Articles | Volume 26, issue 9
https://doi.org/10.5194/hess-26-2583-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-2583-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature
Hanieh Seyedhashemi
CORRESPONDING AUTHOR
INRAE, UR RiverLy, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
EA 6293 GéoHydrosystèmes COntinentaux, Université François-Rabelais de Tours, Parc de Grandmont, 37200 Tours, France
Jean-Philippe Vidal
INRAE, UR RiverLy, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
Jacob S. Diamond
INRAE, UR RiverLy, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
Dominique Thiéry
BRGM, Bureau de Recherches Géologiques et Minières, BP 6009 45060 Orléans CEDEX 2, France
Céline Monteil
EDF – Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, Chatou, France
Frédéric Hendrickx
EDF – Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, Chatou, France
Anthony Maire
EDF – Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, Chatou, France
Florentina Moatar
INRAE, UR RiverLy, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
Related authors
Hanieh Seyedhashemi, Florentina Moatar, Jean-Philippe Vidal, and Dominique Thiéry
Earth Syst. Sci. Data, 15, 2827–2839, https://doi.org/10.5194/essd-15-2827-2023, https://doi.org/10.5194/essd-15-2827-2023, 2023
Short summary
Short summary
This paper presents a past and future dataset of daily time series of discharge and stream temperature for 52 278 reaches over the Loire River basin (100 000 km2) in France, using thermal and hydrological models. Past data are provided over 1963–2019. Future data are available over the 1976–2100 period under different future climate change models (warm and wet, intermediate, and hot and dry) and scenarios (optimistic, intermediate, and pessimistic).
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Camille Minaudo, Andras Abonyi, Carles Alcaraz, Jacob Diamond, Nicholas J. K. Howden, Michael Rode, Estela Romero, Vincent Thieu, Fred Worrall, Qian Zhang, and Xavier Benito
Earth Syst. Sci. Data, 17, 3411–3430, https://doi.org/10.5194/essd-17-3411-2025, https://doi.org/10.5194/essd-17-3411-2025, 2025
Short summary
Short summary
Many waterbodies undergo nutrient decline, called oligotrophication, globally, but a comprehensive dataset to understand ecosystem responses is lacking. The OLIGOTREND database comprises multi-decadal chlorophyll a and nutrient time series from rivers, lakes, and estuaries with 4.3 million observations from 1894 unique measurement locations. The database provides empirical evidence for oligotrophication responses with a spatial and temporal coverage that exceeds previous efforts.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
An Truong Nguyen, Gwenaël Abril, Jacob S. Diamond, Raphaël Lamouroux, Cécile Martinet, and Florentina Moatar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1478, https://doi.org/10.5194/egusphere-2025-1478, 2025
Short summary
Short summary
This 32-year study of France’s Loire River shows cleaner water reduced carbon dioxide emissions by 62 %, despite increased contributions from aquatic plant activity. Seasonal emissions were higher in autumn than spring, while long-term declines were driven by reduced external carbon inputs from groundwater and soils. Results highlight how ecosystem changes influence rivers' role in global carbon cycles and climate management.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025, https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary
Short summary
Our study projects how climate change will affect the drying of river segments and stream networks in Europe, using advanced modelling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent and intense and will start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists for evaluating the ecological health of river ecosystem.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Hanieh Seyedhashemi, Florentina Moatar, Jean-Philippe Vidal, and Dominique Thiéry
Earth Syst. Sci. Data, 15, 2827–2839, https://doi.org/10.5194/essd-15-2827-2023, https://doi.org/10.5194/essd-15-2827-2023, 2023
Short summary
Short summary
This paper presents a past and future dataset of daily time series of discharge and stream temperature for 52 278 reaches over the Loire River basin (100 000 km2) in France, using thermal and hydrological models. Past data are provided over 1963–2019. Future data are available over the 1976–2100 period under different future climate change models (warm and wet, intermediate, and hot and dry) and scenarios (optimistic, intermediate, and pessimistic).
