Articles | Volume 25, issue 12
https://doi.org/10.5194/hess-25-6523-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-6523-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany
UFZ-Helmholtz Centre for Environmental Research, Department Computational Hydrosystems, Permoserstrasse 15, 04318 Leipzig, Germany
Stephan Thober
UFZ-Helmholtz Centre for Environmental Research, Department Computational Hydrosystems, Permoserstrasse 15, 04318 Leipzig, Germany
Luis Samaniego
UFZ-Helmholtz Centre for Environmental Research, Department Computational Hydrosystems, Permoserstrasse 15, 04318 Leipzig, Germany
Bernd Hansjürgens
UFZ-Helmholtz Centre for Environmental Research, Department Economics, Permoserstrasse 15, 04318 Leipzig, Germany
UFZ-Helmholtz Centre for Environmental Research, Department Computational Hydrosystems, Permoserstrasse 15, 04318 Leipzig, Germany
Related authors
No articles found.
Katherine Grayson, Stephan Thober, Aleksander Lacima-Nadolnik, Ivan Alsina-Ferrer, Llorenç Lledó, Ehsan Sharifi, and Francisco Doblas-Reyes
Geosci. Model Dev., 18, 5873–5890, https://doi.org/10.5194/gmd-18-5873-2025, https://doi.org/10.5194/gmd-18-5873-2025, 2025
Short summary
Short summary
We present One_Pass (v0.8.0), a Python package enabling computation of statistics from streamed global climate model output using one-pass algorithms. Users often need statistics covering periods longer than the stream duration, requiring algorithms that do not store full time series. One-pass methods address this need while avoiding full data archiving, offering memory-efficient, accurate results for high-performance computing (HPC) workflows and downstream applications like bias adjustment.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, Yannis Markonis, and Miroslav Trnka
Hydrol. Earth Syst. Sci., 29, 3341–3358, https://doi.org/10.5194/hess-29-3341-2025, https://doi.org/10.5194/hess-29-3341-2025, 2025
Short summary
Short summary
We present a robust method for identification and classification of global land drought events (GLDEs) based on soil moisture. Two models were used to calculate soil moisture and delimit soil drought over global land from 1980–2022, with clusters of 775 and 630 GLDEs. Using four spatiotemporal and three motion-related characteristics, we categorized GLDEs into seven severity and seven dynamic categories. The frequency of GLDEs has generally increased in recent decades.
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev., 18, 4483–4498, https://doi.org/10.5194/gmd-18-4483-2025, https://doi.org/10.5194/gmd-18-4483-2025, 2025
Short summary
Short summary
This study presents FINAM (
FINAM is not a model), a new coupling framework written in Python to dynamically connect independently developed models. Python, as the ultimate glue language, enables the use of codes from nearly any programming language like Fortran, C++, Rust, and others. FINAM is designed to simplify the integration of various models with minimal effort, as demonstrated through various examples ranging from simple to complex systems.
Mansi Nagpal, Jasmin Heilemann, Luis Samaniego, Bernd Klauer, Erik Gawel, and Christian Klassert
Nat. Hazards Earth Syst. Sci., 25, 2115–2135, https://doi.org/10.5194/nhess-25-2115-2025, https://doi.org/10.5194/nhess-25-2115-2025, 2025
Short summary
Short summary
This study measures the direct effects of droughts in association with other extreme weather events on agriculture in Germany at the district level. Using a statistical yield model, we quantify the direct damage of extremes on crop yields and farm revenue. Extreme events during drought cause an average annual damage of EUR 781 million, accounting for 45 % of reported revenue losses. The insights herein can help develop better strategies for managing and mitigating the effects of future climate extremes.
