to forecast, for example, soil moisture drought and thus apply the necessary measures.
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024, https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Short summary
High-resolution precipitation data are often a “must” as input for hydrological and hydraulic models (i.e. urban drainage modelling). However, station or climate projection data usually do not provide the required (e.g. sub-hourly) resolution. In the work, we present two new statistical models of different types to disaggregate precipitation from a daily to a 10 min scale. Both models were validated using radar data and then applied to climate models for 10 stations in Germany and South Korea.
Rico Kronenberg, Ivan Vorobevskii, Thi Thanh Luong, Uwe Spank, Dongkyun Kim, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2025-2084, https://doi.org/10.5194/egusphere-2025-2084, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed an improved model to better understand how water and energy move through natural landscapes (forest, grasslands, croplands, etc) throughout the day. By using detailed data from study-site in Germany, we tested the model and found its good agreement with micro-meteorological measurements. Unlike many other tools, this model works without needing new adjustments and offers a powerful way to study fast-changing water processes in different environments.
Stefanie Fischer, Ronald Queck, Christian Bernhofer, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2025-2118, https://doi.org/10.5194/egusphere-2025-2118, 2025
Short summary
Short summary
Accurate estimates of interception are important to assess the water availability in ecosystems. We analyzed rainfall interception for a forest site from plot to stand scale. During interception, eddy-covariance measurements of evaporation were systematically underestimated accounting for 24% of precipitation, while modelled interception evaporation accounted for 45%. As a consequence, we developed a hybrid correction approach to fit the evaporation data to both the energy and the water balance.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025, https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Short summary
The effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter of 2020 on the forest CO2 fluxes across 14 sites in Europe and found that the net ecosystem productivity (NEP) across most sites declined during the warm winter due to increased respiration fluxes.
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, and Rainer Petzold
Hydrol. Earth Syst. Sci., 28, 3567–3595, https://doi.org/10.5194/hess-28-3567-2024, https://doi.org/10.5194/hess-28-3567-2024, 2024
Short summary
Short summary
An introduced high-resolution soil moisture monitoring framework combines a 1D water balance model, real-time meteorological data, and a national soil database to present point-based operational data with a user-friendly web platform. Its significance lies in the improvement of forest management by making informed, local-scale decisions crucial for mitigating climate change impacts. In the paper, we present a technical description and validation of the framework and showcase its features.
Ivan Vorobevskii, Thi Thanh Luong, and Rico Kronenberg
Nat. Hazards Earth Syst. Sci., 24, 681–697, https://doi.org/10.5194/nhess-24-681-2024, https://doi.org/10.5194/nhess-24-681-2024, 2024
Short summary
Short summary
This study presents a new version of a framework which allows us to model water balance components at any site on a local scale. Compared with the first version, the second incorporates new datasets used to set up and force the model. In particular, we highlight the ability of the framework to provide seasonal forecasts. This gives potential stakeholders (farmers, foresters, policymakers, etc.) the possibility to forecast, for example, soil moisture drought and thus apply the necessary measures.
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024, https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Short summary
High-resolution precipitation data are often a “must” as input for hydrological and hydraulic models (i.e. urban drainage modelling). However, station or climate projection data usually do not provide the required (e.g. sub-hourly) resolution. In the work, we present two new statistical models of different types to disaggregate precipitation from a daily to a 10 min scale. Both models were validated using radar data and then applied to climate models for 10 stations in Germany and South Korea.
Dánnell Quesada-Chacón, Klemens Barfus, and Christian Bernhofer
Geosci. Model Dev., 15, 7353–7370, https://doi.org/10.5194/gmd-15-7353-2022, https://doi.org/10.5194/gmd-15-7353-2022, 2022
Short summary
Short summary
We improved the performance of past perfect prognosis statistical downscaling methods while achieving full model repeatability with GPU-calculated deep learning models using the TensorFlow, climate4R, and VALUE frameworks. We employed the ERA5 reanalysis as predictors and ReKIS (eastern Ore Mountains, Germany, 1 km resolution) as precipitation predictand, while incorporating modern deep learning architectures. The achieved repeatability is key to accomplish further milestones with deep learning.