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-78, https://doi.org/10.5194/hess-2023-78, 2023
Publication in HESS not foreseen
Short summary
Short summary
The recent development of the a new meteorological dataset providing precipitation and temperature over France – FYRE Climate – has been transformed to streamflow time series over 1871–2012 through the used of a hydrological model. This led to the creation of the daily hydrological reconstructions called HyDRE and HyDRE. These two reconstructions are evaluated allow to better understand the variability of past hydrology over France.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Aurélien Beaufort, Jacob S. Diamond, Eric Sauquet, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 3477–3495, https://doi.org/10.5194/hess-26-3477-2022, https://doi.org/10.5194/hess-26-3477-2022, 2022
Short summary
Short summary
We developed one of the largest stream temperature databases to calculate a simple, ecologically relevant metric – the thermal peak – that captures the magnitude of summer thermal extremes. Using statistical models, we extrapolated the thermal peak to nearly every stream in France, finding the hottest thermal peaks along large rivers without forested riparian zones and groundwater inputs. Air temperature was a poor proxy for the thermal peak, highlighting the need to grow monitoring networks.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Manuel Fossa, Bastien Dieppois, Nicolas Massei, Matthieu Fournier, Benoit Laignel, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 25, 5683–5702, https://doi.org/10.5194/hess-25-5683-2021, https://doi.org/10.5194/hess-25-5683-2021, 2021
Short summary
Short summary
Hydro-climate observations (such as precipitation, temperature, and river discharge time series) reveal very complex behavior inherited from complex interactions among the physical processes that drive hydro-climate viability. This study shows how even small perturbations of a physical process can have large consequences on some others. Those interactions vary spatially, thus showing the importance of both temporal and spatial dimensions in better understanding hydro-climate variability.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, and Olivier Vannier
Clim. Past, 17, 1857–1879, https://doi.org/10.5194/cp-17-1857-2021, https://doi.org/10.5194/cp-17-1857-2021, 2021
Short summary
Short summary
This article presents FYRE Climate, a dataset providing daily precipitation and temperature spanning the 1871–2012 period at 8 km resolution over France. FYRE Climate has been obtained through the combination of daily and yearly observations and a gridded reconstruction already available through a statistical technique called data assimilation. Results highlight the quality of FYRE Climate in terms of both long-term variations and reproduction of extreme events.
Stella Guillemot, Ophelie Fovet, Chantal Gascuel-Odoux, Gérard Gruau, Antoine Casquin, Florence Curie, Camille Minaudo, Laurent Strohmenger, and Florentina Moatar
Hydrol. Earth Syst. Sci., 25, 2491–2511, https://doi.org/10.5194/hess-25-2491-2021, https://doi.org/10.5194/hess-25-2491-2021, 2021
Short summary
Short summary
This study investigates the drivers of spatial variations in stream water quality in poorly studied headwater catchments and includes multiple elements involved in major water quality issues, such as eutrophication. We used a regional public dataset of monthly stream water concentrations monitored for 10 years over 185 agricultural catchments. We found a spatial and seasonal opposition between carbon and nitrogen concentrations, while phosphorus concentrations showed another spatial pattern.
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Kerstin Stahl, Jean-Philippe Vidal, Jamie Hannaford, Erik Tijdeman, Gregor Laaha, Tobias Gauster, and Lena M. Tallaksen
Proc. IAHS, 383, 291–295, https://doi.org/10.5194/piahs-383-291-2020, https://doi.org/10.5194/piahs-383-291-2020, 2020
Short summary
Short summary
Numerous indices exist for the description of hydrological drought, some are based on absolute thresholds of overall streamflows or water levels and some are based on relative anomalies with respect to the season. This article discusses paradigms and experiences with such index uses in drought monitoring and drought analysis to raise awareness of the different interpretations of drought severity.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
Evapotranspiration – Guidelines for computing crop water requirements,
FAO Irrigation and Drainage Paper 56, FAO,
