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Abstract. Uncertainty in input can significantly impair pa-
rameter estimation in water quality modeling, necessitat-
ing the accurate quantification of input errors. However, de-
composing the input error from the model residual error is
still challenging. This study develops a new algorithm, re-
ferred to as the Bayesian Error Analysis with Reordering
(BEAR), to address this problem. The basic approach re-
quires sampling errors from a pre-estimated error distribu-
tion and then reordering them with their inferred ranks via
the secant method. This approach is demonstrated in the case
of total suspended solids (TSSs) simulation via a conceptual
water quality model. Based on case studies using synthetic
data, the BEAR method successfully improves the input er-
ror identification and parameter estimation by introducing
the error rank estimation and the error position reordering.
The results of a real case study demonstrate that, even with
the presence of model structural error and output data er-
ror, the BEAR method can approximate the true input and
bring a better model fit through an effective input modifi-
cation. However, its effectiveness depends on the accuracy
and selection of the input error model. The application of the
BEAR method in TSS simulation can be extended to other
water quality models.

1 Introduction

For robust water management, uncertainty analysis is of
growing importance in water quality modeling (Refsgaard
et al., 2007). It can provide knowledge of error propagation
and the magnitude of uncertainty impacts in model simula-
tions to guide improved predictive performance (Radwan et
al., 2004). However, the implementation of an uncertainty
analysis in water quality models (WQMs) is still challenging
due to complex interactions among sources of multiple er-
rors, generally caused by a simplified model structure (struc-
tural uncertainty), imperfect observed data (input uncertainty
and observation uncertainty in calibration data), and limited
parameter identifiability (parametric uncertainty; Refsgaard
et al., 2007).

Among them, input uncertainty is expected to be partic-
ularly significant in a WQM, which is interpreted here as
the observation uncertainty of any input data. Observation
uncertainty is different from other sources of uncertainty in
modeling since these uncertainties arise independently of the
WOQM itself; thus, their properties (e.g., probability distribu-
tion family and distribution parameters) can, at least in prin-
ciple, be estimated prior to the model calibration and sim-
ulation by analysis of the data acquisition instruments and
procedures (Mcmillan et al., 2012). Rode and Suhr (2007)
and Harmel et al. (2006) reviewed the uncertainty associated
with selected water quality variables based on the empirical
quality of observations. The general methodology developed
in their studies can be extended to the analysis of other water
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quality variables. Besides the error coming from the mea-
surement process, the error from surrogated data is another
major source of input uncertainty (Mcmillan et al., 2012).
Measurements of water quality variables often lack desirable
temporal and spatial resolutions; thus, the use of surrogate or
proxy data is necessary for improved inference of water qual-
ity parameters (Evans et al., 1997; Stubblefield et al., 2007).
The probability distribution of the surrogate error is easy to
estimate from the residuals between the measurements and
proxy values. In this process, the measurement errors are ig-
nored, given that the errors introduced from the surrogate
process are commonly much larger than the measurement
errors (Mcmillan et al., 2012). These estimated error distri-
butions are prior knowledge of input uncertainty before any
model calibration and can serve as the a priori uncertainty
estimation in the modeling process.

Input uncertainty can lead to bias in parameter estimation
in water quality modeling (Chaudhary and Hantush, 2017;
Kleidorfer et al., 2009; Willems, 2008). Improved model cal-
ibration requires isolating the input uncertainty from the to-
tal uncertainty. However, the precise quantification of time-
varying input errors is still challenging when other types of
uncertainties are propagated through to the model results.
In hydrological modeling, several approaches have been de-
veloped to characterize time-varying input errors, and these
may hold promise for application in WQMSs. The Bayesian
total error analysis (BATEA) method provides a framework
that has been widely used (Kavetski et al., 2006). Time-
varying input errors are defined as multipliers on the in-
put time series and inferred along with the model parame-
ters in a Bayesian calibration scheme. This leads to a high-
dimensionality problem which cannot be avoided (Renard et
al., 2009) and restricts the application of this approach to the
assumption of event-based multipliers (the same multiplier
applied to all time steps of one storm event). In the Integrated
Bayesian Uncertainty Estimator IBUNE; Ajami et al., 2007)
approach, multipliers are not jointly inferred with the model
parameters but sampled from the assumed distribution and
then filtered by the constraints of simulation fitting. This ap-
proach reduces the dimensionality significantly and can be
applied in the assumption of data-based multiplier (one mul-
tiplier for one input data point; Ajami et al., 2007). However,
this approach is less effective because the probability of co-
occurrence of all optimal error values is very low, resulting
in an underestimation of the multiplier variance and misiden-
tification of the uncertainty sources (Renard et al., 2009).

To complete this goal, this study attempts to add a reorder-
ing strategy into the IBUNE framework and names this de-
veloped algorithm as the Bayesian Error Analysis with Re-
ordering (BEAR). The derivation and details of the BEAR
algorithm in quantifying input errors are described in Sect. 2.
Section 3 introduces the build-up/wash-off model (BwMod)
to illustrate this approach. Its model input, streamflow, of-
ten suffers from observational errors from a rating curve. By
comparing the results with other calibration frameworks, the
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ability of the BEAR method is explored in two synthetic
case studies and one real case study. In this way, the new
algorithm is tested in a controlled situation (with the knowl-
edge of the true error and data value) and in a realistic situa-
tion (with the interference of multiple error sources), respec-
tively. Section 3 describes the setup of these case studies,
and Sect. 4 demonstrates their results. Section 5 evaluates
the BEAR method and its implementation. Finally, Sect. 6
outlines the main conclusions and recommendations for this
work.

2 Methodology

2.1 Basic theory of identifying the input error in model
calibration

A WQM in the ideal situation without any error can be de-
scribed as follows:

Y*=M(X"0"), (1)

where the asterisk * implies the true value without error, and
the true output Y™ is simulated by the perfect model M with
the true input X* and the true model parameter 8*. Here and
in the following contents, a capitalized bold letter (e.g., X, Y)
represents a vector and a lowercase letter (e.g., x, y) repre-
sents a scalar.

In reality, the model input X° (typically the rainfall or
streamflow in a WQM) inevitably suffers from input error
ex. This will result in a calibrated model parameter ¢ bi-
ased from the true value 8* (Kleidorfer et al., 2009). Thus,
under the assumption that the output data and model struc-
ture are generally without errors and that the input errors are
additive to the true input data X*, the model residual & in a
traditional calibration can be described by the following:

e=Y—-Y'=Y°— M(X°|6°)=Y*
— M(X*+¢ex|0%),ex ~ N(ux,0%), 2)

where Y* is the output simulated from the model M corre-
sponding to the observed input X° and model parameter 6°,
and the observed output Y° is assumed without observational
errors in the derivation and, thus, can be denoted as Y*. Input
error €x is assumed to follow a Gaussian distribution, with
mean py and variance 0‘)2(.