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 25, 2007–2029, https://doi.org/10.5194/nhess-25-2007-2025, https://doi.org/10.5194/nhess-25-2007-2025, 2025
Short summary
Short summary
The July 2021 flood in central Europe was one of the deadliest floods in Europe in the recent decades and the most expensive flood in Germany. In this paper, we show that the hydrological impact of this event in the Ahr valley could have been even worse if the rainfall footprint trajectory had been only slightly different. The presented methodology of spatial counterfactuals generates plausible unprecedented events and helps to better prepare for future extreme floods.
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2025-1076, https://doi.org/10.5194/egusphere-2025-1076, 2025
Short summary
Short summary
Four process-based and four data-driven hydrological models are compared using different training data. We found process-based models to perform better with small data sets but stop learning soon, while data-driven models learn longer. The study highlights the importance of memory in data and the impact of different data sampling methods on model performance. The direct comparison of these models is novel and provides a clear understanding of their performance under various data conditions.
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Sven Armin Westermann, Anke Hildebrandt, Souhail Bousetta, and Stephan Thober
Biogeosciences, 21, 5277–5303, https://doi.org/10.5194/bg-21-5277-2024, https://doi.org/10.5194/bg-21-5277-2024, 2024
Short summary
Short summary
Plants at the land surface mediate between soil and the atmosphere regarding water and carbon transport. Since plant growth is a dynamic process, models need to consider these dynamics. Two models that predict water and carbon fluxes by considering plant temporal evolution were tested against observational data. Currently, dynamizing plants in these models did not enhance their representativeness, which is caused by a mismatch between implemented physical relations and observable connections.
Kingsley Nnaemeka Ogbu, Oldrich Rakovec, Luis Samaniego, Gloria Chinwendu Okafor, Bernhard Tischbein, and Hadush Meresa
Proc. IAHS, 385, 211–218, https://doi.org/10.5194/piahs-385-211-2024, https://doi.org/10.5194/piahs-385-211-2024, 2024
Short summary
Short summary
In this study, the MPR-mHM technique was applied in four data-scarce basins in Nigeria. Remotely sensed rainfall datasets were used as model forcings to evaluate the mHM capability in reproducing observed stream discharge under single and multivariable model calibration frameworks. Overall, model calibration performances displayed satisfactory outputs as evident in the Kling-Gupta Efficiency (KGE) scores across most basins.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022, https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
Robert Schweppe, Stephan Thober, Sebastian Müller, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego
Geosci. Model Dev., 15, 859–882, https://doi.org/10.5194/gmd-15-859-2022, https://doi.org/10.5194/gmd-15-859-2022, 2022
Short summary
Short summary
The recently released multiscale parameter regionalization (MPR) tool enables
environmental modelers to efficiently use extensive datasets for model setups.
It flexibly ingests the datasets using user-defined data–parameter relationships
and rescales parameter fields to given model resolutions. Modern
land surface models especially benefit from MPR through increased transparency and
flexibility in modeling decisions. Thus, MPR empowers more sound and robust
simulations of the Earth system.
Bartosz Bartkowski, Stephan Bartke, Nina Hagemann, Bernd Hansjürgens, and Christoph Schröter-Schlaack
SOIL, 7, 495–509, https://doi.org/10.5194/soil-7-495-2021, https://doi.org/10.5194/soil-7-495-2021, 2021
Short summary
Short summary
We use a holistic framework to analyze how agricultural policy in Germany affects the sustainability of soil management. We look at the adequacy of policy targets, objects (i.e. drivers of soil degradation), instruments, assumptions about farmers' behaviour, and the coherence among these four dimensions. We find deficits in each dimension, particularly object and instrument adequacy. Agricultural soil policy in Germany lacks depth and coherence, and the role of biomass demand is neglected.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Cited articles
Albers, H., Gornott, C., and Hüttel, S.: How do inputs and weather drive
wheat yield volatility? The example of Germany, Food Policy, 70, 50–61,
https://doi.org/10.1016/j.foodpol.2017.05.001, 2017. a, b, c
Apley, D. W. and Zhu, J.: Visualizing the Effects of Predictor Variables in
Black Box Supervised Learning Models, arXiv [preprint],
arXiv:1612.08468, 2016. a, b, c
Auffhammer, M., Hsiang, S., Schlenker, W., and Sobel, A.: Using Weather Data
and Climate Model Output in Economic Analyses of Climate Change, Tech.
