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Abstract. Sustainable urban drainage systems (SuDS) are
decentralized stormwater management practices that mimic
natural drainage processes. The hydrological processes of
SuDS are often modeled using process-based models. How-
ever, it can require considerable effort to set up these models.
This study thus proposes a machine learning (ML) method to
directly learn the statistical correlations between the hydro-
logical responses of SuDS and the forcing variables at sub-
hourly timescales from observation data. The proposed meth-
ods are applied to two SuDS catchments with different sizes,
SuDS practice types, and data availabilities in the USA for
discharge prediction. The resulting models have high predic-
tion accuracies (Nash–Sutcliffe efficiency, NSE,>0.70). ML
explanation methods are then employed to derive the basis
of each ML prediction, based on which the hydrological pro-
cesses being modeled are then inferred. The physical realism
of the inferred hydrological processes is then compared to
that would be expected based on the domain-specific knowl-
edge of the system being modeled. The inferred processes of
some models, however, are found to be physically implausi-
ble. For instance, negative contributions of rainfall to runoff
have been identified in some models. This study further em-
pirically shows that an ML model’s ability to provide accu-
rate predictions can be uncorrelated with its ability to offer
plausible explanations to the physical processes being mod-
eled. Finally, this study provides a high-level overview of the
practices of inferring physical processes from the ML mod-
eling results and shows both conceptually and empirically
that large uncertainty exists in every step of the inference
processes. In summary, this study shows that ML methods
are a useful tool for predicting the hydrological responses
of SuDS catchments, and the hydrological processes inferred

from modeling results should be interpreted cautiously due to
the existence of large uncertainty in the inference processes.

1 Introduction

Sustainable urban drainage systems (SuDS), also known
as low-impact development practices, green infrastructure,
and sponge cities, are decentralized stormwater manage-
ment practices that aim to promote on-site infiltration, stor-
age, evapotranspiration, and stormwater reuse (Fletcher et
al., 2015; Jones and Macdonald, 2007). SuDS can effec-
tively improve stormwater runoff quality, reduce runoff vol-
ume, and restore natural hydrological regimes (Selbig et al.,
2019; Trinh and Chui, 2013; Zhou, 2014). Commonly used
SuDS include bioretention cells, green roofs, porous pave-
ments, and rain barrels (Gimenez-Maranges et al., 2020;
Charlesworth, 2010).

A number of numerical modeling methods have been
adopted or developed to predict the hydrological perfor-
mance of SuDS and understand the involved hydrological
processes (Liu et al., 2014; Elliott and Trowsdale, 2007). The
simplest methods are perhaps those developed based on em-
pirical equations for assessing the drainage impact of differ-
ent land use types. For instance, the rational method and Soil
Conservation Service (SCS) runoff curve number method are
modified and used in Montalto et al. (2007) and Damodaram
et al. (2010) to study the effectiveness of SuDS at catch-
ment scales. Empirical equation-based methods can be useful
in preliminary designs to rapidly estimate some key perfor-
mance metrics of SuDS. However, these methods may poorly
reflect detailed SuDS design variations (Fassman-Beck et al.,
2016).
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Process-based models are another approach to modeling
SuDS in which physically based or empirical equations are
used to characterize the involved hydrological processes.
SuDS are typically represented in process-based models as
hydrological functional units, whose properties are defined
using a set of parameters. Commonly used models, includ-
ing the Storm Water Management Model (SWMM) and MU-
SIC (Model for Urban Stormwater Improvement Conceptu-
alisation), are reviewed in Eckart et al. (2017) and Elliott and
Trowsdale (2007).

The application of process-based models, however, faces
several challenges. First, it may require considerable effort to
set up a process-based model for SuDS, as not all the required
parameters are measurable or can be measured at a reason-
able cost. For example, in SWMM, the initial soil moisture
deficit parameter of SuDS is often determined through cal-
ibration (Rosa et al., 2015). Second, some complex hydro-
environmental processes of SuDS and surrounding environ-
ments are difficult to model using existing models. For in-
stance, SWMM does not account for macropore flow in the
SuDS soil layer (Niazi et al., 2017), and models that assess
the performance of SuDS in shallow groundwater environ-
ments (Zhang and Chui, 2019) and cold climates (Johan-
nessen et al., 2017) are limited. Third, the assumptions used
in process-based models may be invalid in some cases due
to unknown issues related to construction, maintenance, or
physical property changes during a SuDS’s service life (Yong
et al., 2013).