It should be noted that this study focuses on identifying the
input errors in the process of parameter estimation, and the
derivation of the BEAR method is based on the assumption
that the model only suffers from input errors and parameter
errors, but other sources of error (i.e., model structural error
and output observational error) are inevitable in the WQM
and can impair the effectiveness of input error identification
and parameter estimation. Considering this realistic situa-
tion, the ability of the BEAR method will be tested later in
one synthetic case study and one real case study, where the
interference of other sources of error has been considered.
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To counter the influence of input errors in a traditional cal-
ibration, a common approach is to subtract estimated errors
eg( from the observed input X°. This is illustrated as the pro-
posed approach, and the superscript p represents the values
in this proposed approach. The residual P will change to the
following:

P =Y°—YP=Y*— M(XP|§P)=Y"
—M(X°—e}|0P) =Y* — M(X*+ex—eS|0P). (3)

If the equivalence between ey and e[;( can be ensured for
each data point, then the modified input XP becomes the
same as the true value X*. The proposed calibration (Eq. 3)
will turn into an ideal calibration, where the optimal param-
eters @P will lead to the same simulation corresponding to
the true values 0%, and the model residual eP will decrease to
zero. If the inverse problem (from the zero residual to find the
optimal parameter) is not unique, then the calibrated param-
eter #” may not converge to the true parameter 6 but lead to
the same simulation as what the true parameter corresponds
to. In this study, these parameters are also denoted as 8™ and
called ideal model parameters. Besides, if the identified input
error and the model parameter can compensate each other,
then multiple combinations of model parameter and input er-
ror may yield zero residual, and their estimates will be biased
from the ideal values. A possible way to weaken this com-
pensation effect will be explored in Sect. 5.3. Although the
aforementioned problems cannot be avoided, selecting the
optimal input error series according to the model residual er-
ror is the basic theory of not only this study but also current
methods identifying the input errors (i.e., BATEA — Kavetski
et al., 2006; IBUNE — Ajami et al., 2007).

The above approach does not improve the input error
model itself but improves the WQM specification to have pa-
rameters closer to what would be achieved under no-error
conditions. Then the model can be more effectively used
for scenario analysis (where we may know the hydrologic
regime of a catchment in a hypothetical future), for forecast-
ing under the assumption of perfect inputs (where the driving
hydrologic forecast is independently obtained via a numeri-
cal weather prediction and a hydrologic model), or for the
regionalization of the WQM (where the model is transferred
to a catchment without data). In all of these cases, an ideal
model should have unbiased parameter estimates. This is our
goal in identifying the optimal input errors and not to use
the model for predictions with input data suffering from the
same errors.

2.2 The introduction of error rank estimation via the
secant method

Unlike directly estimating the input error value via exist-
ing methods, this study attempts to transform the input error
quantification into the rank domain. Here, the rank is defined
as the order of any individual value relative to the other sam-
pled values and determines the relative magnitude of each
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error in all data errors. For example, in the first iteration in
Table A1, the error at the 15th time step, —0.29, is the small-
est value among all the sampled errors; therefore, its rank is
1. In current methods, an assumption of input error model is
necessary to set, as it provides an overall distribution for the
estimated input errors. If the knowledge of the error distri-
bution (i.e., cumulative distribution function, CDF, of input
errors) has been obtained, then the error value only depends
on its rank in this distribution. Therefore, under the condi-
tion of a certain input error model, the rank estimation will
bring similar results to the direct value estimation. Besides,
the rank estimation has a few advantages over the direct value
estimation. The discussion on this is stated in Sect. 5.1.

In the rank domain, the challenge becomes finding a way
to effectively adjust the input error rank to push the resid-
ual error equal to zero. The secant method can be applied
to address this problem. It is an iterative process to produce
better approximations to the roots of a real-valued equation
(Ralston and Jennrich, 1978). Here, the root is the optimal
rank of each input error, and the equation is the correspond-
ing model residual equal to zero. The secant method (Ralston
and Jennrich, 1978) can be repeated as follows:

p ki,q—l _ki,q—Z (4)
i,q—=1p _gP ’
i,qg—1 i,q—2

kiq=kig-1—¢

until a sufficiently accurate target value is reached. In this
study, the target value is a residual of zero (85 = 0), indi-
cating a perfect model fit with input errors estimated exactly.
Here, k; 4 and &‘E represent the estimated rank of input er-
ror and the model residual at ith time step and gth iteration,
respectively. The error rank of each data point is updated, re-
spectively, via Eq. (4), where i =1, ... n. n is the data length
and also the number of the estimated errors, as these errors
are data-based.

After calculating Eq. (4), it is possible that the rank k; ,
is out of the rank range (for example, less than 1 or more
than n) or not an integer. Sorting k; 4 in all the ranks k; , (i =
1,...,n) can address this problem by effectively assigning to
each of them a new integer rank based on its position in the
sorted list. Thus, in Eq. (4), k; 4 should be changed to K; 4,
representing the pre-rank. After sorting K; , for all the errors,
the post-rank k; ;, will then belong to reasonable values. The
specific calculation of the error rank is demonstrated in the
seventh and eighth row in Table A1l.

From the above, estimating the rank of input errors via the
secant method can be described as the following two equa-
tions.

We update the rank of each input error K; , via the secant
method, respectively, fori =1, ..., n, as follows:

p kig—1—kig— 5
=10 _p &)

iqg—1 " €iq—2

Kig=kig-1—¢
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We then sort K; ,(i =1, ...,n) in all the error pre-ranks K,
to obtain a reasonable rank, as follows:

ki,q :k(Ki,q)s (6)

where k() means calculating its rank.
Thus, the procedure of input error quantification has been
developed via the following key steps:

1. Sample the errors (the number is equal to the number of
input data) from the assumed error distribution to main-
tain the overall statistical characteristics of the input er-
rors and allocate them randomly to all the time steps.

2. Update the input error ranks to force the model residual
close to zero via the secant method (Egs. 5 and 6).

3. Reorder these sampled errors according to the updated
error ranks.

4. Repeat steps (2) and (3) for a few iterations until a
defined target is achieved. This new algorithm is re-
ferred to as the Bayesian Error Analysis with Reorder-
ing (BEAR). An example to illustrate how the BEAR
method works is presented in Appendix A.