Rep. 2, National Bureau of Economic Research, Cambridge, MA,
https://doi.org/10.3386/w19087, 2013. a
Bachmair, S., Svensson, C., Hannaford, J., Barker, L. J., and Stahl, K.: A quantitative analysis to objectively appraise drought indicators and model drought impacts, Hydrol. Earth Syst. Sci., 20, 2589–2609, https://doi.org/10.5194/hess-20-2589-2016, 2016. a
Bachmair, S., Svensson, C., Prosdocimi, I., Hannaford, J., and Stahl, K.: Developing drought impact functions for drought risk management, Nat. Hazards Earth Syst. Sci., 17, 1947–1960, https://doi.org/10.5194/nhess-17-1947-2017, 2017. a
Barber, H. M., Lukac, M., Simmonds, J., Semenov, M. A., and Gooding, M. J.:
Temporally and Genetically Discrete Periods of Wheat Sensitivity to High
Temperature, Front. Plant Sci., 8, 1–9, https://doi.org/10.3389/fpls.2017.00051,
2017. a, b
Beillouin, D., Schauberger, B., Bastos, A., Ciais, P., and Makowski, D.:
Impact of extreme weather conditions on European crop production in 2018,
Philos. T. R. Soc. B, 375,
20190510, https://doi.org/10.1098/rstb.2019.0510, 2020. a, b, c
Ben-Ari, T., Boé, J., Ciais, P., Lecerf, R., Van Der Velde, M., and
Makowski, D.: Causes and implications of the unforeseen 2016 extreme yield
loss in the breadbasket of France, Nat. Commun., 9, 1–18,
https://doi.org/10.1038/s41467-018-04087-x, 2018. a, b, c, d
BGR: Bodenübersichtskarte der Bundesrepublik Deutsschland 1 : 1 000 000 (BÜK 1000), available at:
https://www.bgr.bund.de/DE/Themen/Boden/Informationsgrundlagen/Bodenkundliche_Karten_Datenbanken/BUEK1000/buek1000_node.html (last access: 8 December 2021),
2013. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001a. a
Breiman, L.: Statistical Modeling: The Two Cultures (with comments and a
rejoinder by the author), Stat. Sci., 16, 199–231,
https://doi.org/10.1214/ss/1009213726, 2001b. a
Breiman, L., Friedman, J. H. J. H., Olshen, R. A., and Stone, C. J.:
Classification and regression trees, Chapman and Hall/CRC, Boca Raton, 1984. a
Brock, G., Pihur, V., Datta, S., and Datta, S.: clValid: An R Package for
Cluster Validation, J. Stat. Softw., 25, 1–22,
https://doi.org/10.1016/0038-1098(77)91248-0, 2008. a
Cannell, R. Q., Belford, R. K., Gales, K., Dennis, C. W., and Prew, R. D.:
Effects of waterlogging at different stages of development on the growth and
yield of winter wheat, J. Sci. Food Agr., 31,
117–132, https://doi.org/10.1002/jsfa.2740310203, 1980. a
Carleton, T. A. and Hsiang, S. M.: Social and economic impacts of climate,
Science, 353, aad9837, https://doi.org/10.1126/science.aad9837, 2016. a, b
Conradt, T., Gornott, C., and Wechsung, F.: Extending and improving
regionalized winter wheat and silage maize yield regression models for
Germany: Enhancing the predictive skill by panel definition through cluster
analysis, Agr. Forest Meteorol., 216, 68–81,
https://doi.org/10.1016/j.agrformet.2015.10.003, 2016. a, b, c
Crane-Droesch, A.: Machine learning methods for crop yield prediction and
climate change impact assessment in agriculture, Environ. Res.