Judith Marie Pöschmann, Dongkyun Kim, Rico Kronenberg, and Christian Bernhofer
Nat. Hazards Earth Syst. Sci., 21, 1195–1207, https://doi.org/10.5194/nhess-21-1195-2021, https://doi.org/10.5194/nhess-21-1195-2021, 2021
Short summary
Short summary
We examined maximum rainfall values for different durations from 16 years of radar-based rainfall records for whole Germany. Unlike existing observations based on rain gauge data no clear linear relationship could be identified. However, by classifying all time series, we could identify three similar groups determined by the temporal structure of rainfall extremes observed in the study period. The study highlights the importance of using long data records and a dense measurement network.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, https://doi.org/10.5194/gmd-14-573-2021, 2021
Short summary
Short summary
In this study we were able to significantly improve CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameterizations for important cash crops, and a cover-cropping and crop rotation subroutine to its crop module. Our modifications should be applied in future studies of CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Cited articles
Ad-hoc-AG Boden: Bodenkundliche Kartieranleitung, Bundesanstalt für
Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Staatlichen
Geologischen Dienstender Bundesrepublik Deutschland, Hannover, https://www.bgr.bund.de/DE/Themen/Boden/Netzwerke/AGBoden/Downloads/methodenkatalog.pdf?__blob=publicationFile&v=2 (last access: 20 November 2021), 2005.
Alessandri, A., Catalano, F., De Felice, M., van den Hurk, B., and Balsamo,
G.: Varying snow and vegetation signatures of surface albedo feedback on the
Northern Hemisphere land warming, Environ. Res. Lett., https://doi.org/10.1088/1748-9326/abd65f,
2020.
Allen, R., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration –
Guidelines for computing crop water requirements – FAO Irrigation and
drainage paper 56, FAO – Food and Agriculture Organization of the United
Nations, Rome, ISBN 92-5-104219-5, 1998.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas,
W. P.: A climatological study of evapotranspiration and moisture stress
across the continental United States based on thermal remote sensing: 1.
Model formulation, J. Geophys. Res., 112, https://doi.org/10.1029/2006JD007506, 2007.
Anderson, M. C., Norman, J. M., Kustas, W. P., Houborg, R., Starks, P. J.,
and Agam, N.: A thermal-based remote sensing technique for routine mapping
of land-surface carbon, water and energy fluxes from field to regional
scales, Remote Sens. Environ., 112, 4227–4241, https://doi.org/10.1016/j.rse.2008.07.009, 2008.
Baldocchi, D.: Flux Footprints Within and Over Forest Canopies,
Bound.-Lay. Meteorol., 85, 273–292,
https://doi.org/10.1023/A:1000472717236, 1997.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein,
A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel,
W., U, K. T. P., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S.,
Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the
Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water
Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434,
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Beven, K. J., Kirkby, M. J., Freer, J. E., and Lamb, R.: A history of TOPMODEL, Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021, 2021.
BingTM Maps tiles:
https://www.bing.com/maps, last access: 15 February 2020.
Bonan, G. B., Patton, E. G., Finnigan, J. J., Baldocchi, D. D., and Harman,
I. N.: Moving beyond the incorrect but useful paradigm: reevaluating
big-leaf and multilayer plant canopies to model biosphere-atmosphere fluxes
– a review, Agr. Forest Meteorol., 306, 108435,
https://doi.org/10.1016/j.agrformet.2021.108435, 2021.
Boulet, G., Mougenot, B., Lhomme, J.-P., Fanise, P., Lili-Chabaane, Z., Olioso, A., Bahir, M., Rivalland, V., Jarlan, L., Merlin, O., Coudert, B., Er-Raki, S., and Lagouarde, J.-P.: The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat, Hydrol. Earth Syst. Sci., 19, 4653–4672, https://doi.org/10.5194/hess-19-4653-2015, 2015.
Buchhorn, M., Smets, B., Bertels, L., Lesiv, M., Tsendbazar, N.-E., Herold,
M., and Fritz, S.: Copernicus Global Land Service, Land Cover 100 m,
collection 3, epoch 2019, Globe 2020, Zenodo [data set], https://doi.org/10.5281/zenodo.3939050, 2020.
Carminati, A. and Javaux, M.: Soil Rather Than Xylem Vulnerability Controls
Stomatal Response to Drought, Trends Plant Sci., 25, 868–880,
https://doi.org/10.1016/j.tplants.2020.04.003, 2020.
Cerro, R. T. G. del, Subathra, M. S. P., Kumar, N. M., Verrastro, S., and
George, S. T.: Modelling the daily reference evapotranspiration in semi-arid
region of South India: A case study comparing ANFIS and empirical models, Information Processing in Agriculture, 8,
173–184, https://doi.org/10.1016/j.inpa.2020.02.003, 2021.
Chang, L.-L., Dwivedi, R., Knowles, J. F., Fang, Y.-H., Niu, G.-Y.,
Pelletier, J. D., Rasmussen, C., Durcik, M., Barron-Gafford, G. A., and
Meixner, T.: Why Do Large-Scale Land Surface Models Produce a Low Ratio of
Transpiration to Evapotranspiration?, J. Geophys. Res.-Atmos., 123, 9109–9130,
https://doi.org/10.1029/2018JD029159, 2018.