It may be useful to model directly the statistical correla-
tions between the random variables that describe the states
of SuDS catchments. The resulting statistical models may be
adopted for solving various prediction tasks and be used as
references to assess the prediction accuracy of process-based
models. These models may be derived using machine learn-
ing (ML) methods, which aim to learn the statistical correla-
tions between random variables from observation data (Solo-
matine and Ostfeld, 2008). Terms that are closely related to
ML include data-driven modeling, predictive modeling, and
statistical learning.

ML methods have been widely used in various fields in hy-
drology (Maier and Dandy, 2000). However, they have only
been used in a few SuDS-related studies. For instance, lin-
ear regression methods were used in Eric et al. (2015), Hop-
kins et al. (2020), and Khan et al. (2013) to predict the hy-
drological effectiveness of SuDS, such as runoff volume re-
duction, based on factors such as inflow volume, antecedent
soil moisture content, and SuDS implementation levels. Li et
al. (2019) used neural network models to predict the peak
flow and runoff volume of runoff events of a SuDS site
based on rainfall event characteristics. The studies mentioned
above focused on predicting the long-term or rainfall-event-
level hydrological performance of SuDS. However, there
is currently insufficient literature on the application of ML
methods to model the temporal evolution of the hydrological
responses of SuDS at regular time steps, e.g., daily, hourly,

or sub-hourly. Yang and Chui (2019) showed that ML meth-
ods, such as deep learning methods and random forest meth-
ods, are useful for predicting the runoff response of SuDS at
sub-hourly timescales, provided that the model’s input vari-
ables are appropriate. However, a method to derive these in-
put variables was not described in their study.

The lack of popularity of ML methods in SuDS-related
studies may be explained by several factors. First, ML meth-
ods are not applicable when the observation data of the vari-
ables of interest are unavailable. Second, modeling the hy-
drological responses of SuDS at fine temporal scales requires
a high-dimensional hydrometeorological time series to be
used as input, which can be challenging for ML methods
that are not specifically designed for modeling sequence data
(Nielsen, 2019). Additionally, ML methods may also not of-
fer clear advantages over equation-based methods when ap-
plied to study the performance of SuDS at the rainfall event
level. Third, ML models are usually trained to capture the
statistical correlations between random variables without or
with little consideration of the involved physical processes;
thus, they may be considered less useful for understanding
the physical processes compared to process-based models.

Therefore, to promote the application of ML methods in
SuDS-related studies, one must show that ML methods can
provide accurate predictions for various tasks and that the
involved hydrological processes can be interpreted. While it
is straightforward to apply specific ML methods to solving
prediction tasks, there is currently insufficient research into
interpreting the hydrological processes learned by ML mod-
els.

Several studies in hydrology explained ML models us-
ing methods adopted from explainable artificial intelligence
(XAI), which is an emerging field of ML that aims to make
ML modeling results more understandable to humans (Bo-
janowski et al., 2018). Commonly used XAI methods for
understanding the functioning of ML models include trans-
parent ML models and post hoc explainability techniques
(Barredo Arrieta et al., 2020). Transparent ML models re-
fer to those with structures that are directly understandable
to humans, which include linear regression models, decision
trees, and K nearest neighbors. These models have been fre-
quently adopted in hydrology for understanding the correla-
tions between random variables or the basis of specific pre-
dictions (Solomatine and Dulal, 2003; Wani et al., 2017).
Post hoc explainability techniques aim to explain ML mod-
els that are not transparent. For instance, in hydrology, the
integrated gradients method (Sundararajan et al., 2017) has
been used in Kratzert et al. (2019) to understand the contribu-
tion of meteorological input at different time steps to stream-
flow discharge prediction in neural networks, the permuta-
tion feature importance method has been used in Schmidt
et al. (2020) to assess the importance of the predictors for
flood magnitude prediction in various ML models, and the
SHAP (SHapley Additive exPlanations) method (Lundberg
and Lee, 2017) has been used in Starn et al. (2021) to identify
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the factors affecting groundwater residence time distribution
predictions in XGBoost models (Chen and Guestrin, 2016).