https://appgeodb.nancy.inra.fr/biljou/pdf/Allen_FAO1998.pdf (last access: 11 May 2022), 1998. a
Arevalo, E., Lassalle, G., Tétard, S., Maire, A., Sauquet, E., Lambert, P.,
Paumier, A., Villeneuve, B., and Drouineau, H.: An innovative bivariate
approach to detect joint temporal trends in environmental conditions:
Application to large French rivers and diadromous fish,
Sci. Total Environ., 748, 141260, https://doi.org/10.1016/j.scitotenv.2020.141260, 2020. a, b, c, d
Arismendi, I., Johnson, S. L., Dunham, J. B., Haggerty, R., and Hockman-Wert,
D.: The paradox of cooling streams in a warming world: regional climate
trends do not parallel variable local trends in stream temperature in the
Pacific continental United States, Geophys. Res. Lett., 39, 10, https://doi.org/10.1029/2012GL051448, 2012. a
Arismendi, I., Johnson, S. L., Dunham, J. B., and Haggerty, R.: Descriptors of
natural thermal regimes in streams and their responsiveness to change in the
Pacific Northwest of North America, Freshwater Biol., 58, 880–894,
https://doi.org/10.1111/fwb.12094, 2013a. a
Arismendi, I., Safeeq, M., Johnson, S. L., Dunham, J. B., and Haggerty, R.:
Increasing synchrony of high temperature and low flow in western North
American streams: double trouble for coldwater biota?, Hydrobiologia, 712,
61–70, https://doi.org/10.1007/s10750-012-1327-2, 2013b. a
Arismendi, I., Safeeq, M., Dunham, J. B., and Johnson, S. L.: Can air
temperature be used to project influences of climate change on stream
temperature?, Environ. Res. Lett., 9, 084015,
https://doi.org/10.1088/1748-9326/9/8/084015, 2014. a
Bauer, D. F.: Constructing confidence sets using rank statistics,
J. Am. Stat. Assoc., 67, 687–690,
https://doi.org/10.1080/01621459.1972.10481279, 1972. a
Beaufort, A., Moatar, F., Sauquet, E., Loicq, P., and Hannah, D. M.: Influence
of landscape and hydrological factors on stream–air temperature
relationships at regional scale, Hydrol. Process., 34, 583–597,
https://doi.org/10.1002/hyp.13608, 2020. a
Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B., and Bobée, B.: A
review of statistical water temperature models,
Can. Water Resour. J., 32, 179–192, https://doi.org/10.4296/cwrj3203179, 2007. a
Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A., and Boháč, M.:
Changing climate both increases and decreases European river floods, Nature,
573, 108–111, https://doi.org/10.1038/s41586-019-1495-6, 2019. a
Bruno, D., Belmar, O., Maire, A., Morel, A., Dumont, B., and Datry, T.:
Structural and functional responses of invertebrate communities to climate
change and flow regulation in alpine catchments, Glob. Change Biol., 25,
1612–1628, https://doi.org/10.1111/gcb.14581, 2019. a
Buisson, L. and Grenouillet, G.: Contrasted impacts of climate change on stream
fish assemblages along an environmental gradient,
Divers. Distrib., 15, 613–626, https://doi.org/10.1111/j.1472-4642.2009.00565.x, 2009. a
Buisson, L., Blanc, L., and Grenouillet, G.: Modelling stream fish species
distribution in a river network: the relative effects of temperature versus
physical factors, Ecol. Freshw. Fish, 17, 244–257,
https://doi.org/10.1111/j.1600-0633.2007.00276.x, 2008. a
Bustillo, V., Moatar, F., Ducharne, A., Thiéry, D., and Poirel, A.: A
multimodel comparison for assessing water temperatures under changing climate
conditions via the equilibrium temperature concept: case study of the Middle
Loire River, France, Hydrol. Process., 28, 1507–1524,
https://doi.org/10.1002/hyp.9683, 2014. a, b
Caissie, D., Satish, M. G., and El-Jabi, N.: Predicting water temperatures
using a deterministic model: Application on Miramichi River catchments (New
Brunswick, Canada), J. Hydrol., 336, 303–315,
https://doi.org/10.1016/j.jhydrol.2007.01.008, 2007. a
Chandesris, A., Van Looy, K., Diamond, J. S., and Souchon, Y.: Small dams alter thermal regimes of downstream water, Hydrol. Earth Syst. Sci., 23, 4509–4525, https://doi.org/10.5194/hess-23-4509-2019, 2019. a
Cheng, Y., Voisin, N., Yearsley, J. R., and Nijssen, B.: Reservoirs modify
river thermal regime sensitivity to climate change: a case study in the
southeastern United States, Water Resour. Res., 56, e2019WR025784,
https://doi.org/10.1029/2019WR025784, 2020. a, b
Comte, L., Buisson, L., Daufresne, M., and Grenouillet, G.: Climate-induced
changes in the distribution of freshwater fish: observed and predicted
trends, Freshwater Biol., 58, 625–639, https://doi.org/10.1111/fwb.12081, 2013. a
Dan Moore, R., Spittlehouse, D., and Story, A.: Riparian microclimate and
stream temperature response to forest harvesting: A review,
J. Am. Water Resour. As., 41, 813–834,
https://doi.org/10.1111/j.1752-1688.2005.tb03772.x, 2005. a, b