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, ERA5 hourly data on single
levels from 1979 to present, https://doi.org/10.24381/cds.adbb2d47, 2020.
Dijk, A. I. J. M. van, Gash, J. H., Gorsel, E. van, Blanken, P. D.,
Cescatti, A., Emmel, C., Gielen, B., Harman, I. N., Kiely, G., Merbold, L.,
Montagnani, L., Moors, E., Sottocornola, M., Varlagin, A., Williams, C. A.,
and Wohlfahrt, G.: Rainfall interception and the coupled surface water and
energy balance, Agr. Forest Meteorol., 214–215, 402–415,
https://doi.org/10.1016/j.agrformet.2015.09.006, 2015.
Drought 2018 Team and ICOS Ecosystem Thematic Centre: Drought-2018 ecosystem
eddy covariance flux product for 52 stations in FLUXNET-Archive format, https://doi.org/10.18160/YVR0-4898, 2020.
Efstratiadis, A. and Koutsoyiannis, D.: The multiobjective evolutionary
annealing-simplex method and its application in calibrating hydrological
models, in: Geophysical Research Abstracts, European Geosciences
Union General Assembly, Vienna, Austria,
https://doi.org/10.13140/RG.2.2.32963.81446, 2005.
European Environment Agency: Corine Land Cover (CLC) 2012, Version
2020_20u1, http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/view (last access: 20 November 2021), 2020.
Federer, A. and Douglas, L.: Brook: A Hydrologic Simulation Model for
Eastern Forests, 2nd ed., Water Resource Research Center University of New
Hampshire, Durham, New Hampshire, https://scholars.unh.edu/cgi/viewcontent.cgi?article=1171&context=nh_wrrc_scholarship (last access: 20 November 2021), 1983.
Federer, C. A.: BROOK 90: A simulation model for evaporation, soil water,
and streamflow, http://www.ecoshift.net/brook/brook90.htm (last access: 20 November 2021), 2002.
Federer, C. A., Vörösmarty, C., and Fekete, B.: Sensitivity of
Annual Evaporation to Soil and Root Properties in Two Models of Contrasting
Complexity, J. Hydrometeorol., 4, 1276–1290,
https://doi.org/10.1175/1525-7541(2003)004<1276:SOAETS>2.0.CO;2, 2003.
Feng, Y., Cui, N., Zhao, L., Hu, X., and Gong, D.: Comparison of ELM, GANN,
WNN and empirical models for estimating reference evapotranspiration in
humid region of Southwest China, J. Hydrol., 536, 376–383,
https://doi.org/10.1016/j.jhydrol.2016.02.053, 2016.
Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R.,
McCabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K.,
Miralles, D. D., Perret, J., Lagouarde, J.-P., Waliser, D., Purdy, A. J.,
French, A., Schimel, D., Famiglietti, J. S., Stephens, G., and Wood, E. F.:
The future of evapotranspiration: Global requirements for ecosystem
functioning, carbon and climate feedbacks, agricultural management, and
water resources, Water Resour. Res., 53, 2618–2626, https://doi.org/10.1002/2016WR020175, 2017.
Foken, T.: The Energy Balance Closure Problem: An Overview, Ecol. Appl, 18, 1351–1367,
2008.
Groh, J., Puhlmann, H., and Wilpert, K.: Calibration of a soil-water balance
model with a combined objective function for the optimization of the water
retention curve, Hydrol. Wasserbewirts., 57, 152–162,
https://doi.org/10.5675/HyWa_2013,4_1, 2013.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition
of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Habel, R., Puhlmann, H., and Müller, A.-C.: The water budget of forests
the big unknown outside of our intensive monitoring plots?, FORECOMON 2021,
Birmensdorf, Switzerland, https://forecomon2021.thuenen.de/fileadmin/forecomon/Presentations/132_Puhlmann_2.pdf, last access: 20 November 2021.
Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell,
N. W., Bertrand, N., Best, M., Folwell, S., Gerten, D., Gomes, S., Gosling,
S. N., Hagemann, S., Hanasaki, N., Harding, R., Heinke, J., Kabat, P.,
Koirala, S., Oki, T., Polcher, J., Stacke, T., Viterbo, P., Weedon, G. P.,
and Yeh, P.: Multimodel Estimate of the Global Terrestrial Water Balance:
Setup and First Results, J. Hydrometeorol., 12, 869–884,
https://doi.org/10.1175/2011JHM1324.1, 2011.