Most of the current hydrology literature uses post hoc ex-
plainability techniques to test whether an ML model makes
right predictions for the right reasons, where a model is gen-
erally considered more trustworthy if it can generate predic-
tions in a way that is consistent with our knowledge of the
system being modeled. Here, the term trustworthy is defined
broadly as the quality of a model to provide predictions that
can be trusted (Morton, 1993). The current applications es-
sentially test the patterns learned by ML models against that
would be expected from the domain-specific knowledge of
the system being modeled (Yang and Chui, 2021), and the
test results are then used as an indicator of a model’s trust-
worthiness. This approach, however, may be challenged by
the fact that ML models can uncover hidden patterns in data
that make no intuitive sense to humans (Ilyas et al., 2019).
Thus, the quality of a model to provide accurate predictions
and plausible explanations to the physical processes may be
uncorrelated. Rudin (2019) further suggests that the post hoc
explainability techniques themselves are uncertain and ap-
proximated because inaccurate representations of the origi-
nal model may be adopted in deriving the explanations, and
similar views on the uncertainties in explanation are also
reported in Chen et al. (2020) and Sundararajan and Na-
jmi (2020).

Therefore, in hydrological studies, it is meaningful to ask
whether post hoc explainability techniques and ML mod-
els can provide physically plausible explanations to the pro-
cesses of the system being modeled and whether a model’s
abilities to provide accurate predictions and plausible expla-
nations are correlated. This study aims to investigate these
questions by examining the ML models that are trained to
predict hydrological responses of SuDS catchments at sub-
hourly timescales and the means through which the applica-
bility of ML methods to modeling SuDS catchments is also
assessed.

2 Methods and materials

2.1 Training and testing machine learning models

2.1.1 Modeling hydrological responses of SuDS using
machine learning methods

Let random variable Yt denote the hydrological response of
a SuDS catchment at time step t and random vector Xt de-
note the time series of the hydrometeorological conditions
and other factors measured on and before time step t .

Xt :=
[
Pt ,Pt−1,Pt−2, . . . ,E1,E2, . . . ,Ek

]
, (1)

where Pt−i is the rainfall depth recorded at time step t − i,
and E1 through Ek represent k measurements of the other
variables. Pt−0 is written as Pt for convenience.

It is assumed that Yt can be written as an unknown func-
tion of Xt , which can be approximated by functions learned
by ML algorithms from observation data of Xt and Yt . A fea-
ture engineering process is commonly involved in the learn-
ing process, in which Xt is converted to lower-dimensional
representations using a function g, such that the mapping be-
tween g (Xt ) and Yt can be learned more easily by ML algo-
rithms (Kuhn and Johnson, 2019). Yt can then be estimated
using Ŷt , which is computed as follows:

Ŷt = fθ
(
gϕ (Xt )

)
, (2)

where f is a function learned by an ML algorithm, and ϕ and
θ are parameters of g and f . Figure 1 illustrates the processes
for deriving the prediction for an input sample xt .

The goal of ML is then to identify the optimal parameter
values θ∗ and ϕ∗ that minimize the expected loss ` over the
data distribution pd (Xt ,Yt ), as shown in the following:(
θ∗,ϕ∗

)
= argmin

θ, ϕ

E(Xt ,Yt )∼pd(Xt ,Yt )`
(
fθ
(
gϕ (Xt )

)
,Yt
)
. (3)

As pd (Xt ,Yt ) are unknown, the expectation is often approxi-
mated by averaging the losses computed for a set of observed
samples (xt ,yt ).

2.1.2 Feature engineering methods

Gauch et al. (2021) showed that the hydrometeorological
time series recorded in the long-term past can be represented
using a coarser temporal resolution in ML models built for
rainfall–runoff modeling without deteriorating their predic-
tion accuracy. This study adopts a similar approach to rep-
resent a rainfall time series by aggregated rainfall depths
recorded during different intervals, in which rainfall time se-
ries recorded between time steps t−a and t−b is represented
by a rainfall depth feature Dt−a, t−b, as follows:

Dt−a, t−b =
∑b

i=a
Pt−i . (4)

However, an approach to optimally define the set of (a,b)
pairs to create rainfall depth features is not known a priori.