2.3 Bayesian inference of input uncertainty and the
BEAR method

When the BEAR method is applied in a realistic situation, the
model structural error and output observational error will be
lumped into residual error, which is often assumed to follow
a Gaussian distribution with mean 0 and variance o>
0,02). According to the study of Renard et al. (2010), the
posterior distribution of all inferred quantities in this study is
given by Bayes’ theorem, as follows:

, &P~

pOP &%, x,ox,01Y°, X°)

7
P(YOIOP. &% 0. XO) p(e% iy, ox) p(OP. px.ox o).

The full posterior distribution comprises the follow-
ing three parts: the likelihood of the observed output
p(Y°|6P, LD '¢ ©), the hierarchical parts of the input mul-
tiplier p(e |1 x,ox), and the prior distribution of determin-
istic parameters and hyperparameters p(6°, ux,ox,o).
Unlike the formal Bayesian inference, the BEAR method
does not update the posterior distribution of the input errors.
Considering that e’;(, which are sampled from N(uy, 0)2(),
p(ex|ux,ox) is fixed when py,ox are determined and do
not need to be considered in Eq. (7). The secant method in the
BEAR algorithm is applied to find the optimal ranks of input
errors to minimize the model residual errors towards zero,
as characterized by the minimized residual sum of squares
(RSSs). Minimizing the RSSs imposes the same effect as
maximizing the likelihood function. The effectiveness of this
step in quantifying the input errors is based on the assump-
tion that the input error is dominant in the residual error, and
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then minimizing RSSs is the same as allocating the total er-
ror into the input errors. Otherwise, other dominant sources
of errors will affect the estimation of the optimal input errors,
leading to poor input error identification.

According to Eq. (3), the residual error is related to the
deterministic variables X° and Y° and the updated vari-
ables e];( and 6P. In other words, corresponding to the min-
imized RSSs, the optimal ranks of input errors only change
with the model parameters 6P. The distribution of input er-
rors (i.e., their CDF) can be characterized by hyperparame-
ters (x,ox. Given that the value of each input error is de-
termined by the CDF of the whole input errors (depends
on [x,o0x) and its relative rank among them (depends on
oP), ef)’( can be represented as a deterministic function of
ux,ox and OP(el;( = f(#°, ux,ox)), and the likelihood of
the observed output p(Y°|0?, e‘[;(, o, X°) can be represented
as p(Y°|0P, ux,ox,o0, X°). Therefore, the posterior distri-
bution of all inferred parameters (Eq. 7) in the BEAR method
will turn into the following:

p(6P, &%, ux,ox,0Y°, X°)

p(Y°16P, ix, ox, 0, XO) p(8°, 1ix, o, o). ®

The above derivation states that, if the relationship between
the input errors and model parameters can be determined,
then the problem of parameter estimation and input error
identification (Eq. 7) can then be interpreted as updating
0°, ux,ox,o in the Bayesian inference (Eq. 8).

2.4 Integrating the BEAR method into the sequential
Monte Carlo approach

The core strategy of the BEAR method is to identify the
input errors by estimating their ranks, which can be easily
integrated into formal Bayesian inference schemes (for ex-
ample, Markov chain Monte Carlo — MCMC; Marshall et
al., 2004; sequential Monte Carlo — SMC; Jeremiah et al.,
2011; Del Moral et al., 2006) and other calibration schemes
(for example, the generalized likelihood uncertainty estima-
tion — GLUE; Beven and Binley, 1992). Based on the tra-
ditional calibration approach, the BEAR method works by
replacing the observed input with a modified input that is ob-
tained through the estimated input error rank via the secant
method. This study applies the SMC sampler for updating
the model parameter. In the SMC approach, the model pa-
rameter is first sampled from a prior distribution and then
propagated through a sequence of intermediate populations
by repeatedly implementing the reweighting, mutation, and
resampling processes until the desired posterior distribution
is achieved (Del Moral et al., 2006). The details of the SMC
algorithm can be found in the study of Jeremiah et al. (2011).

Figure 1 demonstrates the integration of the BEAR method
into the SMC sampler. In the SMC scheme, s refers to the
number of sequential populations. A population means a
group of parameter vectors (particles) that is updated in each
iteration. The maximum number of the population S is set
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as 200 in this study. In each sequential population, N parti-
cles of the model parameters are calibrated. N is set as 100
in this study. For each particle of the model parameters, the
corresponding input error ranks are updated over g iterations,
where g increases until the acceptance probability is larger
than a number randomly sampled from O to 1. It should be
noted that, if the model parameters are far away from the true
values, especially in the initial population, iterative updating
of the error ranks will have little effect on the reduction of
the model residual. Therefore, the maximum number of iter-
ations should be set and referred to as Q. Q is set as 20 in
this study. If ¢ exceeds Q, then the algorithm returns to the
mutation step in Fig. 1.

2.5 Comparison with other methods

In this study, three methods, including the traditional method,
IBUNE method, and BEAR method, are compared to evalu-
ate the ability of the BEAR method to estimate the model
parameters and quantify input errors. The traditional method
regards the observed input as being error free, without iden-
tifying input errors (i.e., Eq. 2), while the other two meth-
ods employ a latent variable to counteract the impact of in-
put error and derive a modified input (i.e., Eq. 3). In the
IBUNE method, potential input errors are randomly sampled
from the assumed error distribution and filtered by the maxi-
mization of the likelihood function (Ajami et al., 2007). Al-
though the comprehensive IBUNE framework additionally
deals with model structural uncertainty via Bayesian model
averaging (BMA), this study only compares the capacity of
its input error identification. The BEAR method adds a re-
ordering process into the IBUNE method to improve the ac-
curacy of the input error quantification.

3 Case studies

3.1 Water quality model: the build-up/wash-off model
(BwMod)

This study tests the BEAR algorithm in the context of the
build-up/wash-off model (BwMod), which is a group of
models used to simulate two processes in sediment dynam-
ics, including the build-up of sediments during dry periods
and the wash-off process during wet periods. The two for-
mulations were developed in a small-scale experiment (Sar-
tor et al., 1974), while, in applications at the catchment scale,
the conceptualized parameters largely abandon their physical
meanings, and the formulations can be considered a black
box (Bonhomme and Petrucci, 2017). This study chooses
Eq. (9) to describe the build-up process and Eq. (10) to
express the wash-off of sediments, representing the nonlin-
ear relationship between the wash-off load (output) and the
runoff rate (input). These two equations were applied in the
research of Sikorska et al. (2015) and, in this study, are inte-
grated with the BEAR method. This study will test the BEAR
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algorithm in a case of simulating the daily sediment dynam-
ics of one catchment; thus, we use daily time steps and con-
sider the catchment to be a single, homogeneous spatial unit.
This version of BwMod has four parameters (Table 1). The
model input is streamflow, which typically comes from the
observation of a rating curve. As discussed in the introduc-
tion, the error distribution can be estimated prior to the model
calibration via a rating curve analysis. The output of the Bw-
Mod is the concentration of total suspended solids (TSSs),
whose transport can be efficiently simulated by the concep-
tualization of the build-up/wash-off process (Bonhomme and
Petrucci, 2017; Sikorska et al., 2015). Although BwMod is
relatively simple compared with process-based WQMs, its
nonlinearity and the use of surrogates for the input data can
make it a typical WQM scenario to test the BEAR algorithm.
The overall BwMod equations are as follows:

dSa.;
dr

=K - (Smax — Sa,t) — S (Sa,t) B (9)

where the descriptions of k and Smax are shown in Table 1,
Sa,¢ (kilograms) is the sediment amount available on the
catchment surface to be washed-off at time 7. s (Sa, ,) (kilo-
grams per second; hereafter kgs~!) is the amount of sedi-
ment in the stream at time ¢, as described by the following
function:

s(Sa) =a- (01" Sar, (10)

where the descriptions of a and b are shown in Table 1, and
0, is the streamflow at the catchment outlet at time 7.

