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Abstract. Agricultural production is highly dependent on the
weather. The mechanisms of action are complex and interwo-
ven, making it difficult to identify relevant management and
adaptation options. The present study uses random forests
to investigate such highly non-linear systems for predicting
yield anomalies in winter wheat at district levels in Germany.
In order to take into account sub-seasonality, monthly fea-
tures are used that explicitly take soil moisture into account
in addition to extreme meteorological events. Clustering is
used to show spatially different damage potentials, such as a
higher susceptibility to drought damage from May to July in
eastern Germany compared to the rest of the country. In ad-
dition, relevant heat effects are not detected if the clusters are
not sufficiently defined. The variable with the highest impor-
tance is soil moisture in March, where higher soil moisture
has a detrimental effect on crop yields. In general, soil mois-
ture explains more yield variations than the meteorological
variables. The approach has proven to be suitable for explain-
ing historical extreme yield anomalies for years with excep-
tionally high losses (2003, 2018) and gains (2014) and the
spatial distribution of these anomalies. The highest test R-
squared (R2) is about 0.68. Furthermore, the sensitivity of
yield variations to soil moisture and extreme meteorological
conditions, as shown by the visualization of average marginal
effects, contributes to the promotion of targeted decision sup-
port systems.

1 Introduction

Extreme weather conditions have increased over the last 2
decades over Germany, leading to an amplification of inter-
annual crop yield variations in the agricultural sector. These
include years with above-average wet years (2002, 2007,
2010) but also the droughts of 2003, 2015, and 2018 and
the year 2012 with a longer period of bare frost (Gömann,
2018). Models that accurately map weather conditions to
crop yields allow a better understanding of the damage mech-
anism and can thus support management and adaptation (Al-
bers et al., 2017; Peichl et al., 2018) as well as be used
for decision support systems and seasonal forecasts (van der
Velde et al., 2019; Lecerf et al., 2019; Sutanto et al., 2019;
Ben-Ari et al., 2018; Guimarães Nobre et al., 2019). Fur-
thermore, such damage functions form the basis for projec-
tions of the social and economic effects of climate change
(Carleton and Hsiang, 2016; Diaz and Moore, 2017; Hsiang
et al., 2017). While process-based crop models take into ac-
count the growth mechanisms of crops (Rosenzweig et al.,
2014), they are only partially able to reproduce historical
yield anomalies (Müller et al., 2017; Mistry et al., 2017).
Furthermore, it has been shown that classical statistical mod-
els outperform process-based models in predictive power, es-
pecially on a large scale (Lobell and Asseng, 2017). Those
statistical approaches usually reduce the processes that af-
fect plant development to the main features (Timmins and
Schlenker, 2009; Kolstad and Moore, 2020). Following the
seminal work of Schlenker and Roberts (2009), extreme heat
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is routinely included as the main determinant (Carleton and
Hsiang, 2016). However, we consider inference about the
marginal effect of these often aggregated measurements of
meteorological variables on the yield to be critical, since
a spurious association can be caused by missing or only
roughly represented variables (Peichl et al., 2018; Roberts
et al., 2017). For example, a global study based on process-
based models for maize and wheat found that for most coun-
tries water stress is a major source of the observed yield vari-
ations (Frieler et al., 2017). It has also been shown that it
is necessary to account for multiple adverse environmental
conditions such as frost, heat, drought, and excessive soil
moisture during sensitive growth phases (Trnka et al., 2014;
Albers et al., 2017; Schauberger et al., 2017; Mäkinen et al.,
2018; Peichl et al., 2018, 2019). Furthermore, these effects
are often mutually amplifying, which potentially increases
the impact (Ben-Ari et al., 2018; Lu et al., 2018; Toreti et al.,
2019; Zscheischler et al., 2018, 2020). In 2018, for exam-
ple, extremely hot temperatures in Germany were accompa-
nied by extremely low precipitation, which further intensified
the effects on crop yield (Zscheischler and Fischer, 2020).
Ben-Ari et al. (2018) showed that compound extreme events
such as exceptionally warm temperatures in late autumn and
very wet conditions in late spring 2016 led to unprecedented
wheat losses in France.

In previous studies we have tried to approximate this non-
linear and complex damage spectrum by considering the sub-
seasonal effects of hydro-meteorological variables such as
temperature and soil moisture, applying however an econo-
metric linear model neglecting sub-seasonal interaction of
the features. This approach was very well able to project
long-term mean yield changes but not the inter-annual vari-
ations caused by extreme conditions (Peichl et al., 2019).
This study applies a statistical framework that takes into ac-
count a range of potentially harmful extreme environmen-
tal conditions. For this purpose we map various sub-seasonal
hydro-meteorological extremes with yield anomalies of win-
ter wheat. For winter wheat, the challenge of non-linearity
is particularly relevant: studies have shown that it is diffi-
cult to explain yield variations in winter wheat because the
growing season is relatively long compared to other crops
(Vogel et al., 2019). In accordance with the typology of
compound weather and climatic events (Zscheischler et al.,
2020), we consider plant growth to be a non-linear system,
since the time of occurrence and the various features and
extreme events themselves interact, which ultimately affects
plant development (Storm et al., 2020). Therefore, we use
random forests, which is a machine-learning algorithm par-
ticularly suitable for complex non-linear systems with inter-
actions in the predictors (Breiman et al., 1984; James et al.,
2013; Vogel et al., 2019). The features used (see Table 1)
are meteorologically extreme indicators for temperature and
precipitation extremes as well as soil moisture, which is the
main water source for plant growth, each on a monthly ba-
sis. This allows for sub-seasonality in the model and the

quasi-consideration of plant growth and different phenolog-
ical stages. To increase the predictive power (Conradt et al.,
2016) of the models as well as to reveal spatially dependent
damage mechanisms, we rely on spatial clustering, which ac-
counts for regional differences in climate, soil moisture, and
soil properties.

Disentangling the non-linear spectrum of extreme condi-
tions harmful to plant growth and identifying the causes of
yield loss will help improve decision support systems in the
agricultural sector. Machine learning focuses primarily on
predictive accuracy, while econometricians focus on infer-
ence, i.e. deriving statistical properties of estimators for hy-
pothesis testing within a classical parametric and linear ap-
proach (Mullainathan and Spiess, 2017; Storm et al., 2020).
However, the functional forms used in econometric analy-
sis are usually not flexible enough to capture the interac-
tions, non-linearities, and heterogeneity that are often com-
mon to both biological and social processes in agricultural
and environmental systems (Storm et al., 2020). On the other
hand, there is concern from an econometric point of view that
machine-learning models are difficult to interpret because
of these high-dimensional and highly non-linear functions
(Breiman, 2001b; Zhao and Hastie, 2019). To address this
issue of interpretability, we also present the relative impor-
tance of the variables and the average marginal effects rep-
resented by accumulated local effects plots (Apley and Zhu,
2016) of the main characteristics for each cluster. The paper
describes the data (Sect. 2), methods (Sect. 3), and results
(Sect. 4). Most results are discussed in the results section. A
short conclusion is given at the end.