This study proposes a simple method to systematically se-
lect cut points along the time axis which form a series of
intervals for defining (a,b) pairs. As shown in Fig. 2, the se-
lection of cut points is controlled by three hyperparameters,
m, l, and n. (1) For m, a cut point is placed between time
steps t−m and t−m−1, such that the rainfall data recorded
prior to time step t −m are considered irrelevant for predict-
ing Yt . (2) For l, the rainfall data recorded between time steps
t−l and t−0 are considered to be most relevant for predicting
Yt , so that cut points are placed around each time step within
this interval. (3) For n, n− 1 cut points are placed between
time steps t − l− 1 and t −m, such that the neighboring cut
points correspond to n intervals whose lengths roughly form
an arithmetic sequence. After the (a,b) pairs have been de-
fined, a rainfall depth feature Dt−a, t−b is then created for
every interval formed by two neighboring cut points.
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Figure 1. Illustration of the prediction generation process for an input sample xt .

Figure 2. Illustration of the method to place cut points along the time axis.

Representing a rainfall time series using a set of Dt−a, t−b
can reduce the dimensionality of data at the cost of losing
information regarding the temporal distribution of rainfall.
In this method, fewer cut points are selected for rainfall in
the long-term past (e.g., a few days ago), which is based on
the assumption that they are less important for predicting Yt .
This is reasonable, considering the relatively fast response
time of SuDS (DeBusk et al., 2011). Similarly, some of the
environmental variables [E1,E2, . . . ,Ek] may be less impor-
tant for predicting Yt , which can be filtered out during the

feature engineering process. In this study, whether or not to
include Ei is controlled by a Boolean variable, and k such
variables are used.

In this study, the optimal values of the feature engineer-
ing hyperparameters, m, l, n, and the k Boolean variables,
are determined using resampling and Bayesian optimization
methods as described below.
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2.1.3 XGBoost algorithm

This study adopts the gradient-boosted trees algorithm
(Friedman, 2001) to train ML models. In particular, the XG-
Boost (Chen and He, 2020) software library is used. XG-
Boost is selected for its improved regularization methods,
high computational efficiency, and ability to achieve state-of-
the-art results on various ML tasks (Nielsen, 2016; Chen and
He, 2020; Chen and Guestrin, 2016). A detailed introduction
to XGBoost can be found in Chen and Guestrin (2016) and
Mitchell and Frank (2017).

A gradient-boosted trees model G is an ensemble of deci-
sion trees, in which ŷi , the prediction for an input sample xi ,
is the sum of the predictions of individual trees (Chen and
Guestrin, 2016), which is given as follows:

ŷi =G(xi)=
∑K

k=1
fk (xi) , fk ∈ F , (5)

where fk is a decision tree that maps input samples to the
values stored at the tree leaves, K is the number of decision
trees (also known as the number of boosting iterations), and
F is the functional space of all possible regression trees. For
a given data set, the structure of the trees, including the split-
ting criteria and the values stored at the leaves, is learned
automatically using XGBoost.

There are a number of hyperparameters used in XGBoost
for controlling model structure and the learning behaviors
during training, e.g., the number of boosting iterations and
maximum tree depth. A complete list of the XGBoost hy-
perparameters can be found in the software documentation
(Chen and He, 2020). In this study, the XGBoost hyperpa-
rameters are optimized together with feature engineering hy-
perparameters using resampling and the Bayesian optimiza-
tion methods as described below.