The output TSS concentration Ctss ; (kilograms per cubic
meter; hereafter kg m~3) is derived via the following:

S (Sa,t)
0

3.2 Setup of the synthetic case study

Crss, = (11)

To test the capability of the secant method in identifying the
input error ranks in the process of the model parameter es-
timation, the BEAR method is first implemented in a con-
trolled situation with synthetic data. The true input X* is set
as the daily streamflow data of the catchment in the real case
(USGS ID 04087030), covering 1095 d from 1 October 2009
to 29 September 2012. The true output Y* is the simulated
TSS concentration via BwMod corresponding to the true in-
put X* and the model parameters set as the reference val-
ues in Table 1. In case study 1, where the model is affected
only by input errors and parameter errors, the observed out-
put Y° is assumed to be the same as the true simulation Y*,
i.e., without error. The observed input X° is generated based
on two types of input error models, an additive formulation
and a multiplicative formulation, and the errors are assumed
to follow a normal distribution with the mean w as 0.2 and
standard deviation (SD) o as 0.5. If the input errors are es-
timated based on a rating curve, like the procedure in the
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0
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v

Calculate the modified input

X} = X0-€k i q.j (i=1..,n) (the error is additive)
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with the updated rank k, ;
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Accept the model parameter st with the
weights wj® (7=1...,N), and their corresponding
modified input errors are accepted

5 < max number
of sequential

Figure 1. Flowchart of the algorithm to quantify the input errors via the Bayesian Error Analysis with Reordering (BEAR) method in the
SMC calibration scheme. The gray charts demonstrate the BEAR method, while the white charts demonstrate the SMC algorithm. For details
on the BEAR method, refer to Appendix A. For details on the SMC algorithm, refer to the study of Jeremiah et al. (2011), including the
mutation step, the reweighting step, and calculating the acceptance probability. The term “rand(0, 1)” means a number randomly sampled

from O to 1.

Table 1. Descriptions of BwMod parameters.

Model Parameter  Description Unit Reference  Prior range
value in the in the

synthetic case  case study

Wash-off coefficient - 0.04 ©,2)

BwMod Wash-off exponent - 1.6 0, 3)
Sediment accumulate rate - 0.1 O, 1)

Smax Maximum amount of sediment kg 7000 (0, 15000)

possible to be accumulated
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following real case, then the mean of the input error should
be 0. But in order to test the ability of the BEAR method in
wider applications, a systematic bias of 0.2 has been consid-
ered in the synthetic case study even though this is unlikely to
manifest in real situations. An additive formulation (denoted
as “add” in Table 2) is suitable to illustrate the error gener-
ation in measurements, while the multiplicative formulation
(denoted as “mul” in Table 2) is specifically applied for er-
rors induced from a log—log regression procedure, which is
common for water quality proxy processes (Rode and Suhr,
2007). In the additive formulation, the generated input may
be negative. If so, the negative input should be truncated to
a positive value. In the multiplicative formulation, the gen-
erated input will stay positive. Given the description in the
introduction, the input error model can be pre-estimated, in-
dependent of calibration, by analyzing the input data in some
studies, while, in other cases, the input error model cannot be
estimated or its accuracy is in question. Therefore, the fol-
lowing two scenarios about the prior information of ¢ have
been considered: one is fixed as the reference values (denoted
as “fixed” in Table 2), and the other one is estimated as the
hyperparameters with the model parameters (denoted as “in-
ferred” in Table 2). Therefore, case study 1 considers four
scenarios, including two sets of input data generated from
two input error models and two types of prior information
about the error parameter o (details are shown in Table 2).

Case study 1 is an ideal situation in that the model calibra-
tion only suffers from input and parameter errors. However,
in real-life cases, other sources of errors (i.e., model struc-
tural error and output data error) will impact this effective-
ness. To explore the ability of the BEAR method with the in-
terference of other sources of errors, the output observational
errors with the increasing standard deviations are considered
to build the synthetic data based on scenarios 3 and 4 in case
study 1 (details in Table 2).

To sum up, two synthetic case studies have been analyzed.
Case study 1 generates synthetic data only suffering from in-
put errors to evaluate the effectiveness of the BEAR method
in isolating the input error and the model parameter error.
Case study 2 additionally considers output observation er-
rors via synthetic data generation to evaluate the impacts of
other sources of error on the BEAR method. Each scenario
in the synthetic case studies is calibrated via the traditional
method, the IBUNE method, and the BEAR method, respec-
tively. Their algorithms are described in Sect. 2.5. Consider-
ing the unknown initial sediment loads in real applications,
the calibration sets 90d as a warm-up period to remove the
influence of antecedent conditions.

3.3 Setup of the real case study
To explore the ability of the BEAR method in real-life appli-
cations, a real case of one catchment located in southeastern

Wisconsin, USA, is demonstrated. Table 3 is a description of
the test catchment and data (Baldwin et al., 2013). The daily
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TSS concentration and streamflow data are collected from
the United States Geological Survey (USGS) database on
National Real-Time Water Quality (https:/nrtwq.usgs.gov/,
last access: 30 January 2022). The daily streamflow data in
the USGS database come from a stage—streamflow rating
curve, where the stage and streamflow form a log—log linear
relationship, and the streamflow proxy errors follow a normal
distribution with u as 0 and o as 0.103. This prior informa-
tion is used in the real calibration, denoted as the O-fixed
scenario in Table 2, where O represents the input data that
comes from the observations of the rating curve. According
to the results of Fig. 3 and the assumption of the methodology
derivation, the BEAR method works better when the input
uncertainty is more significant, so another input data source
with more significant data uncertainty, a streamflow simula-
tion from a hydrological model, has been considered. This
study selects GR4J (Génie Rural a 4 parametres Journalier;
Perrin et al., 2003) as the hydrological model and calibrates
its parameters with the USGS streamflow data as calibration
data. If the USGS streamflow data are regarded as the true
input data, then the residual error after the model calibra-
tion can approximate the data error of the GR4J simulation,
which follows a normal distribution in log space with u as 0
and o as 0.764. The BwMod calibration, using this input data
source and the prior information on data error, is denoted as
the S-fixed scenario in Table 2, where S represents the in-
put data that come from the simulations of GR4J model. To
explore the ability of the BEAR method in other situations
where the prior information about the input error is not suffi-
cient, two scenarios with a wider range of the error parame-
ters have also been considered and are denoted as O-inferred
and S-inferred in Table 2. The real case is also calibrated
via three methods (i.e., the traditional method, the IBUNE
method, and the BEAR method) and adopts the same setting
of the calibration algorithm as the synthetic case study.