2 Data

The annual yield data for winter wheat are provided by the
Federal Statistical Office for the districts from 1999 to 2018
(Statistisches Bundesamt (Destatis), 2019). Winter wheat has
the largest share in cultivated area (2018: 46 %) and total pro-
duction (2018: 51 % of quantity harvested) amongst all crops
in Germany (Statistisches Bundesamt (Destatis), 2018). Fig-
ure 1a shows a map of the average yield and the standard
deviation for the period 1999–2018. On average, the highest
yields are recorded in the extreme north of Germany, while
the lowest yields and the highest inter-annual variation are
found in the eastern part of Germany. For each district, the
data are converted into yield anomalies in percent by sub-
tracting the average yield and dividing the resulting differ-
ence by this average. We have not corrected the yield data
for the trend in order to take for example technological de-
velopments into account. Since the mid-1990s, annual yield
increases have stopped, and no trend in yields has been ob-
served since then (Gömann, 2018). This is shown in Fig. 1b,
which shows the distribution of yield anomalies for the pe-
riod 1999–2018. A positive linear trend can be observed for
this time period (blue line). However, as can be seen from the
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Figure 1. (a) Twenty-year winter wheat yield average (1999–2018, left) and standard deviation (right) of yields for the districts over Germany.
(b) Box-and-whisker plots of winter wheat anomalies for each year and both linear and non-linear model fits to identify significant trends
in the anomaly data. The exceptional years 2003, 2014, and 2018 are marked with a light beige box. Data source: Federal Statistical Office
DESTATIS.

green line, which represents the fit of the local polynomial re-
gression, this positive linear trend is mainly associated with
the above-average yields from 2013 onwards, which first rise
rapidly and then fall again. Accordingly, almost no linear
trend can be observed for the years before that (orange line
in Fig. 1b). A trend correction is therefore not necessary. All
districts with yield data of less than 10 years of observations
are removed from the analysis, which results in 350 remain-

ing districts (Fig. A1 in the Appendix shows a map of the
numbers of observations available for each district).

The daily temperature and precipitation data are obtained
from a network of stations of the German Weather Service
(Deutscher Wetterdienst, 2019). For the interpolation method
to gridded data, see Zink et al. (2017). Daily meteorological
data are converted to monthly aggregates by counting days
above or below a defined threshold based on Gömann et al.
(2015) and expert knowledge from farmer interviews. Table 1
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Table 1. Table of the indicators of seven extreme weather conditions as well as an index for soil moisture for different soil depths. Column
2 shows the corresponding meteorological conditions and months of occurrence. The indicators (first column) are generated by counting
the days above or below the thresholds of certain meteorological variables for specific months (second column). The variable names of the
resulting features are displayed in the last column. The number indicates the month. For example, Frost10 represents the number of days
with black frost in October of the previous year and Heat6 the number of days with heat in June. T reflects temperature, P precipitation. SMI
denotes the soil moisture index for the uppermost 25 cm, SMIa for the entire soil column.

Environmental conditions Meteorological variables Variable names

Black frost Min. T <−20 ◦C: Dec–Feb Frost12, Frost1, Frost2
Min. T <−10 ◦C: Mar and Nov Frost3, Frost11
Min. T <−5 ◦C: Apr and Oct Frost4, Frost10

Late frost Min. T < 0 ◦C: May Frost5

Alternating Min. T <−3 ◦C & AF1, AF2, AF3, AF4, AF5
Frost Max. T > 3 ◦C: Jan–May

Heat Max. T > 30 ◦C: Apr–Aug Heat4, Heat5, Heat6, Heat7, Heat8

Heavy rain P > 30 mm/d: Oct–Jun Rain10, Rain11, Rain12, Rain1,
during season Rain2, Rain3, Rain4, Rain5, Rain6

Rain during harvest P > 5 mm/d: Jul and Aug Rain7, Rain8

Precipitation P = 0 mm/d: Oct–Aug PS10, PS11, PS12, PS1, PS2,
scarcity PS3, PS4, PS5, PS6, PS7, PS8

Soil moisture index: SMI: Oct–Aug SMI10, SMI11, SMI12, SMI1,SMI2,
uppermost 25 cm SMI3, SMI4, SMI5, SMI6, SMI7, SMI8

Soil moisture index: SMIa: Oct, Jan, Apr, July SMIa10, SMIa1, SMIa4, SMIa7
entire soil column

shows the seven meteorological extreme indicators, the un-
derlying meteorological and hydrological variables and con-
sidered months, as well as the corresponding variable names
in the model.

The soil moisture simulation was obtained from the Ger-
man Drought Monitor (Zink et al., 2016) using the mesoscale
Hydrologic Model (mHM) (Samaniego et al., 2010; Kumar
et al., 2013). In general, the model is grid-based with a spa-
tial resolution of 4 km. Various hydrological processes such
as infiltration, percolation, evapotranspiration, snow accumu-
lation, groundwater recharge and storage, and runoff, both
rapid and slow, are considered to calculate soil moisture.
The model is driven by hourly or daily meteorological forc-
ings (e.g. precipitation, temperature). For parameterization, it
uses the spatial variability of observable but high-resolution
physical properties of the catchment (land surface descrip-
tors such as the digital elevation model, slope, aspect, rooting
depth based on land cover classes or plant functional types,
plant canopy characterization, soil texture, and geological
formation type). The main feature here is the multiscale pa-
rameter regionalization, which is critical for achieving cross-
scale flow matching. It allows the derivation of seamless pa-
rameter arrays between the targeted resolution and the high-
resolution land surface descriptors (Samaniego et al., 2017).
However, no endogenous land use management processes are

considered. The depth of the soil in each grid cell depends on
the soil type used in the mHM.