Lett., 13, 114003, https://doi.org/10.1088/1748-9326/aae159, 2018. a
Deutscher Wetterdienst: Climate Data Center, available at:
http://www.dwd.de/ (last access: 8 December 2021), 2019. a
Diaz, D. and Moore, F.: Quantifying the economic risks of climate change,
Nature Clim. Change, 7, 774–782, https://doi.org/10.1038/nclimate3411, 2017. a
Dunn, J. C.: Well-Separated Clusters and Optimal Fuzzy Partitions, J.
Cybernetics, 4, 95–104, https://doi.org/10.1080/01969727408546059, 1974. a
Friedman, J. H.: Greedy function approximation: A gradient boosting machine,
Ann. Stat., 29, 1189–1232, https://doi.org/10.1214/aos/1013203451, 2001. a
Frieler, K., Schauberger, B., Arneth, A., Balkovič, J.,
Chryssanthacopoulos, J., Deryng, D., Elliott, J., Folberth, C., Khabarov, N.,
Müller, C., Olin, S., Pugh, T. A. M., Schaphoff, S., Schewe, J.,
Schmid, E., Warszawski, L., and Levermann, A.: Understanding the weather
signal in national crop-yield variability, Earth's Future, 5, 605–616,
https://doi.org/10.1002/2016EF000525, 2017. a, b
Gömann, H., Bender, A., Bolte, A., Dirksmeyer, W., Englert, H., Feil, J.,
Frühauf, C., Hauschild, M., Krengel, S., Lilienthal, H.,
Löpmeier, F., Müller, J., Mußhoff, O., Natkhin, M.,
Offermann, F., Seidel, P., Schmidt, M., Seintsch, B., Steidl, J., Strohm, K.,
and Zimmer, Y.: Agrarrelevante Extremwetterlagen und Möglichkeiten von
Risikomanegementsystemen: Studie im Auftrag des Bundeministeriums für
Ernährung und Landwirtschaft (BMEL), Abschlussbericht: Stand
3 June 2015, Tech. rep., Johann Heinrich von Thünen-Institut,
https://doi.org/10.3220/REP1434012425000, 2015. a, b
Gourdji, S. M., Mathews, K. L., Reynolds, M., Crossa, J., and Lobell, D. B.:
An assessment of wheat yield sensitivity and breeding gains in hot
environments, P. Roy. Soc. B-Biol. Sci., 280,
20122190, https://doi.org/10.1098/rspb.2012.2190, 2013. a
Grotjahn, R.: Weather extremes that impact various agricultural commodities, in: Extreme Events and Climate Change: A Multidisciplinary
Approach, edited by: Castillo, F., Wehner, M., and Stone, D., Wiley Online Library, https://doi.org/10.1002/9781119413738, 2021. a, b
Guimarães Nobre, G., Hunink, J. E., Baruth, B., Aerts, J. C. J. H., and
Ward, P. J.: Translating large-scale climate variability into crop
production forecast in Europe, Sci. Rep.-UK, 9, 1277,
https://doi.org/10.1038/s41598-018-38091-4, 2019. a
Handl, J., Knowles, J., and Kell, D. B.: Computational cluster validation in
post-genomic data analysis, Bioinformatics, 21, 3201–3212,
https://doi.org/10.1093/bioinformatics/bti517, 2005. a
Hartigan, J. A. and Wong, M. A.: Algorithm AS 136 : A K-Means
Clustering Algorithm, J. Roy. Stat. Soc. C-Appl., 28, 100–108,
https://doi.org/10.2307/2346830, 1979. a
