Articles | Volume 25, issue 11
https://doi.org/10.5194/hess-25-5839-2021
https://doi.org/10.5194/hess-25-5839-2021
Research article
 | 
11 Nov 2021
Research article |  | 11 Nov 2021

Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods

Yang Yang and Ting Fong May Chui

Related authors

A multiagent socio-hydrologic framework for integrated green infrastructures and water resource management at various spatial scales
Mengxiang Zhang and Ting Fong May Chui
Hydrol. Earth Syst. Sci., 29, 2655–2695, https://doi.org/10.5194/hess-29-2655-2025,https://doi.org/10.5194/hess-29-2655-2025, 2025
Short summary

Cited articles

Ahmad, M. A., Teredesai, A., and Eckert, C.: Interpretable machine learning in healthcare, in: Proceedings – 2018 IEEE International Conference on Healthcare Informatics, ICHI 2018, p. 447, 4 to 7 June 2018, New York City, NY, USA, 2018. 
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., and Herrera, F.: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI, Inf. Fusion, 58, 82–115, https://doi.org/10.1016/J.INFFUS.2019.12.012, 2020. 
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001. 
Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., and Lang, M.: mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions, arXiv [preprint], arXiv:1703.03373v3, 2017. 
Bojanowski, P., Joulin, A., Paz, D. L., and Szlam, A.: Optimizing the latent space of generative networks, in: 35th International Conference on Machine Learning, ICML 2018, vol. 2, 960–972, Stockholm, Sweden, 10 to 15 July 2018, 2018. 
Download
Short summary
This study uses explainable machine learning methods to model and interpret the statistical correlations between rainfall and the discharge of urban catchments with sustainable urban drainage systems. The resulting models have good prediction accuracies. However, the right predictions may be made for the wrong reasons as the model cannot provide physically plausible explanations as to why a prediction is made.
Share