Domisch, S., Araújo, M. B., Bonada, N., Pauls, S. U., Jähnig, S. C.,
and Haase, P.: Modelling distribution in European stream macroinvertebrates
under future climates, Glob. Change Biol., 19, 752–762,
https://doi.org/10.1111/gcb.12107, 2013. a
Ducharne, A.: Importance of stream temperature to climate change impact on water quality, Hydrol. Earth Syst. Sci., 12, 797–810, https://doi.org/10.5194/hess-12-797-2008, 2008. a
Ducharne, A., Sauquet, E., Habets, F., Deque, M., Gascoin, S., Hachour, A., Martin, E., Oudin, L., Page, C., Terray, L., and Thiery, D.: Evolution
potentielle du régime des crues de la Seine sous changement climatique,
La Houille Blanche, 97, 51–57, https://doi.org/10.1051/lhb/2011006,
2011. a
Dugdale, S. J., Hannah, D. M., and Malcolm, I. A.: River temperature modelling:
A review of process-based approaches and future directions,
Earth-Sci. Rev., 175, 97–113, https://doi.org/10.1016/j.earscirev.2017.10.009, 2017. a, b
Dugdale, S. J., Malcolm, I. A., Kantola, K., and Hannah, D. M.: Stream
temperature under contrasting riparian forest cover: Understanding thermal
dynamics and heat exchange processes, Sci. Total Environ., 610,
1375–1389, https://doi.org/10.1016/j.scitotenv.2017.08.198, 2018. a
Edmonds, R., Murray, G., and Marra, J.: Influence of partial harvesting on
stream temperatures, chemistry, and turbidity in forests on the western
Olympic Peninsula, Washington, WSU Press, 74, 151–164,
http://hdl.handle.net/2376/1065 (last access: 5 April 2021), 2000. a
Floury, M., Usseglio-Polatera, P., Ferreol, M., Delattre, C., and Souchon, Y.:
Global climate change in large E uropean rivers: long-term effects on
macroinvertebrate communities and potential local confounding factors, Glob. Change Biol., 19, 1085–1099, https://doi.org/10.1111/gcb.12124, 2013. a
Giuntoli, I., Renard, B., Vidal, J.-P., and Bard, A.: Low flows in France and
their relationship to large-scale climate indices, J. Hydrol., 482,
105–118, https://doi.org/10.1016/j.jhydrol.2012.12.038, 2013. a, b, c, d
Habets, F., Boé, J., Déqué, M., Ducharne, A., Gascoin, S., Hachour, A., Martin, E., Pagé, C., Sauquet, E., Terray, L., and Thiéry, D.: Impact of
climate change on the hydrogeology of two basins in northern France, Climatic Change, 121, 771–785, https://doi.org/10.1007/s10584-013-0934-x, 2013. a, b
Hannah, D. M. and Garner, G.: River water temperature in the United Kingdom:
changes over the 20th century and possible changes over the 21st century,
Prog. Phys. Geog., 39, 68–92, https://doi.org/10.1177/0309133314550669, 2015. a
Hannah, D. M., Malcolm, I. A., Soulsby, C., and Youngson, A. F.: Heat exchanges
and temperatures within a salmon spawning stream in the Cairngorms, Scotland:
seasonal and sub-seasonal dynamics, River Res. Appl., 20,
635–652, https://doi.org/10.1002/rra.771, 2004. a
Hari, R. E., Livingstone, D. M., Siber, R., Burkhardt-Holm, P., and Guettinger,
H.: Consequences of climatic change for water temperature and brown trout
populations in Alpine rivers and streams, Glob. Change Biol., 12, 10–26,
https://doi.org/10.1111/j.1365-2486.2005.001051.x, 2006. a
Hobeichi, S., Abramowitz, G., and Evans, J. P.: Robust historical evapotranspiration trends across climate regimes, Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021, 2021. a
Huntington, T. G.: Evidence for intensification of the global water cycle:
review and synthesis, J. Hydrol., 319, 83–95,
https://doi.org/10.1016/j.jhydrol.2005.07.003, 2006. a
Hutchison, B. A. and Matt, D. R.: The distribution of solar radiation within a
deciduous forest, Ecol. Monogr., 47, 185–207, https://doi.org/10.2307/1942616,
1977. a
Institut Géographique National (IGN): Descriptif technique BD TOPO, Tech. rep., https://www.cc-saulnois.fr/sig/documents/BDTOPO/DC_BDTOPO_2.pdf (last access: 5 April 2020), 2008. a
Institut Géographique National (IGN): Descriptif technique BD ALTI, Tech. rep., https://geoservices.ign.fr/ressources_documentaires/Espace_documentaire/MODELES_3D/BDALTIV2/DC_BDALTI_2-0.pdf (last access: 5 April 2020), 2011. a
Isaak, D., Wollrab, S., Horan, D., and Chandler, G.: Climate change effects on
stream and river temperatures across the northwest US from 1980–2009 and
implications for salmonid fishes, Climatic Change, 113, 499–524,
https://doi.org/10.1007/s10584-011-0326-z, 2012. a, b
Isaak, D. J., Wenger, S. J., Peterson, E. E., Ver Hoef, J. M., Nagel, D. E., Luce, C. H., Hostetler, S. W., Dunham, J. B., Roper, B. B., Wollrab, S. P., and Chandler, G. L.: The NorWeST summer stream temperature model and scenarios for the
western US: A crowd-sourced database and new geospatial tools foster a user
