Articles | Volume 26, issue 9
https://doi.org/10.5194/hess-26-2449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-2449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The importance of non-stationary multiannual periodicities in the North Atlantic Oscillation index for forecasting water resource drought
William Rust
Cranfield Water Science Institute (CWSI), Cranfield University, Bedford, MK43 0AL, United Kingdom
John P. Bloomfield
British Geological Survey, Wallingford, OX10 8BB, United Kingdom
Mark Cuthbert
School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia
Ron Corstanje
Centre for Environment and Agricultural Informatics, Cranfield University, Bedford, MK43 0AL, United Kingdom
Ian Holman
CORRESPONDING AUTHOR
Cranfield Water Science Institute (CWSI), Cranfield University, Bedford, MK43 0AL, United Kingdom
Related authors
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
George Blake, Katerina Michaelides, Elizabeth Kendon, Mark Cuthbert, and Michael Singer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1154, https://doi.org/10.5194/egusphere-2025-1154, 2025
Short summary
Short summary
Dryland rainfall mainly falls during localised storms, with the intensity of these storms key in controlling how water moves through the landscape, but most climate models cannot represent these storms accurately. We find that if you use a model that can represent these storms to understand water resources, you end up with higher soil moisture for plants and groundwater for humans. Any studies of future water resources that don’t use high-resolution models could produce misleading projections.
Kathryn A. Leeming, John P. Bloomfield, Gemma Coxon, and Yanchen Zheng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-202, https://doi.org/10.5194/hess-2023-202, 2023
Preprint withdrawn
Short summary
Short summary
In this work we characterise annual patterns in baseflow, the component of streamflow that comes from subsurface storage. Our research identified early-, mid-, and late-seasonality of baseflow across catchments in Great Britain over two time blocks: 1976–1995 and 1996–2015, and found that many catchments have earlier seasonal patterns of baseflow in the second time period. These changes are linked to changes in climate signals: snow-melt in highland catchments and effective rainfall changes.
Maliko Tanguy, Michael Eastman, Eugene Magee, Lucy J. Barker, Thomas Chitson, Chaiwat Ekkawatpanit, Daniel Goodwin, Jamie Hannaford, Ian Holman, Liwa Pardthaisong, Simon Parry, Dolores Rey Vicario, and Supattra Visessri
Nat. Hazards Earth Syst. Sci., 23, 2419–2441, https://doi.org/10.5194/nhess-23-2419-2023, https://doi.org/10.5194/nhess-23-2419-2023, 2023
Short summary
Short summary
Droughts in Thailand are becoming more severe due to climate change. Understanding the link between drought impacts on the ground and drought indicators used in drought monitoring systems can help increase a country's preparedness and resilience to drought. With a focus on agricultural droughts, we derive crop- and region-specific indicator-to-impact links that can form the basis of targeted mitigation actions and an improved drought monitoring and early warning system in Thailand.