Soil moisture is presented here as an index because an in-
dex configuration supports the reduction of systematic errors
of data that are simulated as well as spatially processed, such
as in the present study (Auffhammer et al., 2013; Lobell,
2013). The soil moisture index (Samaniego et al., 2013) is de-
rived from a non-parametric and site-specific cumulative dis-
tribution function of soil moisture for the period 1951–2019
for each month of the vegetation period of winter wheat. The
percentile-based index thus quantifies the likelihood of oc-
currence of the monthly absolute soil moisture. The index
ranges from 0 to 1 and represents an anomaly with respect to
the monthly long-term soil water median (soil moisture index
= 0.5). Low values represent extremely dry soils and high
values represent extremely wet soils. Consequently, seasonal
effects due to drought and wet conditions during different
agrophenological stages are taken into account. In this con-
text, the interpretation of the monthly indices must take into
account that the proportion of saturated soil changes over
time and thus the base value for the index of each month.
For Germany, this seasonality of soil moisture is shown in
Fig. 4 in Samaniego et al. (2013). Here, we include two
variables denoting soil moisture at two depths, namely the
uppermost 25 cm (SMI) and the total soil column (SMIa)
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with variable depth depending on the soil map BUEK1000
(BGR, 2013). Soil moisture provides an integrated signal
of meteorological conditions in the previous and subsequent
months, which depends on determinants such as soil tex-
ture and depth, among other factors (e.g. Orth and Senevi-
ratne, 2012; Samaniego et al., 2013). This long-term tempo-
ral persistence of soil moisture is relatively high compared
to pure meteorological measures. It therefore does not allow
for cumulative measures, such as those commonly used for
temperature (e.g. growing or killing degree days, Schlenker
and Roberts, 2009), but supports the use of monthly aver-
ages. Because of the high positive time correlation of soil
moisture that accounts for the entire soil with its first- and
second-order neighbours, only October, January, April, and
July are considered for SMIa (Fig. A2, Appendix). In con-
trast, all months of the growing season are used for soil mois-
ture of the upper 25 cm. The yield data are available for the
districts of Germany. The meteorological data and soil mois-
ture, which have a spatial resolution of 4× 4 km2, are thus
aggregated to the districts. See Peichl et al. (2018) for a de-
tailed description of the spatial processing (e.g. grid cells that
are not non-irrigated agricultural land are excluded and the
remaining cells are used to calculate the respective district
average).

3 Method

We apply the machine-learning method random forests to ex-
plain the variation of winter wheat anomalies by the hydro-
meteorological features introduced above. Random forests
(RFs) have been used to analyze the effect of meteorological
determinants on crop yields on a global scale (Jeong et al.,
2016; Vogel et al., 2019) and in specific countries or regions
(Jeong et al., 2016; Hoffman et al., 2018; Beillouin et al.,
2020). However, none of these approaches explicitly used a
measure of soil moisture, nor did they apply clustering to take
into account the region-specific yield potential. RFs have also
been widely used in related disciplines such as drought im-
pact assessment (Bachmair et al., 2016) and forecasting (Su-
tanto et al., 2019). Within these applications, it has proven to
be more powerful for classification than other data-science
methods (Bachmair et al., 2017). Here, for a domain cov-
ering the whole of Germany, RFs proved to be superior to
other machine-learning algorithms that are particularly suit-
able for non-linear systems, such as support vector machines
and gradient boosting (not shown). This result is in align-
ment with other studies on a global scale (Vogel et al., 2019).
A comparison of RFs to least absolute shrinkage and selec-
tion operator in the Northern Hemisphere proved comparable
for a binary classification approach for simulated crop fail-
ures (Vogel et al., 2021). A RF randomly produces numer-
ous independent trees as an ensemble to avoid over-fitting
and sensitivity in the configuration of training data while be-
ing very efficient (Sutanto et al., 2019). The trained model is

Breiman’s RF (Breiman, 2001a). It is tuned to the number of
variables available for splitting at each tree node (parameter
mtry) using the tuneRF function of the R package random-
Forest (Liaw and Wiener, 2002). The initial values of the pa-
rameters are set to default, the number of trained trees is 500,
and the tuning is based on an out-of-bag error estimation (see
e.g. James et al., 2013, for more information).

The crop yield potential varies regionally in Germany due
to differences in climate and soils, among other factors. To
take account of these differences, a spatial clustering was im-
plemented to identify different sub-regions within Germany.
The clustering methods used are representatives of centroid-
based ones, such as k-means (KMEANS, MacQueen, 1967;
Hartigan and Wong, 1979) and partitioning around medoids
(PAM, Kaufman and Rousseeuw, 1990), which is less sensi-
tive to outliers, as well as the connectivity-based hierarchi-
cal clustering (HIERARCHICAL, Murtagh, 1985). Standard
internal validation such as connectivity, average silhouette
width, and Dunn index for cluster numbers between 2 and
16 were tested for the evaluation. However, the results show
no clear outcome on which algorithm and size combination
to use (Fig. A3). Instead, we fit the random forests individu-
ally for each region defined by one of the cluster algorithms
and cluster sizes. We then selected the combination that max-
imizes the average prediction capacity (test R-squared – R2)
across all regions. For each of these cluster configurations the
model is trained on 80 % of the data in that subset (randomly
selected from all space and time combinations) and predicted
for the rest. For this approach, the cluster sizes were limited,
so that each cluster contains at least 300 data points and the
cluster sizes are the same for all three algorithms. The re-
spective maximum cluster size is thus 9. The data used for
clustering are monthly averages and daily observations of the
meteorological data for the entire year. Soil moisture index
is included for both the upper layer and the entire soil col-
umn. Average yields are also taken into account in the data
for cluster formation. This is based on the intuition of tak-
ing into account time-invariant factors of each cluster that af-
fect yields such as soil quality and average farm size. These
factors are not considered in the random forest due to the
use of yield anomalies. This approach is inspired by fixed-
effect econometric models. There, the group means are fixed,
thus taking into account the time-invariant heterogeneity of
these groups (for the econometric literature, see for instance
Wooldridge, 2012).

The random forest algorithm allows us to study the rela-
tionships between hydro-meteorological extremes and yield
anomalies by assessing the relative importance of the vari-
ables and the functional relationship between each predictor
and the response variable (Jeong et al., 2016; Vogel et al.,
2019; Beillouin et al., 2020). For the latter, we use model ag-
nostics, which include various flexible methods that allow the
interpretation of black box models that separate the expla-
nation of the model from the model itself. Accordingly, the
same method can be used for any kind of machine-learning
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algorithm, and different types of explanations and different
types of features can be presented (Ribeiro et al., 2016). The
particular method considered here is accumulated local ef-
fects (ALE), which is a visualization of the average marginal
effect of features on target variables for supervised learning
models (Apley and Zhu, 2016; Molnar, 2020). ALE plots
predict the effect of an explanatory variable across their real-
izations, taking into account only a subset of the sample with
observed values adjacent to the respective realization (Ap-
ley and Zhu, 2016). It is a faster alternative to the popular
approach of the partial dependence plots (Friedman, 2001),
which have already proven to be suitable in the context of
yield prediction (Jeong et al., 2016; Vogel et al., 2019). How-
ever, ALE plots are more suitable for visualizing marginal ef-
fects by plotting explanatory variables against the predicted
outcomes if the features are highly correlated (Storm et al.,
2020; Molnar, 2020). One limitation is that uncertainty esti-
mates are not provided for ALE plots, which is a substantial
limitation of the approach and is an area of active research
(Storm et al., 2020; Molnar et al., 2020). The ALE plots are
shown for the most important features of each cluster.