2.1.4 Resampling methods and Bayesian optimization
for training and testing machine learning models

In this study, the effectiveness of the feature engineering and
XGBoost algorithm are evaluated on different data sets of
observed (xt ,yt ) samples collected at different SuDS sites.
For each data set, the evaluation is performed by randomly
splitting the data set into a series of training and test subsets.
For each such split, during the hyperparameter optimization
phase, the training set is further split into a series of smaller
training and validation data sets. Then, multiple models with
different feature engineering and XGBoost hyperparameters
are trained on the smaller training data sets, and the qual-
ity of a set of hyperparameters is measured by the prediction
accuracy of the resulting model on the validation data sets,
and the optimal hyperparameters are then identified. During
the model evaluation phase, the optimal hyperparameters are
then used to fit a model on the training data set (which in-
cludes both the smaller training and validation data sets),
and the resulting model is evaluated using the test data set.
Apparently, the assessment results are affected by how the

data set is split; thus, the hyperparameter optimization and
model evaluation processes are repeated for various splits in
this study for some numerical experiments. More informa-
tion on resampling methods can be found in Kuhn and John-
son (2013) and Hastie et al. (2009).

During the hyperparameter optimization phase, the can-
didate hyperparameters to be assessed are proposed by
Bayesian optimization methods, which are sample-efficient
algorithms for solving black box optimization problems
(Shahriari et al., 2016). Bayesian optimization methods are
commonly used in ML for hyperparameter optimization
(Snoek et al., 2012). The decision variables in the optimiza-
tion problems are the hyperparameters, and the quantity to
be optimized is the prediction accuracy on the validation data
sets. An introduction to Bayesian optimization can be found
in Frazier (2018).

2.2 Interpreting model structures and inferring
hydrological processes learned by machine learning
models

2.2.1 Interpreting the basis of each prediction

Understanding why a specific prediction is made by an ML
model can be useful for understanding the relationships be-
tween various variables captured by the model. In this study,
XGBoost uses decision trees as its base learner. Although
each decision tree can be considered as a transparent ML
model (as the rules used for making predictions can be un-
derstood easily by humans), it can be challenging to directly
interpret the prediction generation process of an XGBoost
model as many trees can be used in it. Therefore, post hoc
explainability techniques, such as the gain, cover, and fre-
quency metrics, are commonly used for understanding the
structure of XGBoost models.

The gain of a feature is its relative contribution to the
model as measured by the total gain of the feature’s splits. It
can be roughly regarded as a feature’s contribution to predic-
tion accuracy improvement (Chen and He, 2020). The cover
of a feature is the relative number of training samples related
to the feature’s splits (Chen and He, 2020). The frequency of
a feature is the relative number of times that this feature has
been used in tree splits (Chen and He, 2020). The three met-
rics are global feature importance measures, as they reflect
the overall contribution of a feature to an XGBoost model
for making various predictions (Guidotti et al., 2019; Ahmad
et al., 2018). However, these metrics can be irrelevant for un-
derstanding the basis of a specific prediction, which is a task
that requires local explanation methods.

This study adopts a local feature attribution method to
quantify the contribution of each feature to the prediction
made for a specific input sample (Janzing et al., 2019). The
SHAP method proposed by Lundberg and Lee (2017) is used
in this study. The SHAP value of a feature for a specific input
sample can be considered as being the marginal contribution
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of this feature to the predicted value compared to the mean
predictions for all samples. SHAP values satisfy a series of
desired properties. For instance, the sum of the SHAP value
assigned to each feature equals the difference between the
predicted value and the mean prediction for all samples, and
the features that do not change the expected prediction are as-
signed with a SHAP value of 0 (Lundberg et al., 2020). The
SHAP values can be computed using the following steps.

Let the real-valued function f of the N -dimensional ran-
dom variable X be the ML model to be explained, and let
x := (x1,x2, . . . ,xN ) be an observed sample of X. ∅i , the
SHAP value of xi , is computed as follows:

∅i =
1
N !

∑
R∈R

[
v
(
SR
∪ i
)
− v

(
SR)] , (6)

where, R is a random permutation of the N features, R is
the space of all feature permutations, SR is the set of features
that are located before feature i in permutation R, and v :
S ∈ P (N)→ R is a set function that maps every subset of
the N features (i.e., each member of the power set P of all
N features) to a real number, and v is known as the value
function.

Therefore, ∅i can be interpreted as the expected marginal
contribution to v of feature i (i.e., v

(
SR
∪ i
)
− v

(
SR)) in a

random permutation of the N features. Equation (6) is devel-
oped based on the Shapley value used in game theory, more
information on which can be found in Shapley (1953) and
Osborne and Rubinstein (1994).