Harding, R., Best, M., Blyth, E., Hagemann, S., Kabat, P., Tallaksen, L. M.,
Warnaars, T., Wiberg, D., Weedon, G. P., van Lanen, H., Ludwig, F., and
Haddeland, I.: WATCH: Current Knowledge of the Terrestrial Global Water
Cycle, J. Hydrometeorol., 12, 1149–1156, 2011.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, Plos One, 12, 1–40, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hoek van Dijke, A. J., Mallick, K., Schlerf, M., Machwitz, M., Herold, M., and Teuling, A. J.: Examining the link between vegetation leaf area and land–atmosphere exchange of water, energy, and carbon fluxes using FLUXNET data, Biogeosciences, 17, 4443–4457, https://doi.org/10.5194/bg-17-4443-2020, 2020.
Hollinger, D. Y. and Richardson, A. D.: Uncertainty in eddy covariance
measurements and its application to physiological models, Tree. Physiol.,
25, 873–885, https://doi.org/10.1093/treephys/25.7.873, 2005.
Imukova, K., Ingwersen, J., Hevart, M., and Streck, T.: Energy balance closure on a winter wheat stand: comparing the eddy covariance technique with the soil water balance method, Biogeosciences, 13, 63–75, https://doi.org/10.5194/bg-13-63-2016, 2016.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D.,
Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A.,
Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of
carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations, J. Geophys. Res.-Biogeo., 116,
https://doi.org/10.1029/2010JG001566, 2011.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of
the Köppen-Geiger climate classification updated, Meteorol. Z., 15, 259–263,
https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Kronenberg, R. and Bernhofer, C.: A method to adapt radar-derived
precipitation fields for climatological applications, Meteorol. Appl., 22, 636–649,
https://doi.org/10.1002/met.1498, 2015.
Kronenberg, R. and Oehlschlägel, L. M.: BROOK90 in R, https://github.com/rkronen/Brook90_R (last access: 20 November 2011), 2019.
Lawrence, D. M., Thornton, P. E., Oleson, K. W., and Bonan, G. B.: The
Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and
Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction, J. Hydrometeorol., 8,
862–880, https://doi.org/10.1175/JHM596.1, 2007.
Leaf, C. and Brink, G.: Hydrologic simulation model of Colorado subalpine
forest, Forest Service, U.S. Dept. of Agriculture, https://doi.org/10.5962/bhl.title.99244, 1973.
Lehmann, P., Merlin, O., Gentine, P., and Or, D.: Soil Texture Effects on
Surface Resistance to Bare-Soil Evaporation, Geophys. Res. Lett.,
45, 10398–10405, https://doi.org/10.1029/2018GL078803, 2018.
Leuning, R., Zhang, Y. Q., Rajaud, A., Cleugh, H., and Tu, K.: A simple
surface conductance model to estimate regional evaporation using MODIS leaf
area index and the Penman-Monteith equation, Water Resour. Res., 44,
https://doi.org/10.1029/2007WR006562, 2008.
Lide, D.: CRC Handbook of Chemistry and Physics, 85th ed., CRC Press, ISBN 978-0-8493-0485-9, 2005.
Liu, M., Bárdossy, A., Li, J., and Jiang, Y.: Physically-based modeling of topographic effects on spatial evapotranspiration and soil moisture patterns through radiation and wind, Hydrol. Earth Syst. Sci., 16, 357–373, https://doi.org/10.5194/hess-16-357-2012, 2012.
Luo, X., Chen, J. M., Liu, J., Black, T. A., Croft, H., Staebler, R., He,
L., Arain, M. A., Chen, B., Mo, G., Gonsamo, A., and McCaughey, H.:
Comparison of Big-Leaf, Two-Big-Leaf, and Two-Leaf Upscaling Schemes for
Evapotranspiration Estimation Using Coupled Carbon-Water Modeling, J. Geophys. Res.-Biogeo., 123, 207–225,
https://doi.org/10.1002/2017JG003978, 2018.
Luong, T. T. and Wiemann, S.: EXTRUSO framework, https://github.com/GeoinformationSystems/xtruso_R (last access: 20 November 2021), 2019.
Luong, T. T., Pöschmann, J., Vorobevskii, I., Wiemann, S., Kronenberg,
R., and Bernhofer, C.: Pseudo-Spatially-Distributed Modeling of Water
Balance Components in the Free State of Saxony, J. Hydrol., 7, 84, https://doi.org/10.3390/hydrology7040084, 2020.
Mallick, K., Toivonen, E., Trebs, I., Boegh, E., Cleverly, J., Eamus, D.,
Koivusalo, H., Drewry, D., Arndt, S. K., Griebel, A., Beringer, J., and
Garcia, M.: Bridging Thermal Infrared Sensing and Physically-Based
Evapotranspiration Modeling: From Theoretical Implementation to Validation
Across an Aridity Gradient in Australian Ecosystems, Water Resour. Res., 54, 3409–3435,
https://doi.org/10.1029/2017WR021357, 2018.