Hoffman, A. L., Kemanian, A. R., and Forest, C. E.: Analysis of climate
signals in the crop yield record of sub-Saharan Africa, Glob. Change
Biol., 24, 143–157, https://doi.org/10.1111/gcb.13901, 2018. a
Hsiang, S., Delgado, M., Mohan, S., Rasmussen, D. J., Muir-Wood, R., Wilson,
P., Oppenheimer, M., Larsen, K., and Houser, T.: Estimating economic damage
from climate change in the United States, Science, 356, 1362–1369,
https://doi.org/10.1126/science.aal4369, 2017. a
James, G., Witten, D., Hastie, T., and Tibshirani, R.: An Introduction to
Statistical Learning, vol. 103 of Springer Texts in Statistics,
Springer New York, New York, NY, https://doi.org/10.1007/978-1-4614-7138-7, 2013. a, b, c
Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler,
E. E., Timlin, D. J., Shim, K. M., Gerber, J. S., Reddy, V. R., and Kim,
S. H.: Random forests for global and regional crop yield predictions, PLoS
ONE, 11, 1–15, https://doi.org/10.1371/journal.pone.0156571, 2016. a, b, c, d
Kaufman, L. and Rousseeuw, P. J.: Finding groups in data; an introduction to
cluster analysis., John Wiley & Sons, Inc., Hoboken, New JerseyHoboken, New Jersey, 1990. a
Kolstad, C. D. and Moore, F. C.: Estimating the Economic Impacts of Climate
Change Using Weather Observations, Rev. Env. Econ. Policy, 14, 1–24, https://doi.org/10.1093/reep/rez024, 2020. a
Kropp, J., Holsten, A., Lissner, T., Roithmeier, O., Hattermann, F., Huang, S., Rock, J., Wechsung, F., Lüttger, A., Pompe, S., Kühn, I., Costa, L., Steinhäuser, M., Walther, C., Klaus, M., Ritchie, S., and Metzger, M.: “Klimawandel in Nordrhein-Westfalen – Regionale Abschätzung der Anfälligkeit ausgewählter Sektoren”, Abschlussbericht des Potsdam-Instituts für Klimafolgenforschung (PIK) für das Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz Nordrhein-Westfalen (MUNLV), 2009. a
Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed
hydrologic model parameterization on water fluxes at multiple scales and
locations, Water Resour. Res., 49, 360–379,
https://doi.org/10.1029/2012WR012195, 2013. a
Lecerf, R., Ceglar, A., López-Lozano, R., Van Der Velde, M., and
Baruth, B.: Assessing the information in crop model and meteorological
indicators to forecast crop yield over Europe, Agr. Syst., 168,
191–202, https://doi.org/10.1016/j.agsy.2018.03.002, 2019. a
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R
News, 2, 18–22, https://cran.r-project.org/doc/Rnews/ (last access: 8 December 2021), 2002. a
Lobell, D. B.: Errors in climate datasets and their effects on statistical
crop models, Agr. Forest Meteorol., 170, 58–66,
https://doi.org/10.1016/j.agrformet.2012.05.013, 2013. a
Lobell, D. B. and Asseng, S.: Comparing estimates of climate change impacts
from process-based and statistical crop models, Environ. Res.