In the SHAP method, v is the expected prediction of f
when some features are missing. v may be defined in various
ways. Lundberg and Lee (2017) define v using the observa-
tional conditional expectation, which is the expected value of
f (X) when the feature values of X for a set of features S are
known, as in the following:

v (S)= E
[
f (X) |XS = xS

]
. (7)

Janzing et al. (2019) and Lundberg et al. (2020) defined v us-
ing the interventional conditional expectation, as in the fol-
lowing:

v (S)= E
[
f (X) |do(S)

]
, (8)

where do(S) represents an intervention that sets the feature
values of X in S to xS . The SHAP values derived using
Eqs. (7) and (8) are respectively termed observational SHAP
values and interventional SHAP values. The observational
SHAP value of xi generally measures the value of knowing
xi to predict the outcome, and the interventional SHAP value
of xi corresponds to the expected changes in the model pre-
diction when the feature Xi is set to the xi .

Chen et al. (2020) suggested that both observational and
interventional SHAP values are useful. They claimed that the
observational SHAP values are true to the data because they
are effective in identifying the true correlations between the

features and the outcome of interest, whereas the interven-
tional SHAP values are true to the model because they do
not credit the features that are unused by the model. The ob-
servational SHAP values are used in most places of this pa-
per as they are less computationally expensive than the inter-
ventional SHAP values. The TreeSHAP methods proposed
in Lundberg et al. (2020) are used in this study to compute
both SHAP values.

For a given input sample xt , the SHAP value assigned to
a rainfall depth feature Dt−a,t−b can be further distributed
among the rainfall recorded at each time step between time
steps t − a and t − b. The SHAP value ∅Dt−a, t−b (xt ) can be
assigned to the rainfall recorded at time step t − k propor-
tional to its depth pt−k , where a ≤ k ≤ b. Thus, τk (xt ), the
SHAP value assigned to pt−k , if the rainfall depth recorded
between time steps t − a and t − b (denoted by dt−a, t−b) is
not 0, can be computed using the following:

τk (xt )=
pt−k

dt−a, t−b
∅Dt−a, t−b (xt ) . (9)

The processes for quantifying the contribution of each fea-
ture of an input sample xt to model prediction and distribut-
ing the contributions to the rainfall of each time step are il-
lustrated in Fig. 3a.

2.2.2 Inferring hydrological processes from machine
learning modeling results

The process of inferring the hydrological processes being
modeled involves mapping from the explanations on the
model structure to some imaginary catchments that are likely
to possess the characteristics that are consistent with the
explanations. For instance, if the explanations indicate that
the discharge predictions are strongly controlled by the rain-
fall in the long-term past, then the processes being modeled
are likely to correspond to the processes of catchments with
long-term memory effects. However, the mapping processes
are inherently subjective and incomplete, and discussions of
these characteristics are presented in Sect. 3.6. This section
introduces the methods to map the explanations to imagi-
nary catchments, and more discussions on the limitations are
given when the case study results are presented.

In this study, for each xt , τk (xt ) is computed for pt−k of
each time step (Eq. 9). These τk (xt ) values quantitatively de-
scribe the associations between rainfall and the hydrological
response across various time steps, which is useful for infer-
ring the catchment’s hydrological processes. For instance, if
the predictions are found to be mostly controlled by recent
rainfall, then the processes being modeled can correspond
to that from a small catchment with a fast response to rain-
fall. The τk (xt ) values can be useful for hydrograph sepa-
ration. That is, a predicted hydrograph can be decomposed
to sub-hydrographs associated with rainfall that occurred in
different periods based on their contribution to the predicted
discharge, which is different from the current practices that
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Figure 3. (a) Illustration of the processes for quantifying the contribution of each feature of an input sample xt and distributing the con-
tribution to the rainfall of each time step. (b) Examples of inferring the hydrological processes being modeled based on the basis of each
prediction. (c) Examples of comparing the inferred hydrological processes to the expected patterns of the processes derived from domain-
specific knowledge of the system being modeled.

mostly decompose a hydrograph based on the origin of the
runoff, such as baseflow and overland flow (Pelletier and An-
dréassian, 2020). The implications of using this method are
discussed in Sect. 3.2.