Abrar Habib, Athanasios Paschalis, Adrian P. Butler, Christian Onof, John P. Bloomfield, and James P. R. Sorensen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-27, https://doi.org/10.5194/hess-2023-27, 2023
Preprint withdrawn
Short summary
Short summary
Components of the hydrological cycle exhibit a “memory” in their behaviour which quantifies how long a variable would stay at high/low values. Being able to model and understand what affects it is vital for an accurate representation of the hydrological elements. In the current work, it is found that rainfall affects the fractal behaviour of groundwater levels, which implies that changes to rainfall due to climate change will change the periods of flood and drought in groundwater-fed catchments.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
E. Andrés Quichimbo, Michael Bliss Singer, Katerina Michaelides, Daniel E. J. Hobley, Rafael Rosolem, and Mark O. Cuthbert
Geosci. Model Dev., 14, 6893–6917, https://doi.org/10.5194/gmd-14-6893-2021, https://doi.org/10.5194/gmd-14-6893-2021, 2021
Short summary
Short summary
Understanding and quantifying water partitioning in dryland regions are of key importance to anticipate the future impacts of climate change in water resources and dryland ecosystems. Here, we have developed a simple hydrological model (DRYP) that incorporates the key processes of water partitioning in drylands. DRYP is a modular, versatile, and parsimonious model that can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
Calum Brown, Ian Holman, and Mark Rounsevell
Earth Syst. Dynam., 12, 211–231, https://doi.org/10.5194/esd-12-211-2021, https://doi.org/10.5194/esd-12-211-2021, 2021
Short summary
Short summary
The variety of human and natural processes in the land system can be modelled in many different ways. However, little is known about how and why basic model assumptions affect model results. We compared two models that represent land use in completely distinct ways and found several results that differed greatly. We identify the main assumptions that caused these differences and therefore key issues that need to be addressed for more robust model development.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Bentje Brauns, Daniela Cuba, John P. Bloomfield, David M. Hannah, Christopher Jackson, Ben P. Marchant, Benedikt Heudorfer, Anne F. Van Loon, Hélène Bessière, Bo Thunholm, and Gerhard Schubert
Proc. IAHS, 383, 297–305, https://doi.org/10.5194/piahs-383-297-2020, https://doi.org/10.5194/piahs-383-297-2020, 2020
Short summary
Short summary
In Europe, ca. 65% of drinking water is groundwater. Its replenishment depends on rainfall, but droughts may cause groundwater levels to fall below normal. These
groundwater droughtscan limit supply, making it crucial to understand their regional connection. The Groundwater Drought Initiative (GDI) assesses spatial patterns in historic—recent groundwater droughts across Europe for the first time. Using an example dataset, we describe the background to the GDI and its methodological approach.
Cited articles
Allen, D. J., Brewerton, L. J., Coleby, L. M., Gibbs, B. R., Lewis, M. A.,
MacDonald, A. M., Wagstaff, S. J., and Williams, A. T.: The physical properties of major aquifers in England and Wales, BGS Report WD/97/034, British Geological Survey, 333 pp., http://nora.nerc.ac.uk/id/eprint/13137/ (last access: 11 November 2021), 1997.
Allen, M. R. and Smith, L. A.: Monte Carlo SSA: Detecting irregular oscillations in the Presence of Colored Noise, J. Climate, 9, 3373–3404, https://doi.org/10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2, 1996.
Barker, L. J., Hannaford, J., Parry, S., Smith, K. A., Tanguy, M., and Prudhomme, C.: Historic hydrological droughts 1891–2015: systematic characterisation for a diverse set of catchments across the UK, Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019, 2019.
Beverly, C. and Hocking, M.: Predicting Groundwater Response Times and Catchment Impacts From Land Use Change, Aust. J. Water Resour., 16, 29–47, https://doi.org/10.7158/W10-847.2012.16.1, 2012.
Bloomfield, J. P.: The role of diagenesis in the hydrogeological stratification of carbonate aquifers: An example from the Chalk at Fair Cross, Berkshire, UK, Hydrol. Earth Syst. Sci., 1, 19–33,
https://doi.org/10.5194/hess-1-19-1997, 1997.
Bloomfield, J. P. and Marchant, B. P.: Analysis of groundwater drought building on the standardised precipitation index approach, Hydrol. Earth
Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, 2013.
Bloomfield, J. P., Gaus, I., and Wade, S. D.: A method for investigating the
potential impacts of climate-change scenarios on annual minimum groundwater
levels, Water Environ. J., 17, 86–91, https://doi.org/10.1111/j.1747-6593.2003.tb00439.x, 2003.
Bloomfield, J. P., Marchant, B. J., and McKenzie, A. A.: Changes in groundwater drought associated with anthropogenic warming, Hydrol. Earth
Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, 2019.
Bonaccorso, B., Cancelliere, A., and Rossi, G.: Probabilistic forecasting of
drought class transitions in Sicily (Italy) using Standardized Precipitation
Index and North Atlantic Oscillation Index, J. Hydrol., 526, 136–150,
https://doi.org/10.1016/j.jhydrol.2015.01.070, 2015
Brady, A., Faraway, J., and Prosdocimi, I.: Attribution of long-term changes
in peak river flows in Great Britain, Hydrolog. Sci. J., 64, 1159–1170,
https://doi.org/10.1080/02626667.2019.1628964, 2019.