4 Results

4.1 Evaluation of spatial clustering

To evaluate the cluster algorithm and the number of clusters,
the test R2 is created using the RFs for each combination of
the clusters and the sizes of the clusters. Table 2 shows re-
sults for three different soil moisture configurations, i.e. one
each for the upper layer as well as the entire soil column and
one that takes both into account. For each of these soil mois-
ture configurations, the three combinations of algorithms and
cluster sizes with the highest test R2 are shown. The R2 de-
rived from the training data is also shown. In general, the test
values are higher compared to those derived from the training
sample. This generally indicates good out-of-sample predic-
tive ability of the model. In this context, the sample is based
on randomly selected combinations of years and administra-
tive districts. Furthermore, all the configurations presented
have very similar predictive capacities. Overall, the best re-
sults can be achieved if only a soil moisture index for the
uppermost 25 cm is considered. Since the data for the entire
soil column do not appear to provide any additional informa-
tion for the model, we rely only on the top 25 cm for further
analysis. The best results explain 68 % of the wheat yield
anomaly variation. The average variance explained exceeds
the variance explained by RFs applied at the global level (Vo-
gel et al., 2019) or for the Northern Hemisphere (Vogel et al.,
2021) and is comparable to the highest explained variabil-
ity for RFs applied to European regions, with an average for
winter wheat of 43 % (Beillouin et al., 2020). A comparable
regression model approach is able to explain a maximum of
32 % of the variation (Gömann et al., 2015). A large frac-

tion of the variability is usually explained by time-invariant
factors, which are largely not considered here due to the de-
meaned yield data. For example, Peichl et al. (2018), using a
regression model for silage maize, showed that up to 32 % of
the variation explained by the model is explained by time-
invariant factors. An approach modelling relative year-to-
year yield changes has similar results (Conradt et al., 2016).
There, the best explanatory power is found for northern and
eastern Germany, with comparable coefficients of determina-
tion. However, for the rest of Germany the model presented
here performs better as it is doing well in regions with rather
low yield variability such as in the south of Germany (clus-
ter 4 in Fig. 2b and cluster 6 in Fig. 2c and d). We decided
to further investigate the results of PAM using four clusters
that offer a compromise between the highest possible pre-
dictive power and sufficient complexity to adequately repre-
sent relevant mechanisms. Here, cluster 1 mainly represents
the north-western and very western parts of Germany, clus-
ter 2 the north-east, cluster 3 the extreme south-west along
the Rhine, and cluster 4 most parts of central and southern
Germany (Fig. 2b). The test R2 of cluster 2 is the highest
at 0.743, followed by clusters 4 (0.656), 1 (0.641), and 3
(0.632). For all four clusters, a good fit can be observed in
the scatterplots for most of the data (Fig. 3a), while the tails
are slightly underestimated (Fig. 3b). The higher explanatory
power for cluster 2 might be related to the higher variation in
yield anomaly there (see Fig. 1). In addition, different impact
mechanisms operate within each cluster, which are decom-
posed in the following.

4.2 Marginal effects of the most important features

The main variables for each sub-cluster and the correspond-
ing average marginal effects are presented below in order
to understand the range of adverse effects on yield varia-
tion in winter wheat. To generate variable importance and
ALE plots, no split is made between test and training data.
The non-cluster results are compared with the spatial clus-
ters generated with the PAM clustering algorithm for a clus-
ter size of 4 – PAM (4). The detailed ALE plots for the over-
all best algorithm cluster size combination, i.e. the HIER-
ARCHICAL cluster algorithm with two clusters considering
only the top 25 cm of the soil column, are provided in the
Appendix (Fig. A5). In addition, the ALE plots for the HI-
ERARCHICAL (6) (Fig. A6), which consider only the top
25 cm for the soil layers, and those of the three best-ranked
cluster algorithm and size combinations of both soil mois-
ture for the top 25 cm and the entire soil column, are shown
(Figs. A7, A8, A9). The feature effects shown here can be
interpreted as additive because they are purged of correlation
with other features. For example, the combined effect of soil
moisture in June and July is the sum of SMI6 and SMI7.

The ALE plots in Fig. 4 are ranked in accordance with
their variable importance (for further information, see the
variable importance section in the Appendix). In general, soil

Hydrol. Earth Syst. Sci., 25, 6523–6545, 2021 https://doi.org/10.5194/hess-25-6523-2021



M. Peichl et al.: Machine-learning methods 6529

Table 2. Table with the average R2 for the test and training samples for the three best combinations of cluster algorithm and cluster size (in
parentheses) for three soil moisture configurations.

Soil moisture index configuration Algorithm size combination Avg. R2 (test/train)

Soil moisture index HIERARCHICAL (2) 0.677/0.611
for the uppermost 25 cm HIERARCHICAL (6) 0.669/0.600

PAM (4) 0.668/0.598
Non-cluster 0.642/0.623

Soil moisture index HIERARCHICAL (2) 0.674/0.596
for the entire soil column PAM (4) 0.659/0.578

HIERARCHICAL (6) 0.653/0.590
Non-cluster 0.642/0.593

Soil moisture index HIERARCHICAL (2) 0.676/0.613
for both the uppermost 25 cm PAM (4) 0.674/0.595
and the entire soil column PAM (6) 0.664/0.627

Non-cluster 0.659/0.623

moisture supports best the performance of the model. In both
the non-cluster approach and clusters 1 through 4, at least
7 of the 12 most important features are derived from soil
moisture (Fig. A4). Cluster 3 relies the least on soil moisture,
while in cluster 4 the most is explained by soil moisture.

Figure 4a shows the ALE plots for the non-cluster ap-
proach. The three main effects shown for the whole coun-
try are the same as in cluster 4, i.e. soil moisture in March
(SMI3), heat in August (Heat8), and soil moisture in Jan-
uary (SMI1). The functionality found in both non-cluster as
well as cluster 4 is very similar in this regard. SMI7, the
fourth-ranked feature, is very important in both cluster 1 (1st)
and cluster 2 (2nd), and the functionality is a combination of
both. SMI4 (5th in non-cluster) is found with similar crop re-
sponsiveness in cluster 3 (2nd) and SMI8 (6th in non-cluster)
in cluster 1 and cluster 4. For the three last-ranked features,
the sensitivity of SMI12 looks like a combination of those
found in clusters 3 and 4, SMI5 of clusters 2 and 4, and SMI2
of clusters 1 and 4. For the non-cluster approach, more wa-
ter in the top 25 cm of soil is more harmful than beneficial
to plant growth in most months. The notable exceptions here
are May (SMI5) and, to some extent, July (SMI7). Overall,
the sensitivities for the non-cluster approach are not very pro-
nounced, which could come from the fact that it shows com-
bined effects of areas with different plant susceptibilities due
to different environmental conditions as well as possible in-
teractions with other variables. The largest effect is shown
for soil moisture in March (SMI3).