4 Results

4.1 Case study 1: synthetic data suffering from input
errors

To evaluate the ability of different calibration methods (i.e.,
traditional method, the IBUNE method, and the BEAR
method) in identifying the input error and model parameter,
the following statistical characteristics are selected to com-
pare the results of case study 1, which only suffers from input
and parameter errors. The SD of the estimated input errors
represents the accuracy of the input error distribution (0.5 is
the reference value). The correlation between the estimated
input error and the true input error evaluates the capability
of the method to catch the temporal dynamics of input error.
The Nash-Sutcliffe efficiency (NSE) of the modified input
vs. true input measures the precision of the input data after
removing the estimated input errors. In the calibration part,
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Scenario in synthetic case 1 Notation Input error model in the synthetic input  Prior information of input error model
generation in calibration
1 add-fixed X% =X*+e,e~N(0.2,0.5%) X% =X*+e,e~N(020.5%
2 add-inferred  X° = X* +e,e ~ N(0.2,0.5%) X°=X*+e,e~Nuo),n=
0.2,0 €(0,1)
3 mul-fixed X% = X*exp(e),e ~ N(0.2,0.5?) X° = X*exp(e),e ~ N(0.2,0.5%)
4 mul-inferred  X° = X*exp(e), & ~ N(0.2,0.5%) X° = X*exp(e),e ~ N(u,02), =
0.2,0 € (0,1)
Scenario in synthetic case 2 Notation Observational error model in the syn-  Prior information of input error model
thetic output generation in calibration
1 mul-fixed ~ Y°=Y*exp(e).e ~N(0,02),02 =  X°=X*exp(e),e ~ N(0.2,0.5%)
0,0.1,0.2,0.3,0.4
2 mul-inferred  Y° = Y*exp(e),e ~ N(0, 0%), 0)2, = XO = X*exp(e), e ~ N(uu,02), =
0,0.1,0.2,0.3,0.4 0.2,0 € (0,1)
Scenario in the real case Notation Input data source Prior information of input error model
in the real case in calibration
1 O-fixed Observations from the rating curve X° = X*exp(e),e ~ N(0, 02), o=
(USGS database) 0.103
2 O-inferred Observations from the rating curve X% = X*exp(e),e ~ N(0, 02), o€
(USGS database) 0,1
3 S-fixed Simulations from a hydrological model ~ X° = X*exp(e),e ~ N (O, 02), o=
0.764
4 S-inferred Simulations from a hydrological model ~ X° = X*exp(e), & ~ N (0, 02), S

0.1

Table 3. Characteristics of the study catchments and calibration data.

USGS station Location State Drainage area
no. (km?)
04087030 Menomonee River at Wisconsin, USA 89.83
Menomonee Falls

Land use Period of data Number of data
Urban Agricultural  Natural (d)
(%) (%) (%)
35 38 27  01/10/2009-29/09/2012 1095

the simulated output corresponds to the modified input and
estimated model parameters, and its NSE, compared to the
true output, measures the goodness of fit. In the validation
part, the simulated output corresponds to the true input and
estimated model parameters, and its NSE, compared to the
true output, can assess the accuracy of the model parame-
ter estimation. These statistical characteristics are calculated
as the weighted-average values, considering the weights of
each estimation in the posterior distribution and compared in
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Fig. 2. Figures B1-B4 in Appendix B demonstrates the tem-
poral dynamics of the input estimations and model simula-
tions of synthetic case 1. In Fig. B1, the reliability is the ratio
of observations caught by the confidence interval of 2.5 %—
97.5 %, and the average width of this interval band is referred
to as sharpness (Yadav et al., 2007; Smith et al., 2010).
Evaluating the model simulation, the BEAR method al-
ways produces the best output fit in all scenarios, as sup-
ported by the highest green bars in Fig. 2d. Although its
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Figure 2. Comparison of the statistical characteristics of four calibration scenarios in synthetic case 1 (including add-fixed, add-inferred,
mul-fixed, and mul-inferred; notations are given in Table 2) via three calibration methods (including the traditional method, the IBUNE
method, and the BEAR method; their algorithms are explained in Sect. 2.4).

correlations with the true error series are much higher than
the IBUNE method (red bars) in all scenarios (in Fig. 2b),
the BEAR method cannot ensure a better input estimation
(in Fig. 2¢), and its ability depends on the prior information
of the input error parameter. When the error parameters are
fixed at the reference values (in the scenarios add-fixed and
mul-fixed), the BEAR method always outperforms the other
two methods in the input modification and model parameter
estimation, as its NSE is the highest (green bars in Fig. 2¢
and e). Without the reordering strategy, the IBUNE method
even gives worse input modification, model simulation, and
parameter estimation than the traditional method, as demon-
strated by the lower red bars than blue bars in Fig. 2¢, d and
e. When the error parameters are inferred (in the scenarios
of add-inferred and mul-inferred), then the IBUNE method
can improve the input data and the model parameter estima-
tion compared with the traditional method (in Fig. 2¢c and e),
although the estimations of o via the IBUNE method are al-
ways smaller than the reference value (in Fig. 2a). This result
has also been reported in the study of Renard et al. (2009),
which indicates that the randomness of the likelihood func-
tion leads to an underestimation of o of input errors. Unlike
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the IBUNE method, the performance of the BEAR method
depends on the setting of the input error model. In the add-
inferred scenario, the BEAR method is still better than other
methods, with a bigger NSE (in Fig. 2c, d and e) and a closer
o estimation to the reference value (in Fig. 2a), while, in the
mul-inferred scenario, the modified inputs and estimated pa-
rameters via the BEAR method are worse than the IBUNE
method (in Fig. 2¢ and e).