British Geological Survey: WellMaster hydrogeological database,
Natural Environment Research Council, https://www.bgs.ac.uk/products/hydrogeology/wellmaster.html, last access: 11 November 2021.
Burt, T. P. and Howden, N. J. K.: North Atlantic Oscillation amplifies
orographic precipitation and river flow in upland Britain, Water Resour. Res., 49, 3504–3515, https://doi.org/10.1002/wrcr.20297, 2013.
Cammalleri, C., Naumann, G., Mentaschi, L., Bisselink, B., Gelati, E., De Roo, A., and Feyen, L.: Diverging hydrological drought traits over Europe
with global warming, Hydrol. Earth Syst. Sci., 24, 5919–5935,
https://doi.org/10.5194/hess-24-5919-2020, 2020.
Chiang, F., Mazdiyasni, O., and AghaKouchak, A.: Evidence of anthropogenic
impacts on global drought frequency, duration, and intensity, Nat. Commun.,
12, 2754, https://doi.org/10.1038/s41467-021-22314-w, 2021.
Coleman, J. S. M. and Budikova, D.: Eastern U.S. summer streamflow during
extreme phases of the North Atlantic oscillation, J. Geophys. Res., 118,
4181–4193, https://doi.org/10.1002/jgrd.50326, 2013.
Dams, J., Salvadore, E., Van Daele, T., Ntegeka, V., Willems, P., and Batelaan, O.: Spatio-temporal impact of climate change on the groundwater
system, Hydrol. Earth Syst. Sci., 16, 1517–1531,
https://doi.org/10.5194/hess-16-1517-2012, 2012.
Deser, C., Hurrell, J. W., and Phillips, A. S.: The role of the North
Atlantic Oscillation in European climate projections, Clim. Dynam., 49,
3141–3157, https://doi.org/10.1007/s00382-016-3502-z, 2017.
De Vita, P., Allocca, V., Manna, F., and Fabbrocino, S.: Coupled decadal
variability of the North Atlantic Oscillation, regional rainfall and karst
spring discharges in the Campania region (southern Italy), Hydrol. Earth
Syst. Sci., 16, 1389–1399, https://doi.org/10.5194/hess-16-1389-2012, 2012.
Dixon, H., Hannaford, J., and Fry, M. J. The effective management of national hydrometric data: experiences from the United Kingdom, Hydrolog. Sci. J., 58, 1383–1399, https://doi.org/10.1080/02626667.2013.787486, 2013.
Eade, R., Stephenson, D. B., Scaife, A. A., and Smith, D. M.: Quantifying the rarity of extreme multi-decadal trends: how unusual was the late twentieth century trend in the North Atlantic Oscillation?, Clim. Dynam., 58, 1555–1568, https://doi.org/10.1007/s00382-021-05978-4, 2022.
Feng, P.-N., Lin, H., Derome, J., and Merlis, T. M.: Forecast Skill of the
NAO in the Subseasonal-to-Seasonal Prediction Models, J. Climate, 34,
4757–4769, https://doi.org/10.1175/JCLI-D-20-0430.1, 2021.
Folland, C. K., Hannaford, J., Bloomfield, J. P., Kendon, M., Svensson, C.,
Marchant, B. P., Prior, J., and Wallace, E.: Multi-annual droughts in the
English Lowlands: a review of their characteristics and climate drivers in
the winter half-year, Hydrol. Earth Syst. Sci., 19, 2353–2375,
https://doi.org/10.5194/hess-19-2353-2015, 2015.
Forootan, E., Khaki, M., Schumacher, M., Wulfmeyer, V., Mehrnegar, N., van
Dijk, A. I. J. M., Brocca, L., Farzaneh, S., Akinluyi, F., Ramillien, G.,
Shum, C. K., Awange, J., and Mostafaie, A.: Understanding the global
hydrological droughts of 2003–2016 and their relationships with teleconnections, Sci. Total Environ., 650, 2587–2604, https://doi.org/10.1016/J.SCITOTENV.2018.09.231, 2018.