Mapzen Data Products: Amazon Web Service Terrain Tiles, https://registry.opendata.aws/terrain-tiles/ (last access: 20 November 2021), 2020.
Martens, B., De Jeu, R. A. M., Verhoest, N. E. C., Schuurmans, H., Kleijer,
J., and Miralles, D. G.: Towards Estimating Land Evaporation at Field Scales
Using GLEAM, Remote Sens., 10, 1720, https://doi.org/10.3390/rs10111720, 2018.
Mauder, M., Genzel, S., Fu, J., Kiese, R., Soltani, M., Steinbrecher, R.,
Zeeman, M., Banerjee, T., De Roo, F., and Kunstmann, H.: Evaluation of
energy balance closure adjustment methods by independent evapotranspiration
estimates from lysimeters and hydrological simulations, Hydrol. Process., 32, 39–50,
https://doi.org/10.1002/hyp.11397, 2018.
McDonald, J. E.: On the Ratio of Evaporation to Precipitation, B. Am. Meteorol. Soc., 42, 185–189,
1961.
McNally, A., McCartney, S., Ruane, A. C., Mladenova, I. E., Whitcraft, A.
K., Becker-Reshef, I., Bolten, J. D., Peters-Lidard, C. D., Rosenzweig, C.,
and Uz, S. S.: Hydrologic and Agricultural Earth Observations and Modeling
for the Water-Food Nexus, Front. Environ. Sci., 7, 23, https://doi.org/10.3389/fenvs.2019.00023,
2019.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, 2016.
Moorhead, J. E., Marek, G. W., Gowda, P. H., Lin, X., Colaizzi, P. D.,
Evett, S. R., and Kutikoff, S.: Evaluation of Evapotranspiration from Eddy
Covariance Using Large Weighing Lysimeters, Agronomy, 9, 99,
https://doi.org/10.3390/agronomy9020099, 2019.
Mueller, B., Seneviratne, S. I., Jimenez, C., Corti, T., Hirschi, M.,
Balsamo, G., Ciais, P., Dirmeyer, P., Fisher, J. B., Guo, Z., Jung, M.,
Maignan, F., McCabe, M. F., Reichle, R., Reichstein, M., Rodell, M.,
Sheffield, J., Teuling, A. J., Wang, K., Wood, E. F., and Zhang, Y.:
Evaluation of global observations-based evapotranspiration datasets and IPCC
AR4 simulations, Geophys. Res. Lett., 38, https://doi.org/10.1029/2010GL046230, 2011.
Müller Schmied, H., Adam, L., Eisner, S., Fink, G., Flörke, M., Kim, H., Oki, T., Portmann, F. T., Reinecke, R., Riedel, C., Song, Q., Zhang, J., and Döll, P.: Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use, Hydrol. Earth Syst. Sci., 20, 2877–2898, https://doi.org/10.5194/hess-20-2877-2016, 2016.
Murray, F. W.: On the Computation of Saturation Vapor Pressure, J. Appl. Meteorol. Climatol., 6, 203–204,
https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2, 1967.
Myhre, G. and Myhre, A.: Uncertainties in Radiative Forcing due to Surface
Albedo Changes Caused by Land-Use Changes, J. Climate, 16,
1511–1524, https://doi.org/10.1175/1520-0442(2003)016<1511:UIRFDT>2.0.CO;2, 2003.
Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A2H MODIS/Terra+Aqua Leaf
Area Index/FPAR 8-day L4 Global 500m SIN Grid V006, https://doi.org/10.5067/MODIS/MCD15A2H.006, 2015.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol, 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Page, J.: 1 – The Role of Solar Radiation Climatology in the Design of
Photovoltaic Systems, in: Practical Handbook of Photovoltaics, edited by:
Markvart, T. and Castañer, L., Elsevier Science, Amsterdam, 5–66,
https://doi.org/10.1016/B978-185617390-2/50004-0, 2003.
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., and Running, S. W.: Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, 2020.
Paredes, P., Pereira, L. S., Almorox, J., and Darouich, H.: Reference grass
evapotranspiration with reduced data sets: Parameterization of the FAO
Penman-Monteith temperature approach and the Hargeaves-Samani equation using
local climatic variables, Agr. Water Manage., 240, 106210,
https://doi.org/10.1016/j.agwat.2020.106210, 2020.