Lett., 12, 015001, https://doi.org/10.1088/1748-9326/aa518a, 2017. a, b
Lobell, D. B., Sibley, A., and Ivan Ortiz-Monasterio, J.: Extreme heat
effects on wheat senescence in India, Nat. Clim. Change, 2, 186–189,
https://doi.org/10.1038/nclimate1356, 2012. a
Lu, Y., Hu, H., Li, C., and Tian, F.: Increasing compound events of extreme
hot and dry days during growing seasons of wheat and maize in China,
Sci. Rep.-UK, 8, 1–8, https://doi.org/10.1038/s41598-018-34215-y, 2018. a
Lüttger, A. B. and Feike, T.: Development of heat and drought related
extreme weather events and their effect on winter wheat yields in Germany,
Theor. Appl. Climatol., 132, 15–29,
https://doi.org/10.1007/s00704-017-2076-y, 2018. a, b, c
MacQueen, J.: Some methods for classification and analysis of multivariate
observations, Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1, 281–297, https://doi.org/10.2307/2346830, 1967. a
Mäkinen, H., Kaseva, J., Trnka, M., Balek, J., Kersebaum, K., Nendel, C.,
Gobin, A., Olesen, J., Bindi, M., Ferrise, R., Moriondo, M., Rodríguez,
A., Ruiz-Ramos, M., Takáč, J., Bezák, P., Ventrella, D.,
Ruget, F., Capellades, G., and Kahiluoto, H.: Sensitivity of European wheat
to extreme weather, Field Crop. Res., 222, 209–217,
https://doi.org/10.1016/j.fcr.2017.11.008, 2018. a, b, c
Mistry, M. N., Sue Wing, I., and De Cian, E.: Simulated vs. empirical
weather responsiveness of crop yields: US evidence and implications for the
agricultural impacts of climate change, Environ. Res. Lett., 12, 075007,
https://doi.org/10.1088/1748-9326/aa788c, 2017. a
Molnar, C., König, G., Herbinger, J., Freiesleben, T., Dandl, S.,
Scholbeck, C. A., Casalicchio, G., Grosse-Wentrup, M., and Bischl, B.:
General Pitfalls of Model-Agnostic Interpretation Methods for Machine
Learning Models, arXiv [preprint], arXiv:2007.04131
2020. a
Mullainathan, S. and Spiess, J.: Machine learning: An applied econometric
approach, J. Econ. Perspect., 31, 87–106,
https://doi.org/10.1257/jep.31.2.87, 2017. a
Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, S., Iizumi, T., Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T. A. M., Ray, D. K., Reddy, A., Rosenzweig, C., Ruane, A. C., Sakurai, G., Schmid, E., Skalsky, R., Song, C. X., Wang, X., de Wit, A., and Yang, H.: Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications, Geosci. Model Dev., 10, 1403–1422, https://doi.org/10.5194/gmd-10-1403-2017, 2017. a
Murtagh, F.: Multidimensional Clustering Algorithms, COMPSTAT Lectures 4,
Physica-Verlag, Würzburg, 1985. a
Orth, R. and Seneviratne, S. I.: Analysis of soil moisture memory from
observations in Europe, J. Geophys. Res.-Atmos., 117,
D15115, https://doi.org/10.1029/2011JD017366, 2012. a
Peichl, M.: RF Winterwheat, GitLab [data set], available at: https://git.ufz.de/damage-functions/rf-winterwheat, last access: 8 December 2021. a
Peichl, M., Thober, S., Samaniego, L., Hansjürgens, B., and Marx, A.:
Climate impacts on long-term silage maize yield in Germany, Sci.
Rep.-UK, 9, 7674, https://doi.org/10.1038/s41598-019-44126-1, 2019. a, b
Rezaei, E. E., Siebert, S., Manderscheid, R., Müller, J., Mahrookashani,
A., Ehrenpfordt, B., Haensch, J., Weigel, H. J., and Ewert, F.: Quantifying
the response of wheat yields to heat stress: The role of the experimental
setup, Field Crop. Res., 217, 93–103, https://doi.org/10.1016/j.fcr.2017.12.015,
2018. a, b
Ribeiro, A. F. S., Russo, A., Gouveia, C. M., Páscoa, P., and Zscheischler, J.: Risk of crop failure due to compound dry and hot extremes estimated with nested copulas, Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, 2020. a
Ribeiro, M. T., Singh, S., and Guestrin, C.: Model-Agnostic Interpretability
of Machine Learning, ICML Workshop on Human Interpretability in Machine
Learning (WHI), 91–95, arXiv [preprint], arXiv:1606.05386,
2016. a
Roberts, M. J., Schlenker, W., and Eyer, J.: Agronomic Weather Measures in
Econometric Models of Crop Yield with Implications for Climate Change,
Am. J. Agr. Econ., 95, 236–243,
https://doi.org/10.1093/ajae/aas047, 2013. a
Roberts, M. J., Braun, N. O., Sinclair, T. R., Lobell, D. B., and Schlenker,
W.: Comparing and combining process-based crop models and statistical models
with some implications for climate change, Environ. Res. Lett.,
12, 095010, https://doi.org/10.1088/1748-9326/aa7f33, 2017. a, b
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C.,
Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann,
K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., and
Jones, J. W.: Assessing agricultural risks of climate change in the 21st
century in a global gridded crop model intercomparison, P.