4.2 Case study 2: synthetic data suffering from input
errors and output observation errors

The Nash—Sutcliffe efficiency (NSE) is selected to measure
the difference between the modified input in case study 2
and the true input. Figure 3 demonstrates that, in the mul-
fixed scenario, where the prior information of the standard
deviation of input errors is accurate, the BEAR method al-
ways brings a better input modification than other methods,
although its ability is impaired by the impact of the output
observational errors as the NSE reduces with the increasing
SD of the output observational error. The IBUNE method
leads to an even worse modified input than the input data
without modification in the traditional method. In the mul-
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Figure 3. Comparison of the Nash—Sutcliffe efficiency (NSE) of the
modified input vs. the true input under the interference of the output
observational errors, with the increasing standard deviations in two
calibration scenarios in the synthetic case 2 (including mul-fixed
and mul-inferred; notations are given in Table 2) via three calibra-
tion methods (including the traditional method, the IBUNE method,
and the BEAR method; their algorithms are explained in Sect. 2.4).

inferred scenario, where the standard deviation of input er-
rors cannot be pre-estimated accurately and given in a wide
range, the BEAR method brings worse input data, while the
IBUNE method can modify the input data.

4.3 Case study 3: real data

Figure 4 compares the SDs of estimated input errors, the
variances of model residual errors, and reliability and sharp-
ness of model simulations among the four calibration sce-
narios and three calibration methods in the real case study.
Figure 4b demonstrates that the BEAR method always pro-
duces a better fit to the output data than the IBUNE method,
which is consistent with the synthetic case shown in Fig. 2d.
In Fig. 4c, except for the O-fixed scenario, the results of the
BEAR method (in green) show much smaller sharpness than
the traditional method (in blue) and the IBUNE method (in
red), with almost the same reliability. According to the re-
sults of the traditional method in Figs. B5-B6, the simula-
tions from the O streamflow (in al) catch the dynamics of
observed TSS concentration better than the simulations from
the S streamflow (in a3). Thus, compared with the simulated
streamflow via GR4J (S streamflow), the observed stream-
flow from the rating curve (O streamflow) should be closer
to the true input data. In Figs. B5-B6, the modified inputs
via the BEAR method are closer to the O streamflow (blue
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dots) than the S streamflow (pink dots), even in (c3) and (c4),
where the original input data come from the S streamflow.
However, the modified input via the IBUNE method is al-
ways centered on the original input data it uses. Given that
they are always closer to the O streamflow, the modified
inputs via the BEAR method are more reasonable than the
IBUNE method.

5 Discussion
5.1 The effectiveness of rank estimation

The novelty of the BEAR method lies in transforming a di-
rect error value estimation to an error rank estimation. In a
continuous sequence of data, the potential error values have
an infinite number of combinations, while the error rank has
limited combinations that are dependent on the data length.
For example, in Table A1, the estimated error at the first time
step could be any value. Even under a constraint of the range
from the minimized to the maximized sampled errors (i.e.,
[—0.29, 0.16] in the first iteration), its value estimation still
has infinite possibilities due to the continuous nature of the
error. In contrast, the rank is discrete, having only 20 possi-
bilities (i.e., the integrity in [1, 20]). From this point of view,
it is more efficient to estimate the error rank than estimate the
error value.

However, the rank estimation will suffer from the sam-
pling bias problem. For the same error distribution and the
same cumulative probability (corresponding to the same er-
ror rank), the errors in different samplings could be largely
different, especially for a small sample size (depending on
the data length) or a large o of the assumed error distribu-
tion. This problem can be addressed by selecting the optimal
solution from multiple samples according to the maximum
likelihood function. In three case studies, the sample size is
larger than 1000, where the sampling bias problem can be
neglected, and one error sampling is enough. But, in some
cases, where the sample size is small (i.e., around 10), multi-
ple samplings should be undertaken.

In addition, the rank estimation can make better use of the
knowledge of the input error distribution. In a direct value
estimation, it is difficult to keep the overall error distribu-
tion constant when the errors are updated in the calibration.
The estimated errors are more likely to compensate for other
sources of errors to maximize the likelihood function and,
subsequently, be overfitted. By contrast, in a rank estima-
tion, the errors at all of the time steps are sampled from the
pre-estimated error distribution first and are then reordered.
Whatever the error rank estimates are, they always follow
the pre-estimated error distribution, and the compensation ef-
fect will be limited. In the IBUNE framework (Ajami et al.,
2007), the errors are also sampled from the error distribution
but not reordered. In the BEAR method, adjusting the sam-
pled errors according to the inferred error rank reduces the
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Figure 4. Comparison of the statistical characteristics of four calibration scenarios in the real case (including O-fixed, O-inferred, S-fixed,
and S-inferred; their notations are given in Table 2) via three calibration methods (including the traditional method, the IBUNE method, and

the BEAR method; their algorithms are explained in Sect. 2.4).

randomness of the error allocation in the IBUNE framework
(Ajami et al., 2007), which significantly improves the accu-
racy of the error estimation (as demonstrated by much higher
correlations than the IBUNE method in Fig. 2b).

Unlike the formal Bayesian inference, the rank estimation
does not update the posterior distribution of the input er-
rors but optimizes their time-varying values through the rela-
tionship between the input error rank and the corresponding
model residual error. The rank estimation is implemented af-
ter the model parameters have been updated, and the model
residual error depends on the input error estimation. Thus,
the reordering strategy identifies the optimal input error rank
conditional to the model parameters, effectively considering
the interaction between the input error and the parameter er-
ror. This is akin to calibrating the input errors along with the
model parameters in the BATEA framework (Kavetski et al.,
2006).

5.2 The effect of reordering on the error realization

Figure 5 demonstrates the mechanics of input error reorder-
ing in the BEAR method and input error filtering in the
IBUNE method to understand their effects on the input er-
ror realizations and model parameter estimation. The first se-
quence represents the situation where the raw input errors are
randomly sampled from the pre-estimated error distribution;
therefore, their marginal means and standard deviations are
the same as the parameters of overall error distribution (cyan
lines in column (c) of Fig. 5). In the later sequence, these
errors are optimized via different methods. In the IBUNE
method, these sampled input error series are selected by the
maximized likelihood function; the interval of input errors
becomes a little converged (Fig. 5bl), and their marginal
standard deviations reduce slightly (Fig. 5c1). However, in
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the BEAR method, these input errors are reordered according
to the inferred ranks via the secant method, and the reordered
errors gradually converge to the true values (represented by
the blue interval are near the red line in Fig. 5b2). Therefore,
their marginal means are similar to the true values, and their
marginal standard deviations reduce to zero (Fig. 5c2). In the
BEAR method, the promotion of the input error identification
in the sequential updating will improve the model parameter
estimation, represented by the posterior distribution of model
parameter b converging to the true value in Fig. 5a2, while,
in the IBUNE method, the identification of input errors is not
precise, and the bias of the model parameter still exists in
Fig. 5al.