For cluster 1 (Fig. 4b), the greatest plant sensitivities to
environmental conditions for the SMI are found in July and
April. While extremes at both ends are detrimental for July
(SMI7), this is mostly the case for drier-than-normal con-
ditions in April (SMI4). In addition, each day without pre-
cipitation in April reduces yield (PS4). Furthermore, heat is
beneficial up to 6 d in July but has a negative effect above this
threshold. In the first quarter of the year (SMI1, SMI2, SMI3)

as well as in August (SMI8), higher SMI values may be more
associated with negative impacts on crop yields. Cluster 2
(Fig. 4c) corresponds to the area for which the modelling ap-
proach also has the highest explanatory and predictive power
(Table 2). The sensitivities shown there are also the largest.
A drought signal can be found in particular for May (SMI5)
and June (SMI6) and to some extent for July (SMI7) and
August (SMI8). In March (SMI3), drier-than-normal condi-
tions are preferred. In January (SMI1), July (SMI7), and Au-
gust (SMI8), wetter-than-normal conditions are detrimental.
In general, for the SMI features, a pivotal transition in the
patterns takes place between April and May, as the nega-
tive effects of drought are evident first in May. Heat plays
an even more critical role in July than in cluster 1 (Heat7),
but the uncertainty in the LOESS function is also larger due
to the small number of realizations. In addition, additional
days without rain are adverse in April (PS4) but favourable
in July (PS7). The cluster for which meteorology plays the
most decisive role is number 3 (Fig. 4d). In June and July, too
few rain-free days have a negative impact on winter wheat
yield (PS6 and PS7). Overall, drier conditions are preferred
in July (PS7 and SMI7) but also in March (SMI3), while the
opposite is true in December (SMI12). On the other hand,
excessively wet soil moisture conditions are harmful in the
following month (SMI1). A low drought signal based on soil
moisture is noted for April (SMI4). More than 4 heat days
in June (Heat6) become increasingly detrimental with each
additional day above 30 ◦C. This feature has the greatest po-
tential for damage, but the extreme impacts are also associ-
ated with high uncertainty. The cluster is the only one that
also represents alternate frost, here for March (AF3). Cluster
4 (Fig. 4e) is largely dominated by soil moisture, of which
January (SMI1), April (SMI4), and August (SMI8) show a
slightly negative correlation with crop yield, and for March
(SMI3) it is strongly negative. May shows a drought sig-
nal up to an index of about 0.3 (SMI5) and is then also
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Figure 2. Spatial structure of clusters shown in Table 2. The clusters are derived from the HIERARCHICAL cluster algorithm with cluster
sizes (a) 2 and (c) 6 and from the PAM algorithm with cluster sizes (b) 4 and (d) 6. The white numbers indicate the respective test R2 for
each cluster derived considering only the top 25 cm soil layer (a, b, c) and for (d) with both the top and the entire soil column, since PAM
(6) is relevant only for this configuration.

negatively correlated. For February (SMI2) and December
(SMI12), only a small effect of soil moisture on crop yield
can be detected. The second most important variable is heat
in August (Heat8), with at least 1 d of up to 10 heat days be-
ing beneficial. Late frost in April (Frost4) is an important and
detrimental meteorological determinant.

Previous studies showed that water deficit has no limit-
ing effect on wheat yield in North Rhine-Westphalia (Kropp
et al., 2009) or showed a higher sensitivity of wheat yields to

water surplus compared to drought for Germany as a whole
(Zampieri et al., 2017). Similar observations can be made for
the non-cluster approach as well as for most clusters defined
by PAM (4). For many regions in Germany for most grow-
ing stages, extensive wet periods with water-saturated soil
represent an extreme weather situation for agriculture (Gö-
mann, 2018). In our study, soil moisture in March is the most
important variable (see Fig. A4). It dominates both the non-
cluster setting and cluster 4 and is at least fourth in the other

Hydrol. Earth Syst. Sci., 25, 6523–6545, 2021 https://doi.org/10.5194/hess-25-6523-2021



M. Peichl et al.: Machine-learning methods 6531

Figure 3. Scatter (a) and density (b) plots of the observed and predicted data for the four clusters derived using the PAM algorithm with
size 4. The bold black lines in the scatterplots indicate the linear regression line and the ellipses represent the contours of a 2-D density
estimate of the points.

clusters. The relationship between the SMI and yield anoma-
lies is negative (in varying sensitivities) for the entire range
of the SMI in March. This indicates that yield losses are as-
sociated with higher-than-normal water content in the upper
25 cm of soil. The most sensitive growth phase for waterlog-
ging is after germination but before emergence (Barber et al.,
2017; Grotjahn, 2021). Oxygen deficiency can cause dam-
age to the plant that results in yield losses (Cannell et al.,
1980). In addition, excessive soil water fosters pathogens
(Grotjahn, 2021) and complicates plant treatment operations
(Urban et al., 2015; Gömann, 2018). This finding is consis-
tent with the results of Ben-Ari et al. (2018), which showed
that a combination of abnormally wet conditions in spring
together with abnormally warm temperatures (not controlled
for in this study) in late autumn led to large losses in win-
ter wheat in France in 2016. An evaluation of the interaction
effects to treat possible compounding events does not show
stable results and varies from run to run, probably due to the
lack of available data. Therefore these results are not dis-
cussed here but need to be evaluated in further studies.

A strong drought signal can only be found in the data if the
model is applied to a sub-region such as cluster 2 (Fig. 4c).
In a non-cluster approach, those signals are mostly confused.
This underlines the importance of using clustering to take
account of different crop yield potentials and environmental

conditions. In cluster 2, for the months of May through July,
dry conditions below a certain threshold are more damaging
than too much water in the soil. The crop can tolerate (May
and June) or even benefit from (July) drier-than-normal con-
ditions during this period until soil water content is lower
than about the 25th percentile of the empirical distribution of
soil water content in the top 25 cm of soil. At levels below
this threshold, the effect on crop yield is negative. Expected
wheat yields (relative to 0 in ALE plots) decrease by about
4 % in June and 2.5 % in July, when the SMI is less than about
0.125 and about 2.5 % when the SMI is less than just below
0.25 in May. Yield losses are even more when compared to
the entire potential of SMI impacts of the respective months.
For example, in July, the largest difference between yields is
5 % when comparing an SMI value close to 0 and close to
1. Thus, these values define critical relative thresholds. The
observation that the absence of water governs crop produc-
tion in eastern Germany is in alignment with recent studies
(Conradt et al., 2016; Vinet and Zhedanov, 2010). There,
lack of precipitation together with sandy soils, which have
a lower water holding capacity, may result in water shortage
for winter wheat growth (Rezaei et al., 2018). According to
phenological evidence, this strong negative water deficiency
signal makes sense because it is associated with the drought-
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Figure 4. Accumulated local effects plots of the nine most important features for no cluster (a), cluster 1 (b), cluster 2 (c), cluster 3 (d),
and cluster 4 (e) derived from PAM (4). The red dots are estimated by the ALE plot algorithm (FeatureEffects of the iml package in R). We
have chosen a grid size of 50, which allows us to reveal the true complexity of the model at the expense of shakiness. Therefore a non-linear
smoothing function (LOESS – locally estimated scatterplot smoothing) is added in blue (with the confidence interval in grey). SMI represents
the soil moisture index for the uppermost 25 cm of the soil column, PS stands for days without rain in a given month, Heat stands for days
with a maximum temperature of more than 30 ◦C, Frost stands for the number of days below −5 ◦C (as only April is indicated), and AF
stands for days with a minimum temperature below −3 ◦C as well as a maximum temperature of +3◦C (same day). The number indicates
the month; 10, 11, and 12 refer to the year before. For example, SMI12 represents SMI in December.

sensitive vegetative and generative phases of winter wheat
(Lüttger and Feike, 2018).