community and predict broad climate warming of rivers and streams, Water Resour. Res., 53, 9181–9205, https://doi.org/10.1002/2017WR020969, 2017. a
Jackson, F., Hannah, D. M., Fryer, R., Millar, C., and Malcolm, I.: Development
of spatial regression models for predicting summer river temperatures from
landscape characteristics: Implications for land and fisheries management,
Hydrol. Process, 31, 1225–1238, https://doi.org/10.1002/hyp.11087, 2017. a
Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P., and Malcolm, I. A.:
A spatio-temporal statistical model of maximum daily river temperatures to
inform the management of Scotland's Atlantic salmon rivers under climate
change, Sci. Total Environ., 612, 1543–1558,
https://doi.org/10.1016/j.scitotenv.2017.09.010, 2018. a
Johnson, S. L.: Factors influencing stream temperatures in small streams:
substrate effects and a shading experiment,
Can. J. Fish. Aquat. Sci., 61, 913–923, https://doi.org/10.1139/f04-040, 2004. a
Kaushal, S. S., Likens, G. E., Jaworski, N. A., Pace, M. L., Sides, A. M.,
Seekell, D., Belt, K. T., Secor, D. H., and Wingate, R. L.: Rising stream and
river temperatures in the United States,
Front. Ecol. Environ., 8, 461–466, https://doi.org/10.1890/090037, 2010. a, b, c
Kędra, M.: Regional response to global warming: Water temperature trends
in semi-natural mountain river systems, Water, 12, 283,
https://doi.org/10.3390/w12010283, 2020. a, b
Kelleher, C., Wagener, T., Gooseff, M., McGlynn, B., McGuire, K., and Marshall,
L.: Investigating controls on the thermal sensitivity of Pennsylvania
streams, Hydrol. Process., 26, 771–785, https://doi.org/10.1002/hyp.8186, 2012. a, b
Kirk, M. A. and Rahel, F. J.: Air temperatures over-predict changes to stream
fish assemblages with climate warming compared with water temperatures,
Ecological Applications, 32, e02465, https://doi.org/10.1002/eap.2465, 2022. a
Kurylyk, B. L., Bourque, C. P.-A., and MacQuarrie, K. T. B.: Potential surface temperature and shallow groundwater temperature response to climate change: an example from a small forested catchment in east-central New Brunswick (Canada), Hydrol. Earth Syst. Sci., 17, 2701–2716, https://doi.org/10.5194/hess-17-2701-2013, 2013. a
Kurylyk, B. L., MacQuarrie, K. T., and Voss, C. I.: Climate change impacts on
the temperature and magnitude of groundwater discharge from shallow,
unconfined aquifers, Water Resour. Res., 50, 3253–3274,
https://doi.org/10.1002/2013WR014588, 2014. a, b
Lennox, R. J., Crook, D. A., Moyle, P. B., Struthers, D. P., and Cooke, S. J.:
Toward a better understanding of freshwater fish responses to an increasingly
drought-stricken world, Rev. Fish Biol. Fisher., 29, 71–92,
https://doi.org/10.1007/s11160-018-09545-9, 2019. a
Li, G., Jackson, C. R., and Kraseski, K. A.: Modeled riparian stream shading:
Agreement with field measurements and sensitivity to riparian conditions,
J. Hydrol., 428, 142–151, https://doi.org/10.1016/j.jhydrol.2012.01.032,
2012. a
Maire, A., Thierry, E., Viechtbauer, W., and Daufresne, M.: Poleward shift in
large-river fish communities detected with a novel meta-analysis framework,
Freshwater Biol., 64, 1143–1156, https://doi.org/10.1111/fwb.13291, 2019. a, b, c
Majdi, N., Uthoff, J., Traunspurger, W., Laffaille, P., and Maire, A.: Effect
of water warming on the structure of biofilm-dwelling communities, Ecol. Indic., 117, 106622, https://doi.org/10.1016/j.ecolind.2020.106622, 2020. a
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945. a
Mantua, N., Tohver, I., and Hamlet, A.: Climate change impacts on streamflow
extremes and summertime stream temperature and their possible consequences
for freshwater salmon habitat in Washington State, Climatic Change, 102,
187–223, https://doi.org/10.1007/s10584-010-9845-2, 2010. a, b
Mayer, T. D.: Controls of summer stream temperature in the Pacific Northwest,
J. Hydrol., 475, 323–335, https://doi.org/10.1016/j.jhydrol.2012.10.012,
2012. a
McCann, E. L., Johnson, N. S., and Pangle, K. L.: Corresponding long-term
shifts in stream temperature and invasive fish migration,
Can. J. Fish. Aquat. Sci., 75, 772–778, https://doi.org/10.1139/cjfas-2017-0195,
2018. a
Meisner, J. D.: Potential loss of thermal habitat for brook trout, due to
climatic warming, in two southern Ontario streams,
T. Am. Fish. Soc., 119, 282–291,
https://doi.org/10.1577/1548-8659(1990)119<0282:PLOTHF>2.3.CO;2, 1990. a
Mohseni, O., Erickson, T. R., and Stefan, H. G.: Sensitivity of stream
temperatures in the United States to air temperatures projected under a
global warming scenario, Water Resour. Res., 35, 3723–3733,