Gao, L., Deng, Y., Yan, X., Li, Q., Zhang, Y., and Gou, X.: The unusual recent streamflow declines in the Bailong River, north-central China, from a
multi-century perspective, Quaternary Sci. Rev., 260, 106927,
https://doi.org/10.1016/j.quascirev.2021.106927, 2021.
Garamhegyi, T., Kovács, J., Pongrácz, R., Tanos, P., and Hatvani, I.
G.: Investigation of the climate-driven periodicity of shallow groundwater
level fluctuations in a Central-Eastern European agricultural region, Hydrogeol. J., 26, 677–688, https://doi.org/10.1007/s10040-017-1665-2, 2018.
Gurdak, J. J.: Climate-induced pumping, Nat. Geosci., 10, 71–71, 2017.
Hall, R. J. and Hanna, E.: North Atlantic circulation indices: links with summer and winter UK temperature and precipitation and implications for seasonal forecasting, Int. J. Climatol., 38, e660–e677, https://doi.org/10.1002/joc.5398, 2018.
Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L., Kyselý, J., and Kumar, R.: Revisiting the recent European droughts from a long-term perspective, Sci. Rep., 8, 9499, https://doi.org/10.1038/s41598-018-27464-4, 2018.
Hannaford, J., Mastrantonas, N., Vesuviano, G., and Turner, S.: An updated national-scale assessment of trends in UK peak river flow data: how robust are observed increases in flooding?, Hydrol. Res., 52, 699–718, https://doi.org/10.2166/nh.2021.156, 2021.
Holman, I., Rivas-Casado, M., Bloomfield, J. P., and Gurdak, J. J.: Identifying non-stationary groundwater level response to North Atlantic
ocean-atmosphere teleconnection patterns using wavelet coherence, Hydrogeol.
J., 19, 1269–1278, https://doi.org/10.1007/s10040-011-0755-9, 2011.
Hurrell, J. W.: Decadal trends in the north atlantic oscillation: regional
temperatures and precipitation, Science, 269, 676–679,
https://doi.org/10.1126/science.269.5224.676, 1995.
Hurrell, J. W. and Deser, C.: North Atlantic climate variability: The role of the North Atlantic Oscillation, J. Mar. Syst., 79, 231–244,
https://doi.org/10.1016/j.jmarsys.2008.11.026, 2010.
Hurrell, J. W. and Van Loon, H.: Decadal variations in climate associated with the North Atlantic Oscillation, Climatic Change, 36, 301–326, https://doi.org/10.1023/A:1005314315270, 1997.
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.: An Overview of the North Atlantic Oscillation, in: The North Atlantic Oscillation: Climatic
Significance and Environmental Impact, American Geophysical Union, 1–35,
https://doi.org/10.1029/GM134, 2003.
Jackson, C. R., Bloomfield, J. P., and Mackay, J. D.: Evidence for changes
in historic and future groundwater levels in the UK, Prog. Phys. Geogr., 39,
49–67, https://doi.org/10.1177/0309133314550668, 2015.
Kay, A. L., Watts, G., Wells, S. C., and Allen, S.: The impact of climate
change on U.K. river flows: A preliminary comparison of two generations of
probabilistic climate projections, Hydrol. Process., 34, 1081–1088,
https://doi.org/10.1002/hyp.13644, 2020.
Kingston, D. G., McGregor, G. R., Hannah, D. M., and Lawler, D. M.: River
flow teleconnections across the northern North Atlantic region, Geophys.
Res. Lett., 33, 1–5, https://doi.org/10.1029/2006GL026574, 2006.
Kuss, A. M. and Gurdak, J. J.: Groundwater level response in U.S. principal
aquifers to ENSO, NAO, PDO, and AMO, J. Hydrol., 519, 1939–1952,
https://doi.org/10.1016/j.jhydrol.2014.09.069, 2014.