In general, it is difficult to disentangle the compounding
effects of heat and water supply on plant growth (Gour-
dji et al., 2013; Roberts et al., 2013; Lobell and Asseng,
2017; Roberts et al., 2017; Schauberger et al., 2017; Siebert
et al., 2017; Zscheischler and Seneviratne, 2017; Mäkinen
et al., 2018; Peichl et al., 2018). Previous studies show that
the specific contributions of temperature and precipitation
anomalies to drought are difficult to isolate (Zscheischler
and Seneviratne, 2017; Vogel et al., 2019). Moreover, the
negative yield effects of high temperatures are associated
with water stress and can be mitigated by irrigation (Frieler
et al., 2017; Vogel et al., 2019; Ribeiro et al., 2020). How-
ever, for Germany, studies show that heat has historically
been more damaging than drought at sensitive growth stages
(Lüttger and Feike, 2018; Trnka et al., 2014). Vogel et al.
(2019) showed on a global scale with a very similar ap-
proach that temperature-related indicators such as frequency

of warm days, growing season average temperature, and av-
erage daily temperature have the highest predictive power for
crop yields. Here, a heat signal is observed in June for cluster
3 and in July for cluster 1 and with higher sensitivity for clus-
ter 2, which could be related to the most heat-sensitive phase
of anthesis (Barber et al., 2017; Rezaei et al., 2018). These
signals cannot be detected in the non-cluster approach as well
as when considering only clusters of size 2 as in Fig. A5 and
Fig. A7. In clusters 1 and 2, more than 6 and 8 heat days
above 30 ◦C in July, respectively, show adverse effects, a pe-
riod that could be related to grain filling (Lobell et al., 2012;
Lüttger and Feike, 2018; Mäkinen et al., 2018). In cluster 4,
heat in August, a period generally associated with ripening,
has positive effects for each additional day and negative ef-
fects after the seventh day. Our approach, which explicitly
controls for plant water supply through soil moisture, shows,
however, more negative effects related to water deficit com-
pared to heat for the non-cluster approach as well as for clus-
ter 1 and cluster 4. In cluster 2, July heat has the largest neg-
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ative effect in amplitude found in this study (albeit with large
uncertainty). However, each month from May through Au-
gust exhibits drought-related impacts that are greater in total
than the heat-related impacts. In cluster 3, meanwhile, the
heat in June has a greater impact than the lack of precipita-
tion in the same month and the lack of soil moisture in April
combined. This underscores the importance of disentangling
environmental factors in plant development in terms of tem-
poral and spatial occurrence, as this has critical and signifi-
cant implications for management and adaptation actions.

4.3 Predictions of years with extreme yield anomalies

Figure 5 shows the maps of observed, predicted, and the dif-
ference between those two for winter wheat yield anomalies
for the in-sample years 2003, 2014, and 2018 as well as for
2019. The latter year is not included in the training period
1999–2018 to allow the assessment of the out-of-sample pre-
dictive skill of the model. The first three are the years with
both the largest losses and gains during the training period.
Those years show different spatial patterns in yield gains
and losses. In 2003, the year with the highest total volume
of losses, the largest losses were recorded in eastern Ger-
many. For the year 2018 the losses are more likely to be in
the northernmost parts of Germany, while the south of Ger-
many shows positive yield anomalies; 2014 is a particularly
good year with higher than expected yields, especially in the
easternmost parts of Germany. The general spatial patterns
of losses and gains of the observed data are reproduced by
the simulated data for all 3 years. However, as can be seen
from the differences, the model tends to slightly underesti-
mate the extent of both extremes. For example, the largest
negative differences between observed and projected data
for 2003 are found for Vorpommern-Greifswald, a district
in the north-east of Germany. The region around this dis-
trict also shows the largest contiguous area of negative dif-
ferences, i.e. an underestimation of the losses. The largest
positive difference is found in the very south. For 2018 the
picture is comparable and the positive yield anomalies in the
south and the negative anomalies in the north are underes-
timated. However, for both years, there is no clear pattern
of overestimation and underestimation of non-extreme val-
ues. For 2014, the very positive results in some of the east-
ern districts are underestimated. However, the highest posi-
tive differences are not consistent with the highest positive
anomalies observed. The highest differences in the positive
anomalies are those for the high yield anomalies in the ex-
treme south-west. The highest negative differences are those
for the underestimated losses in southern Bavaria. For the in-
sample years 2003, 2014, and 2018 the model is very well
able to predict district yield anomalies but does not represent
the full extent of the anomaly variation in the extremes. With
less variation in the observed yield data, no clear pattern of
underestimation or overestimation can be observed. A differ-
ent picture can be observed for the out-of-sample year 2019.

There, both losses and gains are structurally underestimated
and the full range of variation of the observed yield anoma-
lies is not represented in the predicted yield anomalies. This
shows potential difficulties of out-of-sample predictions of
machine-learning models such as random forest. With suf-
ficiently large tree size, the out-of-bag estimator used in this
study converges with estimates based on leave-one-out cross-
validation, which may promote overfitting compared to other
cross-validation techniques (James et al., 2013). However,
this is not indicated when comparing the test and training
R2 results in Table 2. Another possible reason is that out-of-
sample structural relationships and functional relationships
of a given year are not detected or adequately reflected by this
approach. For one, corresponding patterns affecting wheat
yields in 2019 might not have occurred in the 1998–2018
training period. On the other hand, loss events due to certain
determinants, compounded or isolated, could have occurred
in 2019, which may not have been appropriately detected by
the model or may not have been extrapolated from the sample
by the model to a sufficient degree.

