Articles | Volume 26, issue 5
https://doi.org/10.5194/hess-26-1203-2022
https://doi.org/10.5194/hess-26-1203-2022
Research article
 | 
04 Mar 2022
Research article |  | 04 Mar 2022

Quantifying input uncertainty in the calibration of water quality models: reordering errors via the secant method

Xia Wu, Lucy Marshall, and Ashish Sharma

Related authors

The impact of climate change on dam overtopping flood risk
Michelle Ho, Declan O'Shea, Conrad Wasko, Rory Nathan, and Ashish Sharma
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-403,https://doi.org/10.5194/hess-2024-403, 2025
Preprint under review for HESS
Short summary
Continental-scale bias-corrected climate and hydrological projections for Australia
Justin Peter, Elisabeth Vogel, Wendy Sharples, Ulrike Bende-Michl, Louise Wilson, Pandora Hope, Andrew Dowdy, Greg Kociuba, Sri Srikanthan, Vi Co Duong, Jake Roussis, Vjekoslav Matic, Zaved Khan, Alison Oke, Margot Turner, Stuart Baron-Hay, Fiona Johnson, Raj Mehrotra, Ashish Sharma, Marcus Thatcher, Ali Azarvinand, Steven Thomas, Ghyslaine Boschat, Chantal Donnelly, and Robert Argent
Geosci. Model Dev., 17, 2755–2781, https://doi.org/10.5194/gmd-17-2755-2024,https://doi.org/10.5194/gmd-17-2755-2024, 2024
Short summary
Explaining changes in rainfall–runoff relationships during and after Australia's Millennium Drought: a community perspective
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022,https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Estimating radar precipitation in cold climates: the role of air temperature within a non-parametric framework
Kuganesan Sivasubramaniam, Ashish Sharma, and Knut Alfredsen
Hydrol. Earth Syst. Sci., 22, 6533–6546, https://doi.org/10.5194/hess-22-6533-2018,https://doi.org/10.5194/hess-22-6533-2018, 2018
Short summary
Time-varying parameter models for catchments with land use change: the importance of model structure
Sahani Pathiraja, Daniela Anghileri, Paolo Burlando, Ashish Sharma, Lucy Marshall, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 22, 2903–2919, https://doi.org/10.5194/hess-22-2903-2018,https://doi.org/10.5194/hess-22-2903-2018, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
On the importance of discharge observation uncertainty when interpreting hydrological model performance
Jerom P. M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
Hydrol. Earth Syst. Sci., 28, 5011–5030, https://doi.org/10.5194/hess-28-5011-2024,https://doi.org/10.5194/hess-28-5011-2024, 2024
Short summary
A data-centric perspective on the information needed for hydrological uncertainty predictions
Andreas Auer, Martin Gauch, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, and Daniel Klotz
Hydrol. Earth Syst. Sci., 28, 4099–4126, https://doi.org/10.5194/hess-28-4099-2024,https://doi.org/10.5194/hess-28-4099-2024, 2024
Short summary
A decomposition approach to evaluating the local performance of global streamflow reanalysis
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024,https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
How much water vapour does the Tibetan Plateau release into the atmosphere?
Chaolei Zheng, Li Jia, Guangcheng Hu, Massimo Menenti, and Joris Timmermans
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-55,https://doi.org/10.5194/hess-2024-55, 2024
Revised manuscript accepted for HESS
Short summary
Technical note: Complexity–uncertainty curve (c-u-curve) – a method to analyse, classify and compare dynamical systems
Uwe Ehret and Pankaj Dey
Hydrol. Earth Syst. Sci., 27, 2591–2605, https://doi.org/10.5194/hess-27-2591-2023,https://doi.org/10.5194/hess-27-2591-2023, 2023
Short summary

Cited articles

Ajami, N. K., Duan, Q., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, https://doi.org/10.1029/2005WR004745, 2007. 
Baldwin, A. K., Robertson, D. M., Saad, D. A., and Magruder, C.: Refinement of Regression Models to Estimate Real-Time Concentrations of Contaminants in the Menomonee River Drainage Basin, Southeast Wisconsin, 2008–11, in: US Geological Survey Scientific Investigations Report 2013-5174, US Geological Survey Reston, Virginia, https://doi.org/10.3133/sir20135174, 2013. 
Beven, K. and Binley, A.: The future of distributed models: model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992. 
Bonhomme, C. and Petrucci, G.: Should we trust build-up/wash-off water quality models at the scale of urban catchments?, Water Res., 108, 422–431, https://doi.org/10.1016/j.watres.2016.11.027, 2017. 
Chaudhary, A. and Hantush, M. M.: Bayesian Monte Carlo and maximum likelihood approach for uncertainty estimation and risk management: Application to lake oxygen recovery model, Water Res., 108, 301–311, https://doi.org/10.1016/j.watres.2016.11.012, 2017. 
Download
Short summary
Decomposing parameter and input errors in model calibration is a considerable challenge. This study transfers the direct estimation of an input error series to their rank estimation and develops a new algorithm, i.e., Bayesian error analysis with reordering (BEAR). In the context of a total suspended solids simulation, two synthetic studies and a real study demonstrate that the BEAR method is effective for improving the input error estimation and water quality model calibration.