Park, S. and Park, S. K.: Parameterization of the snow-covered surface albedo in the Noah-MP Version 1.0 by implementing vegetation effects, Geosci. Model Dev., 9, 1073–1085, https://doi.org/10.5194/gmd-9-1073-2016, 2016.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah,
Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P.,
Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N.,
Zhang, L., Amiro, B., Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T.,
Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A.,
Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer,
C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer,
G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-M., Bowling, D. R.,
Bracho, R., Brodeur, J., Brümmer, C., Buchmann, N., Burban, B., Burns,
S. P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., Chini, I.,
Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D.,
Cook, D., Coursolle, C., Cremonese, E., Curtis, P. S., D'Andrea, E., da
Rocha, H., Dai, X., Davis, K. J., Cinti, B. D., Grandcourt, A. de, Ligne, A.
D., De Oliveira, R. C., Delpierre, N., Desai, A. R., Di Bella, C. M.,
Tommasi, P. di, Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P.,
Dufrêne, E., Dunn, A., Dušek, J., Eamus, D., Eichelmann, U.,
ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., Famulari, D.,
Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer,
M., Frank, J., Galvagno, M., et al.: The FLUXNET2015 dataset and the ONEFlux
processing pipeline for eddy covariance data, Scientific Data, 7, 225,
https://doi.org/10.1038/s41597-020-0534-3, 2020.
Perez-Priego, O., El-Madany, T. S., Migliavacca, M., Kowalski, A. S., Jung,
M., Carrara, A., Kolle, O., Martín, M. P., Pacheco-Labrador, J.,
Moreno, G., and Reichstein, M.: Evaluation of eddy covariance latent heat
fluxes with independent lysimeter and sapflow estimates in a Mediterranean
savannah ecosystem, Agr. Forest Meteorol., 236, 87–99,
https://doi.org/10.1016/j.agrformet.2017.01.009, 2017.
Planet dump: https://planet.osm.org, https://www.openstreetmap.org (last access: 20 November 2021), 2022.
Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M. C.,
Kommareddy, A., Pickens, A., Turubanova, S., Tang, H., Silva, C. E.,
Armston, J., Dubayah, R., Blair, J. B., and Hofton, M.: Mapping global
forest canopy height through integration of GEDI and Landsat data, Remote
Sens. Environ., 253, 112165,
https://doi.org/10.1016/j.rse.2020.112165, 2021.
Pypker, T. G., Bond, B. J., Link, T. E., Marks, D., and Unsworth, M. H.: The
importance of canopy structure in controlling the interception loss of
rainfall: Examples from a young and an old-growth Douglas-fir forest,
Agr. Forest Meteorol., 130, 113–129,
https://doi.org/10.1016/j.agrformet.2005.03.003, 2005.
Raupach, M. and Finnigan, J.: “Single-Layer Models of Evaporation From
Plant Canopies Are Incorrect but Useful, Whereas Multilayer Models Are
Correct but Useless”: Discuss, Functional Plant Biol., 15, 705–716, 1988.
Reed, P. and Devireddy, V.: Groundwater monitoring design: a case study
combining epsilon dominance archiving and automatic parameterization for the
NSGA-II, in: Applications of Multi-Objective Evolutionary Algorithms,
79–100, World Scientific Publishing, https://doi.org/10.1142/9789812567796_0004, 2004.
Richardson, A. D., Aubinet, M., Barr, A. G., Hollinger, D. Y., Ibrom, A.,
Lasslop, G., and Reichstein, M.: Uncertainty Quantification, in: Eddy
Covariance: A Practical Guide to Measurement and Data Analysis, edited by:
Aubinet, M., Vesala, T., and Papale, D., Springer Netherlands, Dordrecht,
173–209, https://doi.org/10.1007/978-94-007-2351-1_7, 2012.
Richter, D.: Ergebnisse methodischer Untersuchungen zur Korrektur des
systematischen Meßfehlers des Hellmann-Niederschlagsmessers von Dieter
Richter, Deutscher Wetterdienst, Offenbach am Main, Deutscher Wetterdienst, ISBN 978-3-88148-309-4, 1995.
Rudd, A. C. and Kay, A. L.: Use of very high resolution climate model data
for hydrological modelling: estimation of potential evaporation, Hydrol. Res., 47, 660–670, https://doi.org/10.2166/nh.2015.028, 2015.
Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie:
Bodenkarte 1:50 000, https://www.boden.sachsen.de/digitale-bodenkarte-1-50-000-19474.html
(last access: 20 November 2021), 2020.
Schulz, S., Becker, R., Richard-Cerda, J. C., Usman, M., aus der Beek, T.,
Merz, R., and Schüth, C.: Estimating water balance components in
irrigated agriculture using a combined approach of soil moisture and energy
balance monitoring, and numerical modelling, Hydrol. Process., 35,
https://doi.org/10.1002/hyp.14077, 2021.