Labat, D.: Cross wavelet analyses of annual continental freshwater discharge
and selected climate indices, J. Hydrol., 385, 269–278,
https://doi.org/10.1016/j.jhydrol.2010.02.029, 2010.
Liesch, T. and Wunsch, A.: Aquifer responses to long-term climatic periodicities, J. Hydrol., 572, 226–242, https://doi.org/10.1016/j.jhydrol.2019.02.060, 2019.
Luque-Espinar, J. A., Chica-Olmo, M., Pardo-Igúzquiza, E., and
García-Soldado, M. J.: Influence of climatological cycles on hydraulic
heads across a Spanish aquifer, J. Hydrol., 354, 33–52,
https://doi.org/10.1016/j.jhydrol.2008.02.014, 2008.
Marchant, B. P. and Bloomfield, J. P.: Spatio-temporal modelling of the status of groundwater droughts, J. Hydrol., 564, 397–413,
https://doi.org/10.1016/j.jhydrol.2018.07.009, 2018.
Marsh, T. and Hannaford, J.: UK Hydrometric Register, Hydrological data UK series, Centre for Ecology and Hydrology, https://nrfa.ceh.ac.uk/data/ (last access: 11 November 2021), 2008.
Meinke, H., deVoil, P., Hammer, G. L., Power, S., Allan, R., Stone, R. C.,
Folland, C., and Potgieter, A.: Rainfall variability of decadal and longer
time scales: Signal or noise?, J. Climate, 18, 89–90,
https://doi.org/10.1175/JCLI-3263.1, 2005.
National River Flow Archive: Streamflow and precipitation data, metadata, http://nrfa.ceh.ac.uk/, last access: 11 November 2021.
NCAR: PC-Based North Atlantic Oscillation Index, https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based, last access: 11 November 2021.
Neves, M. C., Jerez, S., and Trigo, R. M.: The response of piezometric levels in Portugal to NAO, EA, and SCAND climate patterns, J. Hydrol., 568, 1105–1117, https://doi.org/10.1016/j.jhydrol.2018.11.054, 2019.
O'Reilly, C. H., Weisheimer, A., Woollings, T., Gray, L. J., and MacLeod, D.: The importance of stratospheric initial conditions for winter North Atlantic Oscillation predictability and implications for the signal‐to‐noise paradox, Q. J. Roy. Meteorol. Soc., 145, 131–146, https://doi.org/10.1002/qj.3413, 2019.
Peters, E. Propagation of drought through groundwater systems – illustrated
in the Pang (UK) and Upper-Guadiana (ES) catchments, PhD thesis, Wageningen University, Wageningen, https://edepot.wur.nl/121490 (last access: 11 November 2021), 2003.
Rial, J. A., Pielke Sr., R. A., Beniston, M., Claussen, M., Canadell, J., Cox, P., Held, H., de Noblet-Ducoudré, N., Prinn, R., Reynolds, J. F., and Salas, J. D.: Nonlinearities, feedbacks and critical thresholds within
the earth's climate system, Climatic Change, 65, 11–38,
https://doi.org/10.1023/B:CLIM.0000037493.89489.3f, 2004.
Rind, D. Perlwitz, J., P. Lonergan, P.: AO/NAO response to climate change: 1. Respective influences of stratospheric and tropospheric climate changes, J. Geophys. Res., 110, D12107, https://doi.org/10.1029/2004jd005103, 2005.
Rodda, J. and Marsh, T.: The 1975–76 Drought – a contemporary and retrospective review, Centre for Ecology & Hydrology, http://www.ceh.ac.uk/data/nrfa/nhmp/other_reports/CEH_1975-76_Drought_Report_Rodda_and_Marsh.pdf
(last access: 11 November 2021), 2011.
Rosch, A. and Schmidbauer, H.: WaveletComp 1.1: a guided tour through the R package, http://www.hs-stat.com/projects/WaveletComp/WaveletComp_guided_tour.pdf
(last access: 11 November 2021), 2018.