5 Conclusions

Here we show that random forests are very suitable for as-
sessing the non-linear damaging effects of different environ-
mental conditions on winter wheat yield anomalies. Explicit
consideration is given to soil moisture at various depths. In
addition, the crop yield potential and other spatially related
environmental conditions are taken into account, which helps
to improve predictive power. Different clustering algorithms
and cluster sizes have been applied to improve the predic-
tive capacity of the model from 64 % in average test R2 to
68 % when only considering the uppermost 25 cm in the soil
column. In general, the approach is able to explain the gen-
eral pattern of losses and gains of the districts, also those
in particularly extreme years such as the years 2003, 2014,
and 2018. In comparison to other models, this approach per-
forms better in regions with low crop yield variation. How-
ever, it slightly underestimates the extremes, with this prob-
lem being more pronounced for out-of-sample predictions.
This suggests that the out-of-sample predictive capacity of
machine-learning algorithms such as random forest needs to
be further explored both for use as a seasonal forecasting
tool and in the context of climate impact assessment. Nev-
ertheless, the analysis presented here can support the design
of tailor-made and, above all, prompt support mechanisms
for large losses caused by extremes as it helps to disentangle
the damage spectrum for sub-regions as well as sub-seasonal
effects in Germany. It particularly shows that soil moisture
dominates the variable importance ranking. All over Ger-
many, soil moisture abundance in March thereby ranks first
and shows substantial negative effects. In addition, the abun-
dance of water is problematic for the growth of winter wheat
in most other parts of Germany. Water shortage signals can
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Figure 5. Maps of the observed, the predicted (for PAM clustering with four sub-regions), and the difference between these two for winter
wheat yield anomalies for the in-sample years 2003 (a), 2014 (b), and 2018 (c) as well as 2019 (d), for which the model was not trained, at
the district level. Administrative districts with missing data are displayed in grey.
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be found for all four clusters represented here; however, the
most susceptible area is represented by cluster 2 (roughly the
north-east of Germany). These water scarcity effects tend to
go unrecognized in a non-cluster approach. The same ap-
plies to meteorological variables, such as heat-related mea-
sures in cluster 2 in July. Overall, these have a compara-
tively minor role in explaining the effects on yield anoma-
lies in winter wheat but can still have a major impact on
crop development. Again, this is especially the case in clus-
ter 2, where heat in July has the greatest overall damage po-
tential. However, across the season, more can be associated
with drought-related measures based on soil moisture than
heat. For example, 4 months of drought signal occur in the
north-eastern cluster, while heat is only relevant in July. This
information is helpful for tailoring management and adap-
tation measures. For example, it is particularly suitable for
the insurance industry for providing index-based insurance
policies, as they help to identify harmful features and vi-
sualize thresholds in those features that cause damage (Al-
bers et al., 2017). Prominent examples of this are the large
yield declines associated with an SMI smaller than 0.25 in
May and 0.125 in June and July in eastern Germany. These
sub-seasonal thresholds may also help to better determine
drought classes for specific crops used in monitoring and
decision support tools such as the German Drought Moni-
tor. Furthermore, such an approach, which explicitly captures
the complexity of the underlying reaction mechanism rather
than relying on one major determinant, generally appears to
be more suitable for the projection of climate impacts, since
global climate models explicitly capture the dynamics of sev-
eral hydro-meteorological variables (Crane-Droesch, 2018).
However, further research is needed to better take into ac-
count small-scale events such as hail and thunderstorms and
to better reflect region-specific differences in growth periods.
The compounding effects of interacting characteristics also
need to be studied in more detail and should be clarified us-
ing appropriate methods. In addition, it is important for sea-
sonal forecasting to improve the ability to predict events out-
side the sample. Here, an extended time period for training
the data might help. Furthermore, different cross-validation
techniques might support the reduction of the variability in
the predictions. Also, the use of other machine-learning al-
gorithms or deep learning could help to further improve pre-
dictive capabilities by better capturing (annual) patterns not
covered by this approach. Similarly, a sensitivity analysis of
the expert thresholds used to define the extreme values could
help to improve the model.

Appendix A

The Appendix contains additional information on the data,
approaches to cluster validation, as well as plots of variable
importance and accumulated local effects for the best com-
binations of cluster algorithm, cluster size, and SMI for a

Figure A1. Map showing the number of available winter wheat
yield observations for each district used in the analysis for the pe-
riod 1999–2018. Green districts were removed because 8 or more
years of winter wheat data were not reported by regional statistics.
Grey areas are districts with no non-irrigated agricultural land.

defined soil depth (either the top 25 cm or both the top 25 cm
and the total soil column) that are not presented in the main
text. Those are for the uppermost 25 cm soil moisture index
configurations HIERARCHICAL (2) and HIERARCHICAL
(6) and for the combination of the top 25 cm and total soil
column HIERARCHICAL (2), PAM (4), and PAM (6).

A1 Map of available yield observations for each district

We use a spatiotemporal data set that includes 412 districts
and 20 years. All districts with less than 12 years of reported
yields (green areas) are excluded from the analysis (Fig. A1).
The grey areas in the south are four districts for which non-
irrigated agricultural land could not be identified. A total
of 350 districts remained. Because of missing values, espe-
cially for Saxony-Anhalt and Mecklenburg-Western Pomera-
nia and some parts in western Germany, the time series for
these districts can be shorter than 20 years.

A2 Correlation plot of the soil moisture index for the
entire root zone for all months of the season of
winter wheat

Figure A2 shows the correlation of soil moisture indices
for total root zone depth for the season of winter wheat in
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Figure A2. Correlation plot (Pearson correlation coefficient) of the soil moisture index for the entire root zone (Lall) for all months of the
season of winter wheat. The SMI variables of October to December (10–12) refer to the previous year, since winter wheat is usually planted
in late autumn and harvested in the summer of the following year.

Germany from October to August. This correlation shows
the persistence of soil moisture and the smoother distribu-
tion resulting from it compared to meteorological variables.
The Pearson correlation coefficient between the neighbour-
ing SMIa is between 0.62 and 0.95. For the second-order
neighbours it is still between 0.42 and 0.88. In general, the
largest correlation coefficients are found for the first half of
the season. For this reason, within the random forests, we
consider only the months of October, January, April, and
July.

A3 Cluster validation

Here, we use internal validation measures to assess the qual-
ity of the clustering, which employ only the data set and the
clustering partition for the assessment (Brock et al., 2008).
The specified measures are connectivity, silhouette width,
and Dunn index (see Fig. A3). Connectivity refers to the

degree of connectivity of the clusters (Handl et al., 2005).
It has a value between 0 and infinity and should be mini-
mized. Both the silhouette width and the Dunn index repre-
sent linear combinations of compactness and separation of
the clusters. The Dunn index has a value between 0 and in-
finity and should be maximized (Dunn, 1974). The silhou-
ette width ranges between −1 and 1, and well-clustered ob-
servations have a value close to 1 (Rousseeuw, 1987). The
connectivity mainly indicates the use of a small number of
clusters, Dunn, at the other end, a rather large number. Sil-
houette width, by contrast, prefers a rather small number of
clusters. Both connectivity and Dunn index mostly favour the
HIERARCHICAL algorithm, while silhouette width prefers
KMEANS. As a consequence of this ambiguity, we decided
to evaluate the cluster algorithm and the number of clusters
by the R2 outside the sample, which is generated for each
cluster and the number of cluster combinations for the sepa-
rate soil moisture configuration.
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Figure A3. Internal validation measures for clusters with different sizes between 2 and 16. The measures depicted are connectivity, Dunn
index, and silhouette width.