Schwärzel, K., Feger, K.-H., Häntzschel, J., Menzer, A., Spank, U.,
Clausnitzer, F., Köstner, B., and Bernhofer, C.: A novel approach in
model-based mapping of soil water conditions at forest sites, Forest Ecol. Manage., 258,
2163–2174, https://doi.org/10.1016/j.foreco.2009.03.033, 2009.
Sentelhas, P. C., Gillespie, T. J., and Santos, E. A.: Evaluation of FAO
Penman–Monteith and alternative methods for estimating reference
evapotranspiration with missing data in Southern Ontario, Canada,
Agr. Water Manage., 97, 635–644,
https://doi.org/10.1016/j.agwat.2009.12.001, 2010.
Shuttleworth, W. J. and Wallace, J. S.: Evaporation from sparse crops-an
energy combination theory, Q. J. Roy. Meteorol. Soc., 111, 839–855,
https://doi.org/10.1002/qj.49711146910, 1985.
Spank, U., Schwärzel, K., Renner, M., Moderow, U., and Bernhofer, C.:
Effects of measurement uncertainties of meteorological data on estimates of
site water balance components, J. Hydrol., 492, 176–189,
https://doi.org/10.1016/j.jhydrol.2013.03.047, 2013.
Staatsbetrieb Geobasisinformation und Vermessung Sachsen: Digitales
Geländemodell Sachsen 10 m, https://www.landesvermessung.sachsen.de/verfugbarkeit-aktualitat-5305.html
(last access: 20 November 2021), 2020.
Su, H., McCabe, M. F., Wood, E. F., Su, Z., and Prueger, J. H.: Modeling
Evapotranspiration during SMACEX: Comparing Two Approaches for Local- and
Regional-Scale Prediction, J. Hydrometeorol., 6, 910–922, https://doi.org/10.1175/JHM466.1,
2005.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R.,
Meyers, T. P., Prueger, J. H., Starks, P. J., and Wesely, M. L.: Correcting
eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol., 103, 279–300,
https://doi.org/10.1016/S0168-1923(00)00123-4, 2000.
Verhoef, A. and Egea, G.: Modeling plant transpiration under limited soil
water: Comparison of different plant and soil hydraulic parameterizations
and preliminary implications for their use in land surface models,
Agr. Forest Meteorol., 191, 22–32,
https://doi.org/10.1016/j.agrformet.2014.02.009, 2014.
Vilhar, U.: Comparison of drought stress indices in beech forests: a
modelling study, iForest – Biogeosciences and Forestry, 635–642, https://doi.org/10.3832/ifor1630-008, 2016.
Vorobevskii, I.: Global BROOK90 source code, https://doi.org/10.5281/zenodo.6535132, 2021.
Vorobevskii, I., Kronenberg, R., and Bernhofer, C.: Global BROOK90 R
Package: An Automatic Framework to Simulate the Water Balance at Any
Location, Water, 12, 2037, https://doi.org/10.3390/w12072037, 2020.
Vorobevskii, I.: Supplement materials for publication: Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing, HydroShare, https://doi.org/10.4211/hs.567d7bdc7b84465ca333b6e0c011853a, 2021.
Wackernagel, H.: Multivariate Geostatistics: an Introduction with
Applications, 3rd ed., Springer-Verlag, Berlin Heidelberg, 388 pp., ISBN 978-3-662-05294-5, 2003.
Wang, S., Pan, M., Mu, Q., Shi, X., Mao, J., Brümmer, C., Jassal, R. S.,
Krishnan, P., Li, J., and Black, T. A.: Comparing Evapotranspiration from
Eddy Covariance Measurements, Water Budgets, Remote Sensing, and Land
Surface Models over Canada, J. Hydrometeorol., 16, 1540–1560,
https://doi.org/10.1175/JHM-D-14-0189.1, 2015.
Wang, Z., Schaaf, C. B., Sun, Q., Kim, J., Erb, A. M., Gao, F., Román,
M. O., Yang, Y., Petroy, S., Taylor, J. R., Masek, J. G., Morisette, J. T.,
Zhang, X., and Papuga, S. A.: Monitoring land surface albedo and vegetation
dynamics using high spatial and temporal resolution synthetic time series
from Landsat and the MODIS BRDF/NBAR/albedo product, Int. J. Apl. Earth Obs., 59, 104–117,
https://doi.org/10.1016/j.jag.2017.03.008, 2017.