Rust, W., Corstanje, R., Holman, I. P., and Milne, A. E.: Detecting land use
and land management influences on catchment hydrology by modelling and
wavelets, J. Hydrol., 517, 378–389, 2014.
Rust, W., Holman, I., Corstanje, R., Bloomfield, J., and Cuthbert, M.: A
conceptual model for climatic teleconnection signal control on groundwater
variability in Europe, Earth-Sci. Rev., 177, 164–174,
https://doi.org/10.1016/j.earscirev.2017.09.017, 2018.
Rust, W., Holman, I., Bloomfield, J., Cuthbert, M., and Corstanje, R.:
Understanding the potential of climate teleconnections to project future
groundwater drought, Hydrol. Earth Syst. Sci., 23, 3233–3245,
https://doi.org/10.5194/hess-23-3233-2019, 2019.
Rust, W., Bloomfield, J. P., Cuthbert, M. O., Corstanje, R., and Holman, I. P.: Non-stationary control of the NAO on European rainfall and its
implications for water resource management, Hydrol. Process., 35, e14099, https://doi.org/10.1002/hyp.14099, 2021b.
Rust, W., Holman, I., Bloomfield, J. P., and Cuthbert, M.: Nonstationary NAO periods on water resources, Cranfield Online Research Data (CORD) [data set], https://doi.org/10.17862/cranfield.rd.16866868.v1, 2022.
Rust, W., Cuthbert, M., Bloomfield, J., Corstanje, R., Howden, N., and Holman, I.: Exploring the role of hydrological pathways in modulating multi-annual climate teleconnection periodicities from UK rainfall to streamflow, Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, 2021a.
Sang, Y.-F.: A review on the applications of wavelet transform in hydrology
time series analysis, Atmos. Res., 122, 8–15, https://doi.org/10.1016/j.atmosres.2012.11.003, 2013.
Schneider, C., Laizé, C. L. R., Acreman, M. C., and Flörke, M.: How
will climate change modify river flow regimes in Europe?, Hydrol. Earth
Syst. Sci., 17, 325–339, https://doi.org/10.5194/hess-17-325-2013, 2013.
Spinoni, J., Naumann, G., Vogt, J. V., and Barbosa, P.: The biggest drought events in Europe from 1950 to 2012, J. Hydrol.: Reg. Stud., 3, 509–524, https://doi.org/10.1016/j.ejrh.2015.01.001, 2015.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.: A
review of global precipitation data sets: Data sources, estimation, and
intercomparisons, Rev. Geophys., 56, 79–107, https://doi.org/10.1002/2017RG000574, 2018.
Sutanto, S. J., Van Lanen, H. A. J., Wetterhall, F., and Llort, X.: Potential of Pan-European Seasonal Hydrometeorological Drought Forecasts Obtained from a Multihazard Early Warning System, B. Am. Meteorol. Soc., 101, E368–E393, https://doi.org/10.1175/BAMS-D-18-0196.1, 2020.
Svensson, C., Brookshaw, A., Scaife, A. A., Bell, V. A., Mackay, J. D.,
Jackson, C. R., Hannaford, J., Davies, H. N., Arribas, A., and Stanley, S.:
Long-range forecasts of UK winter hydrology, Environ. Res. Lett., 10, 064006, https://doi.org/10.1088/1748-9326/10/6/064006, 2015.
Tanguy, M., Haslinger, K., Svensson, C., Parry, S., Barker, L. J., Hannaford, J., and Prudhomme, C.: Regional Differences in Spatiotemporal Drought Characteristics in Great Britain, Front. Environ. Sci. Eng. China, 9, 639649, https://doi.org/10.3389/fenvs.2021.639649, 2021.
Tremblay, L., Larocque, M., Anctil, F., and Rivard, C.: Teleconnections and
interannual variability in Canadian groundwater levels, J. Hydrol., 410,
178–188, https://doi.org/10.1016/j.jhydrol.2011.09.013, 2011.
Trigo, R. M., Osborn, T. J., and Corte-real, J. M.: The North Atlantic Oscillation influence on Europe: climate impacts and associated physical
mechanisms, Clim. Res., 20, 9–17, https://doi.org/10.3354/cr020009, 2002.