https://doi.org/10.1029/1999WR900193, 1999. a
Morales-Marín, L., Rokaya, P., Sanyal, P., Sereda, J., and Lindenschmidt,
K.: Changes in streamflow and water temperature affect fish habitat in the
Athabasca River basin in the context of climate change,
Ecol. Model.,
407, 108718, https://doi.org/10.1016/j.ecolmodel.2019.108718, 2019. a
Morel, M., Booker, D. J., Gob, F., and Lamouroux, N.: Intercontinental
predictions of river hydraulic geometry from catchment physical
characteristics, J. Hydrol., 582, 124292,
https://doi.org/10.1016/j.jhydrol.2019.124292, 2020. a, b
Nelson, K. C. and Palmer, M. A.: Stream temperature surges under urbanization
and climate change: data, models, and responses 1, J. Am. Water Resour. As., 43, 440–452,
https://doi.org/10.1111/j.1752-1688.2007.00034.x, 2007. a
Niedrist, G. H. and Füreder, L.: Real-time warming of alpine streams: (Re)defining invertebrates' temperature preferences, River Res. Appl., 37, 283–293, https://doi.org/10.1002/rra.3638, 2021. a
O'Gorman, E. J., Pichler, D. E., Adams, G., Benstead, J. P., Cohen, H., Craig, N., Cross, W. F., Demars, B. O., Friberg, N., Gislason, G. M., and Gudmundsdottir, R.:
Impacts of warming on the structure and functioning of aquatic communities:
individual-to ecosystem-level responses,
Adv. Ecol. Res., 47,
81–176, https://doi.org/10.1016/B978-0-12-398315-2.00002-8, 2012. a
Olden, J. D. and Naiman, R. J.: Incorporating thermal regimes into
environmental flows assessments: modifying dam operations to restore
freshwater ecosystem integrity, Freshwater Biol., 55, 86–107,
https://doi.org/10.1111/j.1365-2427.2009.02179.x, 2010. a
Orr, H. G., Simpson, G. L., des Clers, S., Watts, G., Hughes, M., Hannaford, J., Dunbar, M. J., Laizé, C. L., Wilby, R. L., Battarbee, R. W., and Evans, R.:
Detecting changing river temperatures in England and Wales, Hydrol. Process., 29, 752–766, https://doi.org/10.1002/hyp.10181, 2015. a, b, c
Palmer, M. A., Lettenmaier, D. P., Poff, N. L., Postel, S. L., Richter, B., and
Warner, R.: Climate change and river ecosystems: protection and adaptation
options, Environ. Manage., 44, 1053–1068,
https://doi.org/10.1007/s00267-009-9329-1, 2009. a
Pella, H., Lejot, J., Lamouroux, N., and Snelder, T.: Le réseau
hydrographique théorique (RHT) français et ses attributs
environnementaux, Géomorphologie: relief, processus, environnement, 18,
317–336, https://doi.org/10.4000/geomorphologie.9933, 2012. a
Perry, L. G., Reynolds, L. V., Beechie, T. J., Collins, M. J., and Shafroth,
P. B.: Incorporating climate change projections into riparian restoration
planning and design, Ecohydrology, 8, 863–879, https://doi.org/10.1002/eco.1645, 2015. a, b
Pettitt, A. N.: A non-parametric approach to the change-point problem,
Applied Statistics, 28, 126–135, https://doi.org/10.2307/2346729, 1979. a
Poole, G. C. and Berman, C. H.: An ecological perspective on in-stream
temperature: natural heat dynamics and mechanisms of human-caused thermal
degradation, Environ. Manage., 27, 787–802,
https://doi.org/10.1007/s002670010188, 2001. a
Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W., Dankers, R., Fekete, B. M., Franssen, W., Gerten, D., Gosling, S. N., and Hagemann, S.:
Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment,
P. Ntl. A. Sci. USA, 111, 3262–3267, https://doi.org/10.1073/pnas.1222473110, 2014. a
Ptak, M., Choiński, A., and Kirviel, J.: Long-term water temperature
fluctuations in coastal rivers (southern Baltic) in Poland,
Bulletin of Geography: Physical Geography Series, 11, 35–42,
https://doi.org/10.1515/bgeo-2016-0013, 2016. a
Ptak, M., Sojka, M., Kałuża, T., Choiński, A., and Nowak, B.:
Long-term water temperature trends of the Warta River in the years
1960–2009, Ecohydrology and Hydrobiology, 19, 441–451,
https://doi.org/10.1016/j.ecohyd.2019.03.007, 2019a. a
Ptak, M., Sojka, M., and Kozłowski, M.: The increasing of maximum lake water
temperature in lowland lakes of Central Europe: case study of the Polish
Lakeland, in: Annales de Limnologie [International Journal of Limnology],
55, 6, EDP Sciences, https://doi.org/10.1051/limn/2019005, 2019b. a
Quintana-Segui, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon,
M., Canellas, C., Franchisteguy, L., and Morel, S.: Analysis of near-surface
atmospheric variables: Validation of the SAFRAN analysis over France, J. Appl. Meteorol. Clim., 47, 92–107,
https://doi.org/10.1175/2007JAMC1636.1, 2008. a, b
Romaní, A. M., Boulêtreau, S., Diaz Villanueva, V., Garabetian, F., Marxsen, J., Norf, H., Pohlon, E., and Weitere, M.: Microbes in aquatic
biofilms under the effect of changing climate.,