The data length can affect the efficacy of the BEAR
method but impose little effect on the IBUNE method. The
IBUNE method takes advantage of the stochastic errors and
keeps the marginal error distribution almost constant. The
input error realization at each time step seems independent,
only being filtered by the overall likelihood function. There-
fore, the number of sampled errors does not matter in the
IBUNE method. However, in the BEAR method, the input
errors at all the time steps are not sampled independently,
and they are from one sample set. Therefore, before or after
reordering, all errors will keep the same statistical features of
the input error distribution, and only their marginal distribu-
tion changes due to the convergence to the unknown true val-
ues. Figure 5b2 demonstrates that, when the data length (the
same as the error number) is small, the input error estima-
tion might be biased from the true values. This likely arises
from the abovementioned sampling bias or the impacts of
the model parameter error because the sampling bias reduces
with the larger number of error samples, and the impacts of
parameter error are more likely to be offset when the data
length is longer.
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Figure 5. Comparison of the results for scenario 1 in synthetic case 1 and the ensemble particle size of N =100 at different sequences of the
calibration (represented with different colors), via different methods (row 1 — IBUNE method; row 2 — BEAR method), and under different
data lengths in the calibration (in the upper group, the data length is 50; in the lower group, the data length is 1000, and 50 data points that
are the same as the upper group are selected and shown). Panels (al-a2) show the probability density of the model parameter b at different
sequences of the calibration. The other model parameters have the same pattern of change, and thus, there is no need to show them. Panels
(b1-b2) show the value interval of the input error realizations of 100 particles after reordering in the BEAR method or filtering in the IBUNE
method. Panels (c1-c2) show the corresponding marginal mean and standard deviations at each time step. The first sequence (in cyan) shows
the raw input errors of random sampling before reordering or filtering.

5.3 The impacts of prior information of input error
model

The IBUNE method takes advantage of stochastic error sam-
ples to modify the input observations (Ajami et al., 2007). In
the real case study, S-fixed and S-inferred scenarios use sim-
ulated streamflow as input data, where the input error is more
significant than the observed streamflow used in O-fixed and
O-inferred scenarios. Figure B5b demonstrates that the re-
sultant simulations (black line) via the IBUNE method in
the S-fixed and S-inferred scenarios are further away from
the observed outputs (red dots) than the simulations in the
O-fixed and O-inferred scenarios. What is more, in the syn-
thetic case, Fig. 2a shows that the standard deviations of in-
put errors in fixed scenarios are larger than those in inferred
scenarios, which means that the fixed scenarios have more
significant input errors. Figure 2c demonstrates that the mod-
ified inputs in the fixed scenarios are worse than those in the
inferred scenarios, although the standard deviations of the in-
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put errors in the fixed scenarios are set as the true value. From
the above, the availability of prior information is insignif-
icant for the IBUNE method, and the modifications of the
input data and model simulation via the IBUNE method only
happen when the o of the estimated input error is small. It is
most likely to make use of the stochastic errors to approach
the true input data but not effectively identify the input error.

However, the findings in the BEAR method are quite
different. Accurate prior information about the input error
model is important in the BEAR method. Figure 3 demon-
strates that the fixed scenarios calibrated via the BEAR
method always produce a higher NSE of the modified input
than the inferred scenarios. This is likely because the prior
information can constrain the input error distribution and re-
duce the impacts of other sources of errors. The availabil-
ity of prior information of the input error relies on studies
about benchmarking the observational errors of water qual-
ity and hydrologic data, and the selection of a proper input
error model is important. Comparing the results in Fig. 2,

https://doi.org/10.5194/hess-26-1203-2022



X. Wu et al.: Quantifying input uncertainty in the calibration of water quality models 1215

when the input error model is an additive formulation, the
BEAR method consistently brings the best performance re-
gardless of the prior information of the error . When the
input error model is a multiplicative formulation, the BEAR
method cannot improve the input data if the prior informa-
tion of the error o is not accurate. This illustrates that the
compensating effect between the input error and parameter
error is weaker in the additive form of the input error. This is
probably related to the specific model structure, as the expo-
nent parameter b in BwMod has a stronger interaction with
the multiplicative errors than the additive errors. Thus, more
comprehensive comparisons should be undertaken to explore
the capacity of different input error models in different model
applications.

6 Conclusion and recommendation

The observation uncertainty in input data is independent of
the model process, and the input error model can be esti-
mated prior to the model calibration and simulation by an-
alyzing the data itself. Taking advantage of the prior infor-
mation of an input error model, a new method, the Bayesian
Error Analysis with Reordering (BEAR), is proposed to ap-
proach the time-varying input errors in WQM inference. It
contains the following two main processes: sampling the er-
rors from the assumed input error distribution and reordering
them with the inferred ranks via the secant method. This ap-
proach is demonstrated in the case of TSS simulation via a
conceptual water quality model, BwMod. Through the inves-
tigation of synthetic data and real data, the main findings are
as follows:

1. The estimation of the BEAR method focuses on the er-
ror rank rather than the error value in the existing meth-
ods, which can take advantage of the constraints of the
known overall error distribution and then improve the
precision of the input error estimation by optimizing the
error allocation in a time series.

2. The introduction of the secant method addresses the
nonlinearity in the WQM transformation and can effec-
tively update the error rank of each input data, minimiz-
ing its corresponding model residual.

3. The ability of the BEAR method in decomposing the
input error from model residual error is limited by the
accuracy and selection of the input error model and is
impacted by model structural uncertainty and output ob-
servation uncertainty.

Therefore, the study identifies several areas which need
further analysis. First, the availability of prior knowledge of
the input error model is important. When this information
is not reliable or cannot be estimated, this causes a signifi-
cant issue with the selection of a suitable error distribution.
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Thus, a general measure should be found to judge whether
an error model is appropriate, especially in real cases where
the true information is limited. Second, this study focuses
on identifying the input errors in model calibration, and the
derivation of the BEAR method is based on the assumption
that the input error is dominant in the residual error. If the re-
ordering strategy is developed within a more comprehensive
framework to quantify multiple sources of error, then this as-
sumption will be relaxed, the interactions amongst these er-
ror sources might be well identified, and the quantification of
individual errors might be improved. This study provides a
starting point for developing the rank estimation via the se-
cant method to identify input error. Further study is necessary
to modify the algorithm and improve confidence in extended
case studies or model scenarios.

Appendix A: The illustration of the BEAR method

The BEAR method for identifying the input errors is imple-
mented after generating the model parameters and contains
two main parts, i.e., sampling the errors from an assumed er-
ror distribution and reordering them with the inferred ranks
via the secant method. An example is illustrated in Table A1,
and the explanation about the specific steps is presented in
the following.