Natl. Acad. Sci. USA, 111, 3268–3273, https://doi.org/10.1073/pnas.1222463110,
2014. a
Rousseeuw, P. J.: Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis, J. Comput. Appl.
Math., 20, 53–65, https://doi.org/10.1016/0377-0427(87)90125-7, 1987. a
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter
regionalization of a grid-based hydrologic model at the mesoscale, Water
Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010. a
Samaniego, L., Kumar, R., and Zink, M.: Implications of Parameter Uncertainty
on Soil Moisture Drought Analysis in Germany, J. Hydrometeorol.,
14, 47–68, https://doi.org/10.1175/JHM-D-12-075.1, 2013. a, b, c
Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wanders, N., Eisner, S., Müller Schmied, H., Sutanudjaja, E. H., Warrach-Sagi, K., and Attinger, S.: Toward seamless hydrologic predictions across spatial scales, Hydrol. Earth Syst. Sci., 21, 4323–4346, https://doi.org/10.5194/hess-21-4323-2017, 2017. a
Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng,
D., Elliott, J., Folberth, C., Khabarov, N., Müller, C., Pugh, T.
A. M., Rolinski, S., Schaphoff, S., Schmid, E., Wang, X., Schlenker, W., and
Frieler, K.: Consistent negative response of US crops to high temperatures
in observations and crop models, Nat. Commun., 8, 13931,
https://doi.org/10.1038/ncomms13931, 2017. a, b
Schlenker, W. and Roberts, M. J.: Nonlinear temperature effects indicate
severe damages to U.S. crop yields under climate change, P.
Natl. Acad. Sci. USA, 106, 15594–15598,
https://doi.org/10.1073/pnas.0906865106, 2009. a, b
Siebert, S., Webber, H., and Rezaei, E. E.: Weather impacts on crop yields –
searching for simple answers to a complex problem, Environ. Res.
Lett., 12, 10–13, https://doi.org/10.1088/1748-9326/aa7f15, 2017. a
Statistisches Bundesamt (Destatis): Fachserie 3, R 3.2.1,
Feldfrüchte, Tech. rep., Statistisches Bundesamt (Destatis), Wiesbaden, 2018. a
Statistisches Bundesamt (Destatis): The Regional Database Germany
(“Regionaldatenbank Deutschland”), available at:
https://www.regionalstatistik.de (last access: 8 December 2021), 2019. a
Sutanto, S. J., van der Weert, M., Wanders, N., Blauhut, V., and Van Lanen,
H. A. J.: Moving from drought hazard to impact forecasts, Nat.
Commun., 10, 4945, https://doi.org/10.1038/s41467-019-12840-z, 2019. a, b, c
Timmins, C. and Schlenker, W.: Reduced-Form Versus Structural Modeling in
Environmental and Resource Economics, Annu. Rev. Resour. Econ.,
1, 351–380, https://doi.org/10.1146/annurev.resource.050708.144119, 2009. a
Toreti, A., Belward, A., Perez-Dominguez, I., Naumann, G., Luterbacher, J.,
Cronie, O., Seguini, L., Manfron, G., Lopez-Lozano, R., Baruth, B., van den
Berg, M., Dentener, F., Ceglar, A., Chatzopoulos, T., and Zampieri, M.: The
Exceptional 2018 European Water Seesaw Calls for Action on Adaptation,
Earth's Future, 7, 652–663, https://doi.org/10.1029/2019EF001170, 2019. a
Trnka, M., Rötter, R. P., Ruiz-Ramos, M., Kersebaum, K. C., Olesen,
J. E., Žalud, Z., and Semenov, M. a.: Adverse weather conditions for
European wheat production will become more frequent with climate change,
Nat. Clim. Change, 4, 637–643, https://doi.org/10.1038/nclimate2242, 2014. a, b
Urban, D. W., Roberts, M. J., Schlenker, W., and Lobell, D. B.: The effects of
extremely wet planting conditions on maize and soybean yields, Climatic
Change, 130, 247–260, https://doi.org/10.1007/s10584-015-1362-x, 2015. a
van der Velde, M., Biavetti, I., El-Aydam, M., Niemeyer, S., Santini, F., and
van den Berg, M.: Use and relevance of European Union crop monitoring and
yield forecasts, Agr. Syst., 168, 224–230,
https://doi.org/10.1016/j.agsy.2018.05.001, 2019. a
Vinet, L. and Zhedanov, A.: A “missing” family of classical orthogonal
polynomials, Eur. J. Agron., 52, 22–32,
https://doi.org/10.1088/1751-8113/44/8/085201, 2010. a
Vogel, J., Rivoire, P., Deidda, C., Rahimi, L., Sauter, C. A., Tschumi, E., van der Wiel, K., Zhang, T., and Zscheischler, J.: Identifying meteorological drivers of extreme impacts: an application to simulated crop yields, Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, 2021. a, b
Wooldridge, J.: Introductory econometrics: A modern approach, South-Western
Cengage Learning, Mason, OH, USA, fourth edn., 2012. a
Zampieri, M., Ceglar, A., Dentener, F., and Toreti, A.: Wheat yield loss
attributable to heat waves, drought and water excess at the global, national
and subnational scales, Environ. Res. Lett., 12, 064008,
https://doi.org/10.1088/1748-9326/aa723b, 2017. a
Zhao, Q. and Hastie, T.: Causal Interpretations of Black-Box Models, J. Business Econ. Stat., 39, 272–281,
https://doi.org/10.1080/07350015.2019.1624293, 2019. a
Zink, M., Samaniego, L., Kumar, R., Thober, S., Mai, J., Schäfer, D., and
Marx, A.: The German drought monitor, Environ. Res. Lett., 11,
074002, https://doi.org/10.1088/1748-9326/11/7/074002, 2016. a
Zink, M., Kumar, R., Cuntz, M., and Samaniego, L.: A high-resolution dataset of water fluxes and states for Germany accounting for parametric uncertainty, Hydrol. Earth Syst. Sci., 21, 1769–1790, https://doi.org/10.5194/hess-21-1769-2017, 2017. a
Zscheischler, J. and Fischer, E. M.: The record-breaking compound hot and dry
2018 growing season in Germany, Weather and Climate Extremes, 29, 100270,
https://doi.org/10.1016/j.wace.2020.100270, 2020. a
Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects risks
associated with compound events, Science Advances, 3, 1–11,
https://doi.org/10.1126/sciadv.1700263, 2017. a, b
Zscheischler, J., Westra, S., Van Den Hurk, B. J., Seneviratne, S. I., Ward,
P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and
Zhang, X.: Future climate risk from compound events, Nat. Clim. Change,
8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018. a
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton,
R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha,
M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.:
A typology of compound weather and climate events, Nature Reviews Earth
& Environment, 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020. a, b
Short summary
Using a statistical model that can also take complex systems into account, the most important factors affecting wheat yield in Germany are determined. Different spatial damage potentials are taken into account. In many parts of Germany, yield losses are caused by too much soil water in spring. Negative heat effects as well as damaging soil drought are identified especially for north-eastern Germany. The model is able to explain years with exceptionally high yields (2014) and losses (2003, 2018).
Using a statistical model that can also take complex systems into account, the most important...