Climate change and microbial ecology: Current research and future trends, 83–96, https://ri.conicet.gov.ar/handle/11336/109695 (last access: 11 May 2022), 2016. a
Sanchez-Lorenzo, A., Wild, M., Brunetti, M., Guijarro, J. A., Hakuba, M. Z.,
Calbó, J., Mystakidis, S., and Bartok, B.: Reassessment and update of
long-term trends in downward surface shortwave radiation over Europe
(1939–2012), J. Geophys. Res.-Atmos., 120, 9555–9569,
https://doi.org/10.1002/2015JD023321, 2015. a
Scheffers, B. R., De Meester, L., Bridge, T. C., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., Butchart, S. H., Pearce-Kelly, P., Kovacs, K. M., Dudgeon, D., and Pacifici, M.: The broad footprint of climate change from genes to
biomes to people, Science, 354, 6313, https://doi.org/10.1126/science.aaf7671, 2016. a
Seavy, N. E., Gardali, T., Golet, G. H., Griggs, F. T., Howell, C. A., Kelsey,
R., Small, S. L., Viers, J. H., and Weigand, J. F.: Why climate change makes
riparian restoration more important than ever: recommendations for practice
and research, Ecological Restoration, 27, 330–338,
https://doi.org/10.3368/er.27.3.330, 2009. a
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.1080/01621459.1968.10480934, 1968. a
Seyedhashemi, H., Moatar, F., Vidal, J.-P., Diamond, J. S., Beaufort, A.,
Chandesris, A., and Valette, L.: Thermal signatures identify the influence of
dams and ponds on stream temperature at the regional scale, Sci. Total Environ., 766, 142667, https://doi.org/10.1016/j.scitotenv.2020.142667, 2020. a, b, c
Seyedhashemi, H., Vidal, J.-P., Moatar, F., and Thiéry, D.: Replication Data for: Regional, multi-decadal analysis reveals that stream temperature increases faster than air temperature (https://doi.org/10.5194/hess-2021-450), Portail Data INRAE [data set], https://doi.org/10.15454/PTY9R7, 2022. a
Sinokrot, B., Stefan, H., McCormick, J., and Eaton, J.: Modeling of climate
change effects on stream temperatures and fish habitats below dams and near
groundwater inputs, Climatic Change, 30, 181–200, https://doi.org/10.1007/BF01091841,
1995. a
Spinoni, J., Naumann, G., and Vogt, J. V.: Pan-European seasonal trends and
recent changes of drought frequency and severity,
Global Planet. Change, 148, 113–130, https://doi.org/10.1016/j.gloplacha.2016.11.013, 2017. a
Stefan, H. G. and Preud'homme, E. B.: Stream temperature estimation from air
temperature 1, J. Am. Water Resour. As., 29,
27–45, https://doi.org/10.1111/j.1752-1688.1993.tb01502.x, 1993. a
Stefani, F., Schiavon, A., Tirozzi, P., Gomarasca, S., and Marziali, L.:
Functional response of fish communities in a multistressed freshwater world,
Sci. Total Environ., 740, 139902,
https://doi.org/10.1016/j.scitotenv.2020.139902, 2020. a
Taylor, C. A. and Stefan, H. G.: Shallow groundwater temperature response to
climate change and urbanization, J. Hydrol., 375, 601–612,
https://doi.org/10.1016/j.jhydrol.2009.07.009, 2009. a
Thiéry, D.: Forecast of changes in piezometric levels by a lumped
hydrological model, J. Hydrol., 97, 129–148,
https://doi.org/10.1016/0022-1694(88)90070-4, 1988. a, b, c
Thiéry, D. and Moutzopoulos, C.: Un modèle hydrologique spatialisé
pour la simulation de très grands bassins: le modèle EROS formé
de grappes de modèles globaux élémentaires, VIIIèmes
journées hydrologiques de l'ORSTOM” Régionalisation en hydrologie,
application au développement”, edited by: Le Barbé and Servat, E.,
285–295, https://hal-brgm.archives-ouvertes.fr/hal-01061971 (last acccess: 4 May 2020), 1995. a, b, c
Tisseuil, C., Vrac, M., Grenouillet, G., Wade, A. J., Gevrey, M., Oberdorff,
T., Grodwohl, J.-B., and Lek, S.: Strengthening the link between climate,
hydrological and species distribution modeling to assess the impacts of
climate change on freshwater biodiversity, Sci. Total Environ.,
424, 193–201, https://doi.org/10.1016/j.scitotenv.2012.02.035, 2012. a
Tramblay, Y., Koutroulis, A., Samaniego, L., Vicente-Serrano, S. M., Volaire,
F., Boone, A., Le Page, M., Llasat, M. C., Albergel, C., Burak, S.,
Cailleret, M., Cindrić Kalin, K., Davi, H., Dupuy, J.-L., Greve, P.,
Grillakis, M., Hanich, L., Jarlan, L., Martin-StPaul, N., Martínez-Vilalta,
J., Mouillot, F., Pulido-Velazquez, D., Quintana-Seguí, P., Renard, D.,
Turco, M., Türkeş, M., Trigo, R., Vidal, J.-P., Vilagrosa, A., Zribi,
M., and Polcher, J.: Challenges for drought assessment in the Mediterranean
region under future climate scenarios, Earth-Sci. Rev., 210, 103348,
https://doi.org/10.1016/j.earscirev.2020.103348, 2020. a
Valette, L., Piffady, J., Chandesris, A., and Souchon, Y.: SYRAH-CE:
description des données et modélisation du risque d’altération