Warm Winter 2020 Team and ICOS Ecosystem Thematic Centre: Warm Winter 2020
ecosystem eddy covariance flux product for 73 stations in FLUXNET-Archive
format – release 2022-1 (Version 1.0), ICOS Carbon Portal, https://doi.org/10.18160/2G60-ZHAK, 2022.
Wegehenkel, M. and Gerke, H. H.: Comparison of real evapotranspiration
measured by weighing lysimeters with simulations based on the Penman formula
and a crop growth model, J. Hydrol. Hydromech., 61, 161–172,
https://doi.org/10.2478/johh-2013-0021, 2013.
Wei, Z., Yoshimura, K., Wang, L., Miralles, D. G., Jasechko, S., and Lee,
X.: Revisiting the contribution of transpiration to global terrestrial
evapotranspiration, Geophys. Res. Lett., 44, 2792–2801, https://doi.org/10.1002/2016GL072235,
2017.
Widmoser, P. and Michel, D.: Partial energy balance closure of eddy covariance evaporation measurements using concurrent lysimeter observations over grassland, Hydrol. Earth Syst. Sci., 25, 1151–1163, https://doi.org/10.5194/hess-25-1151-2021, 2021.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier,
P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom,
A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel,
W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at
FLUXNET sites, Agr. Forest Meteorol., 113, 223–243,
https://doi.org/10.1016/S0168-1923(02)00109-0, 2002.
Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., and
Wullschleger, S. D.: A comparison of methods for determining forest
evapotranspiration and its components: sap-flow, soil water budget, eddy
covariance and catchment water balance, Agr. Forest Meteorol., 106, 153–168,
https://doi.org/10.1016/S0168-1923(00)00199-4, 2001.
Winter, J. M. and Eltahir, E. A. B.: The Sensitivity of Latent Heat Flux to
Changes in the Radiative Forcing: A Framework for Comparing Models and
Observations, J. Climate, 23, 2345–2356, https://doi.org/10.1175/2009JCLI3158.1, 2010.
Wu, J., Liu, L., Sun, C., Su, Y., Wang, C., Yang, J., Liao, J., He, X., Li,
Q., Zhang, C., and Zhang, H.: Estimating Rainfall Interception of Vegetation
Canopy from MODIS Imageries in Southern China, Remote Sens., 11, 2468,
https://doi.org/10.3390/rs11212468, 2019.
Yan, H., Wang, S. Q., Billesbach, D., Oechel, W., Zhang, J. H., Meyers, T.,
Martin, T. A., Matamala, R., Baldocchi, D., Bohrer, G., Dragoni, D., and
Scott, R.: Global estimation of evapotranspiration using a leaf area
index-based surface energy and water balance model, Remote Sens.
Environ., 124, 581–595, https://doi.org/10.1016/j.rse.2012.06.004, 2012.
Yang, B., Lee, D. K., Heo, H. K., and Biging, G.: The effects of tree
characteristics on rainfall interception in urban areas, Landsc. Ecol. Eng., 15, 289–296,
https://doi.org/10.1007/s11355-019-00383-w, 2019.
Zeng, Z., Piao, S., Lin, X., Yin, G., Peng, S., Ciais, P., and Myneni, R.
B.: Global evapotranspiration over the past three decades: estimation based
on the water balance equation combined with empirical models, Environ. Res. Lett., 7, 014026,
https://doi.org/10.1088/1748-9326/7/1/014026, 2012.
Zhang, Y., Leuning, R., Hutley, L. B., Beringer, J., McHugh, I., and Walker,
J. P.: Using long-term water balances to parameterize surface conductances
and calculate evaporation at 0.05∘ spatial resolution, Water Resour. Res., 46,
https://doi.org/10.1029/2009WR008716, 2010.
Zhang, Y., Chiew, F. H. S., Peña-Arancibia, J., Sun, F., Li, H., and
Leuning, R.: Global variation of transpiration and soil evaporation and the
role of their major climate drivers, J. Geophys. Res.-Atmos., 122, 6868–6881, https://doi.org/10.1002/2017JD027025, 2017.
Zink, M., Kumar, R., Cuntz, M., and Samaniego, L.: A high-resolution dataset of water fluxes and states for Germany accounting for parametric uncertainty, Hydrol. Earth Syst. Sci., 21, 1769–1790, https://doi.org/10.5194/hess-21-1769-2017, 2017.
Short summary
In the study we analysed the uncertainties of the meteorological data and model parameterization for evaporation modelling. We have taken a physically based lumped BROOK90 model and applied it in three different frameworks using global, regional and local datasets. Validating the simulations with eddy-covariance data from five stations in Germany, we found that the accuracy model parameterization plays a bigger role than the quality of the meteorological forcing.
In the study we analysed the uncertainties of the meteorological data and model parameterization...