1. In the first iteration (¢ =1), the errors are randomly
sampled from the assumed error distribution (row 1) and
then are sorted to obtain their ranks (row 2). This error
series is employed to modify the input data, which leads
to a new model simulation and model residual (row 3).

2. Repeat step (1) in the second iteration (g =2), as two
sets of samples are prerequisites for the update via the
secant method. The results are shown in rows 4, 5, and
6. Figure Ala demonstrates that the ranges of the er-
ror distribution are the same between the true input er-
rors (black line) and the sampled errors (blue and green
lines) as they come from the same error distribution, un-
der the condition that prior knowledge of the input error
distribution is correct. However, the values at each time
step cannot match due to the randomness of the sam-

pling.

3. At the first time step in the third iteration (i =1 and
q =3 in Eq. 4), the pre-rank K 3 is calculated via the
secant method (illustrated as the following equation).
The details are demonstrated in solid boxes in Table A1l.

kio —ki,
Kiz=kia—e) ,5— Il, 1
1,27 €11
9—-13
—9—(=0.13)————~ ___—53.
~0.13— (—0.29)

Repeat step (3) for all the time steps. The calculated pre-
ranks are shown in row 7.
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Table Al. An example illustrating the BEAR method.

X. Wu et al.: Quantifying input uncertainty in the calibration of water quality models

Firstiteration (the input errors are randomly sampled)

Row Time step 1 2 3 4 5 [ 7 ] 49 10 11 12 13 14 15 16 17 18 19 20
1 Sampled input error 007 <012 007 016 005 007 007 -003 003 -008 00% -001 -0.01 <008 -0.29 0.4 003 -00F 0014 -0.07
2 Iput error rank 340 20 12 17 15 4 1w T 16 4 5 6 | 1 11 8 18 2
3 Model residual error | -0.29| 0.49 -0.58 -0.98 -0.78 029 -066 059 -131 -031 -0.87 076 046 054 025 -0.80 -0.07 056 -0.23 040

MSE | 0.40
|I I Second iteration (the input errors are randomly sampled)
4 Sampled input error =0.01 1 -0.02 ! 003 003 -0.0% 000 -00Z 006 011 011 -00% 001 =012 -0.11 000 0.15 -0.08 0.04 002 0.11
5 Input error rank 9| Labl 14 13 3 10 H 16 17 18 4 12 1 2 11 20 5 15 7 19
] Maodel residwal error | -0.13 . =043 =041 -0.21 070 -023 0.09 -1.88 -1.52 020 017 053 060 043 072 036 012 047 -0.82
MSE P 0.47
Third iteration (the error ranks are updated via the secant method)
) Calculated pre-rank 40 B0 .03 220 43 173 61 42 62 143 313 420 47 190 100 169 144 T6
12 9 2 17 4 16 1 3 7 14 19 20 5 13 11 15 13 8

8 Ranked rank {postrank) '

Third iteration (the input errors are reordered with the updated error ranks)

-y
9 Reordered input error [-10:0_2_1 000 001 001 -0.11 011 <008 006 -012 -00% 0002 003 011 015 -00E 011 000 004 003 -002
10 Muodel residual error -0.23 020 -0.34 -0.24 -0.12 019 0.14 008 -040 -031 -0.22 003 -0.17 026 -0.09 -0.55 011 014 027 -0.23
11 MSE 0.06

4. Sort all the pre-ranks to obtain the integral error rank
(row 8).

5. According to the updated error ranks (row 8), the sam-
pled errors in the second iteration (row 4) are reordered.
The example for the first time step is demonstrated in
dotted boxes in Table A.1. The error rank at the first
time step is updated as 6, and the rank 6 corresponds to
the error value —0.02 in the second iteration. Therefore,
—0.02 is the input error at the first time step in the third
iteration. Following this example, the sampled errors at
all the time steps are reordered. The results are shown
in row 9. Figure A1b demonstrates that, after reordering
the errors with the inferred ranks, the estimated errors
are much closer to the true input error, and the mean
square error (MSE) of the model residual reduces in Ta-
ble Al.

6. The reordered input error will lead to new input data, a
new model simulation, and a new model residual. The
residual result and its MSE statistic are shown in rows
10 and 11, respectively.

7. Last, check the convergence. If the objective function
or likelihood function meets the convergence criterion,
then stop, and the input error estimation is accepted.
Otherwise, g = g+1, repeat steps (3)—(7) until g is
larger than the maximum number of iterations Q.
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(a) at the 1st and 2nd iteration where the input errors are randomly sampled

—&—true input error —o— 1st iteration ——2nd iteration

input error
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RO =W

8§ 9 10 11 12 13 14 15 16 17 18 19 20
Time step

(b) at the 3rd iteration where the input errors are reordered according to the updated error ranks

3rd iteration

/\

P S S T S S

—+—true input error

P N

b65500000
BN O = W

input error

ANy /\/’\//""

M

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Time step

Figure A1l. Demonstration of the input error estimated in Table Al.
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Appendix B: The time series of results in the case study
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Figure B1. Comparison of the time series of synthetic data and uncertainty bands estimated via three calibration methods (including the
traditional method, the IBUNE method, and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of the add-fixed

scenario in synthetic case 1 (notations are given in Table 2).
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Figure B2. Comparison of the time series of synthetic data and uncertainty bands estimated via three calibration methods (including the
traditional method, the IBUNE method, and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of the add-inferred

scenario in synthetic case 1 (notations are given in Table 2).
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Figure B3. Comparison of the time series of synthetic data and uncertainty bands estimated via three calibration methods (including the
traditional method, the IBUNE method, and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of the mul-fixed
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Figure B4. Comparison of the time series of synthetic data and uncertainty bands estimated via three calibration methods (including the
traditional method, the IBUNE method, and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of the mul-inferred
scenario in synthetic case 1 (notations are given in Table 2).
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Figure B5. Comparison of the time series of synthetic data and uncertainty bands estimated via three calibration methods (including the
traditional method, the IBUNE method, and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of the O-fixed and
O-inferred scenarios in the real case (notations are given in Table 2).
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Figure B6. Comparison of the time series of synthetic data and uncertainty bands estimated via three calibration methods (including the
traditional method, the IBUNE method, and the BEAR method; algorithms are explained in Sect. 2.4) for a select period of the S-fixed and
S-inferred scenarios in the real case (notations are given in Table 2).
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Code and data availability. The daily streamflow and TSS con-
centration data for real case catchment (USGS ID 04087030)
can be accessed from the National Real-Time Water Quality
website of the USGS at https://nrtwq.usgs.gov/explore/dyplot?site_
no=04087030&pcode=00530&period=2009_all&timestep=dv&
modelhistory= (U.S. Geological Survey, 2010).
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