Figure A4. Variable importance of the 12 most important features for no cluster (a), cluster 1 (b), cluster 2 (c), cluster 3 (d), and cluster 4 (e)
derived with the PAM (4) cluster algorithm and size combination only considering the uppermost 25 cm of the soil column. The importance
ranking is established with 50 repetitions of permutation. SMI represents the soil moisture index for the uppermost 25 cm of the soil column,
PS stands for days without rain in a given month, Heat stands for days with a maximum temperature of more than 30 ◦C, Frost stands for
the number of days below −5 ◦C (as only April is indicated), and AF stands for days with a minimum temperature below −3 ◦C as well as a
maximum temperature of +3 ◦C (same day). The number indicates the month; 10, 11, and 12 refer to the year before. For example, Frost10
represents black frost in October.

A4 Variable importance plots

Here, importance is defined as the factor by which the
model’s mean absolute error (mae), a measure of model
performance, changes when the feature is shuffled (Molnar,
2020). To overcome the randomness added by this shuffling,
the permutation is repeated 50 times and the results are av-
eraged. Thus, the results show variability, indicated by the
black bar, but rather small (Fig. A4). As Fig. A4a shows for
a non-cluster approach, 9 out of the 12 most important fea-
tures are soil moisture in the uppermost 25 cm during differ-
ent times within the growing season and March is the most
important month. The most important meteorological vari-
able is Heat for August. In general soil moisture supports
the performance of the model for all five considerations the
most. This is particularly true for the non-cluster approach

and clusters 1, 2, and 4, as in cluster 3 more meteorological
variables are critical.

A5 Accumulated local effects plots

The detailed ALE plots for the overall best algorithm clus-
ter size combination, i.e. the HIERARCHICAL cluster algo-
rithm with two clusters considering only the top 25 cm of
the soil column, are provided in Fig. A5. In addition, the
ALE plots for the HIERARCHICAL (6) (Fig. A6), which
consider only the top 25 cm for the soil layers, and those of
the three best-ranked cluster algorithm and size combinations
when both soil moisture for the top 25 cm and the entire soil
column are considered (Figs. A7, A8, A9), i.e. HIERARCHI-
CAL (2), PAM (4), and PAM (6), are shown. The spatial ar-
rangement of the clusters can be seen in Fig. 2 of the main
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text. The nine most important features are shown for each
cluster.

Figure A5. ALE plots for the best combination of cluster algorithm and cluster size (HIERARCHICAL with two clusters) for a soil moisture
index configuration that only considers the uppermost 25 cm. For both clusters, the nine ALE plots with the highest feature importance
are shown. The importance ranking is established with 50 repetitions. We have chosen a grid size of 50 to estimate the ALE plots, which
allows us to reveal the true complexity of the model at the expense of shakiness. Therefore a non-linear smoothing function (LOESS –
locally estimated scatterplot smoothing) is added in blue (with the confidence interval in grey). SMI represents the soil moisture index for the
uppermost 25 cm of the soil column, PS stands for days without rain in a given month, and Heat stands for days with a maximum temperature
of more than 30 ◦C. The number indicates the month; October (10) to December (12) refers to the year before.
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Figure A6. ALE plots for the second best combination of cluster algorithm and cluster size (HIERARCHICAL with six clusters) for a soil
moisture index configuration that only considers the uppermost 25 cm. For the six clusters, the nine ALE plots with the highest feature
importance are shown. The importance ranking is established with 50 repetitions. We have chosen a grid size of 50 to estimate the ALE plots,
which allows us to reveal the true complexity of the model at the expense of shakiness. Therefore a non-linear smoothing function (LOESS
– locally estimated scatterplot smoothing) is added in blue (with the confidence interval in grey). SMI represents the soil moisture index for
the uppermost 25 cm of the soil column, PS stands for days without rain in a given month, Heat stands for days with a maximum temperature
of more than 30 ◦C, and Rain represents the days of precipitation higher than 30 mm/d. The number indicates the month; October (10) to
December (12) refers to the year before.
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Figure A7. ALE plots for the best combination of cluster algorithm and cluster size (HIERARCHICAL with two clusters) for a soil moisture
index configuration that considers both the uppermost 25 cm as well as the entire soil column. For both clusters, the nine ALE plots with the
highest feature importance are shown. The importance ranking is established with 50 repetitions. We have chosen a grid size of 50 to estimate
the ALE plots, which allows us to reveal the true complexity of the model at the expense of shakiness. Therefore a non-linear smoothing
function (LOESS – locally estimated scatterplot smoothing) is added in blue (with the confidence interval in grey). SMI represents the soil
moisture index for the uppermost 25 cm of the soil column, PS stands for days without rain in a given month, and Heat stands for days with
a maximum temperature of more than 30 ◦C. The number indicates the month; October (10) to December (12) refers to the year before.

Figure A8. ALE plots for the second best combination of cluster algorithm and cluster size (PAM with four clusters) for a soil moisture index
configuration that considers both the uppermost 25 cm as well as the entire soil column. For the four clusters, the nine ALE plots with the
highest feature importance are shown. The importance ranking is established with 50 repetitions. We have chosen a grid size of 50 to estimate
the ALE plots, which allows us to reveal the true complexity of the model at the expense of shakiness. Therefore a non-linear smoothing
function (LOESS – locally estimated scatterplot smoothing) is added in blue (with the confidence interval in grey). SMI represents the soil
moisture index for the uppermost 25 cm of the soil column, PS stands for days without rain in a given month, and Heat stands for days with
a maximum temperature of more than 30 ◦C. The number indicates the month; October (10) to December (12) refers to the year before.

Hydrol. Earth Syst. Sci., 25, 6523–6545, 2021 https://doi.org/10.5194/hess-25-6523-2021



M. Peichl et al.: Machine-learning methods 6541

Figure A9. ALE plots for the third best combination of cluster algorithm and cluster size (PAM with six clusters) for a soil moisture index
configuration that considers both the uppermost 25 cm as well as the entire soil column. For the six clusters, the nine ALE plots with the
highest feature importance are shown. The importance ranking is established with 50 repetitions. We have chosen a grid size of 50 to estimate
the ALE plots, which allows us to reveal the true complexity of the model at the expense of shakiness. Therefore a non-linear smoothing
function (LOESS – locally estimated scatterplot smoothing) is added in blue (with the confidence interval in grey). SMI represents the soil
moisture index for the uppermost 25 cm of the soil column, PS stands for days without rain in a given month, and Heat stands for days with
a maximum temperature of more than 30 ◦C. The number indicates the month; October (10) to December (12) refers to the year before.
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