hydromorphologique des cours d’eau pour l’état des lieux DCE, Rapport
Technique Onema-Irstea, 104 pp.,
http://oai.afbiodiversite.fr/cindocoai/download/PUBLI/1185/1/2012_108.pdf_4080Ko (last acccess: 12 May 2020),
2012. a, b
van Looy, K. and Tormos, T.: Indicateurs spatialisés du fonctionnement des
corridors rivulaires, Tech. rep., Irstea, 37 pp.,
https://hal.inrae.fr/hal-02599341 (last acccess: 12 May 2020), 2013. a
Van Vliet, M., Ludwig, F., Zwolsman, J., Weedon, G., and Kabat, P.: Global
river temperatures and sensitivity to atmospheric warming and changes in
river flow, Water Resour. Res., 47, 2, https://doi.org/10.1029/2010WR009198, 2011. a, b
van Vliet, M. T., Franssen, W. H., Yearsley, J. R., Ludwig, F., Haddeland, I.,
Lettenmaier, D. P., and Kabat, P.: Global river discharge and water
temperature under climate change, Global Environ. Chang., 23, 450–464,
https://doi.org/10.1016/j.gloenvcha.2012.11.002, 2013. a
Vicente-Serrano, S., Hannaford, J., Murphy, C., Peña Gallardo, M.,
Lorenzo-Lacruz, J., Domínguez-Castro, F., López Moreno, J. I.,
Beguería, S., Noguear, I., Harrigan, S., and Vidal, J.-P.: Climate,
irrigation, and land-cover change explain streamflow trends in countries
bordering the Northeast Atlantic, Geophys. Res. Lett., 46,
10821–10833, https://doi.org/10.1029/2019GL084084, 2019. a
Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux,
J.-M.: A 50-year high-resolution atmospheric reanalysis over France with the
Safran system, Int. J. Climatol., 30, 1627–1644,
https://doi.org/10.1002/joc.2003, 2010. a, b, c, d
Vidal, J.-P., Hingray, B., Magand, C., Sauquet, E., and Ducharne, A.: Hierarchy of climate and hydrological uncertainties in transient low-flow projections, Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, 2016.
a
Wasson, J.-G., Chandesris, A., Pella, H., and Blanc, L.: Typology and reference
conditions for surface water bodies in France: the hydro-ecoregion approach,
TemaNord, 566, 37–41,
https://hal.archives-ouvertes.fr/hal-00475620/document (last access: 10 November 2021), 2002. a
Webb, B.: Trends in stream and river temperature, Hydrol. Process, 10,
205–226,
https://doi.org/10.1002/(SICI)1099-1085(199602)10:2<205::AID-HYP358>3.0.CO;2-1, 1996. a
Webb, B. and Walling, D.: Long-term variability in the thermal impact of river
impoundment and regulation, Appl. Geogr., 16, 211–223,
https://doi.org/10.1016/0143-6228(96)00007-0, 1996. a, b
Webb, B. and Walling, D.: Complex summer water temperature behaviour below a UK
regulating reservoir, Regul. River, 13, 463–477,
https://doi.org/10.1002/(SICI)1099-1646(199709/10)13:5<463::AID-RRR470>3.0.CO;2-1,
1997. a
Webb, B. W., Hannah, D. M., Moore, D. R., Brown, L. E., and Nobilis, F.: Recent
advances in stream and river temperature research, Hydrol. Process., 22, 902–918, https://doi.org/10.1002/hyp.6994, 2008. a, b, c
Wilby, R. and Johnson, M.: Climate variability and implications for keeping
rivers cool in England, Climate Risk Management, 30, 100259,
https://doi.org/10.1016/j.crm.2020.100259, 2020. a, b
Wondzell, S. M., Diabat, M., and Haggerty, R.: What matters most: are future
stream temperatures more sensitive to changing air temperatures, discharge,
or riparian vegetation?, J. Am. Water Resour. As., 55, 116–132, https://doi.org/10.1111/1752-1688.12707, 2019. a
Woodward, G., Perkins, D. M., and Brown, L. E.: Climate change and freshwater
ecosystems: impacts across multiple levels of organization,
Philos. T. R. Soc. B., 365, 2093–2106,
https://doi.org/10.1098/rstb.2010.0055, 2010. a
Yearsley, J. R.: A semi-Lagrangian water temperature model for
advection-dominated river systems, Water Resour. Res., 45, 12,
https://doi.org/10.1029/2008WR007629, 2009. a
Zaidel, P. A., Roy, A. H., Houle, K. M., Lambert, B., Letcher, B. H., Nislow,
K. H., and Smith, C.: Impacts of small dams on stream temperature, Ecol. Indic., 120, 106878, https://doi.org/10.1016/j.ecolind.2020.106878, 2020. a
Zhu, S., Bonacci, O., Oskoruš, D., Hadzima-Nyarko, M., and Wu, S.: Long
term variations of river temperature and the influence of air temperature and
river discharge: case study of Kupa River watershed in Croatia,
J. Hydrol. Hydromech., 67, 305–313, https://doi.org/10.2478/johh-2019-0019,
2019. a
Zobrist, J., Schoenenberger, U., Figura, S., and Hug, S. J.: Long-term trends
in Swiss rivers sampled continuously over 39 years reflect changes in
geochemical processes and pollution,
Environ. Sci. Pollut. R., 25, 16788–16809, https://doi.org/10.1007/s11356-018-1679-x, 2018. a, b
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Stream temperature appears to be increasing globally, but its rate remains poorly constrained...