Uvo, C. B., Foster, K., and Olsson, J.: The spatio-temporal influence of
atmospheric teleconnection patterns on hydrology in Sweden, J. Hydrol.: Reg. Stud., 34, 100782, https://doi.org/10.1016/j.ejrh.2021.100782, 2021.
Van Loon, A. F.: On the propagation of drought: How climate and catchment
characteristics influence hydrological drought development and recovery, PhD thesis, Wageningen University, Wageningen, https://edepot.wur.nl/249786 (last access: 11 November 2021), 2013.
Van Loon, A. F.: Hydrological drought explained, WIREs Water, 2, 359–392,
https://doi.org/10.1002/wat2.1085, 2015.
Velasco, E. M., Gurdak, J. J., Dickinson, J. E., Ferré, T. P. A., and
Corona, C. R.: Interannual to multidecadal climate forcings on groundwater
resources of the U.S. West Coast, J. Hydrol.: Reg. Stud., 11, 250–265, https://doi.org/10.1016/j.ejrh.2015.11.018, 2015.
Vicente-Serrano, S. M. and López-Moreno, J. I.: Differences in the
non-stationary influence of the North Atlantic Oscillation on European
precipitation under different scenarios of greenhouse gas concentrations,
Geophys. Res. Lett., 35, GL034832, https://doi.org/10.1029/2008gl034832, 2008.
Wendt, D. E., Van Loon, A. F., Bloomfield, J. P., and Hannah, D. M.: Asymmetric impact of groundwater use on groundwater droughts, Hydrol. Earth
Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, 2020.
West, H., Quinn, N., and Horswell, M.: The Influence of the North Atlantic
Oscillation and East Atlantic Pattern on Drought in British Catchments,
Front. Environ. Sci. Eng. China, 10, 754597, https://doi.org/10.3389/fenvs.2022.754597, 2022.
Woollings, T. and Blackburn, M.: The North Atlantic Jet Stream under Climate Change and Its Relation to the NAO and EA Patterns, J. Climate, 25, 886–902, https://doi.org/10.1175/JCLI-D-11-00087.1, 2012.
Wrzesiński, D. and Paluszkiewicz, R.: Spatial differences in the impact
of the North Atlantic Oscillation on the flow of rivers in Europe, Hydrol. Res., 42, 30–39, https://doi.org/10.2166/nh.2010.077, 2011.
Wu, Y., Zhang, G., Shen, H., and Xu, Y. J.: Nonlinear Response of Streamflow
to Climate Change in High-Latitude Regions: A Case Study in Headwaters of
Nenjiang River Basin in China's Far Northeast, Water, 10, 294,
https://doi.org/10.3390/w10030294, 2018.
Yuan, X., Zhang, M., Wang, L., and Zhou, T.: Understanding and seasonal
forecasting of hydrological drought in the Anthropocene, Hydrol. Earth Syst.
Sci., 21, 5477–5492, https://doi.org/10.5194/hess-21-5477-2017, 2017.
Zhang, W., Mei, X., Geng, X., Turner, A. G., and Jin, F.-F.: A Nonstationary
ENSO–NAO Relationship Due to AMO Modulation, J. Climate, 32, 33–43,
https://doi.org/10.1175/JCLI-D-18-0365.1, 2019.
Zhang, X., Jin, L., Chen, C., Guan, D., and Li, M.: Interannual and interdecadal variations in the North Atlantic Oscillation spatial shift, Chin. Sci. Bull., 56, 2621–2627, https://doi.org/10.1007/s11434-011-4607-8, 2011.
Short summary
We highlight the importance of the North Atlantic Oscillation in controlling droughts in the UK. Specifically, multi-year cycles in the NAO are shown to influence the frequency of droughts and this influence changes considerably over time. We show that the influence of these varying controls is similar to the projected effects of climate change on water resources. We also show that these time-varying behaviours have important implications for water resource forecasts used for drought planning.
We highlight the importance of the North Atlantic Oscillation in controlling droughts in the UK....