The SHAP values of multiple samples can be analyzed col-
lectively to obtain a global understanding of the model struc-
ture and the system being modeled (Lundberg et al., 2020).
This study, thus, computes the expected τk (xt ) values for
multiple xt in a set S, when k is fixed, to understand the
average association between pt−k and f (xt ) using the fol-
lowing:

Ext∈S (τk (xt ))=

∑
xt∈S

τk (xt )

|S|
, (10)

where |S| is the number of elements of S. When S contains
all the xt samples, the expectation Ext∈S (τk (xt )) then ap-

proximately describes the overall association between pt−k
and f (xt ) learned by the model.

SHAP values can be negative, which will result in negative
τk (xt ) values. To avoid canceling out positive and negative
τk (xt ) values when computing the expectations, the absolute
value of τk (xt ) may be used. The quantity of |τk (xt )| can be
interpreted as being the importance of pt−k for computing
f (xt ). The expected value of |τk (xt )| for the xt samples in
a set S can be computed using the following:

Ext∈S (|τk (xt )|)=

∑
xt∈S
|τk (xt )|

|S|
. (11)

Similarly, for a given xt , the contribution of rainfall recorded
between time steps t − a and t − b, Ta, b (xt ), can be simply
computed as follows:

Ta, b (xt )=
∑b

i=a
τi (xt ) . (12)
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Figure 3b gives two examples of inferring hydrological pro-
cesses from ML modeling results.

2.2.3 Assessing the physical realism of the inferred
processes using knowledge

The inferred hydrological processes may be tested in terms
of their physical realism. The premise of this test is that if
an ML model can provide physically plausible explanations
to the processes it models, then its predictions can generally
be considered more trustworthy. That is, this test concerns
whether the right predictions are made for the right reasons
(Kirchner, 2006). The justification of this method is exam-
ined in Sect. 3.6.

In the proposed assessment method, the inferred hydro-
logical processes are compared to the hydrological processes
that would be expected based on the domain-specific knowl-
edge of the system being modeled. In other words, whether
the inferred hydrological processes that are physically plau-
sible are evaluated. In an assessment, the qualitative or quan-
titative descriptions of the inferred processes and that derived
from domain-specific knowledge are used in the comparison.
For instance, a small urban catchment is modeled, and it is
expected to have a fast response to rainfall. If the inferred
hydrological processes correspond to that from a catchment
with a long-term memory effect, then the ML model can be
considered unreliable. Generally, three possible outcomes are
expected in such an assessment.

– Consistent. These are cases when the inferred hydrolog-
ical processes are physically plausible according to the
domain-specific knowledge of the system being mod-
eled. The term consistent is used, rather than the terms
“correct” or “valid”, to reflect that the assessment pro-
cess involves a comparison to some basis derived from
our knowledge of the system being modeled, which
might be subjective and incomplete. The term is used
following Yang and Chui (2021).

– Inconsistent. These are cases when the inferred hydro-
logical processes are physically implausible according
to the domain-specific knowledge of the system being
modeled.

– Insufficient evidence to draw conclusions. These are
cases when definitive conclusions cannot be drawn,
which may be caused by the fact that the requirements
for the inferred processes to be considered consistent are
too specific or too general. For example, assume that the
inferred hydrological processes indicate that the catch-
ment has a small surface area (i.e., a qualitative descrip-
tion), and the time of concentration of the catchment be-
ing modeled is known from previous studies and is used
as the assessment criterion (i.e., a quantitative descrip-
tion). In this context, it is impossible to determine the
consistency between the two descriptions unless more

evidence regarding the conversion between catchment
scale and time of concentration is collected. The inabil-
ity to draw a definitive conclusion can also be caused by
the lack of knowledge of the processes being modeled.
For instance, it is difficult to identify the expected hy-
drological behaviors for ungauged natural catchments.

Figure 3c illustrates the processes for assessing the physi-
cal realism of the inferred hydrological processes.

2.3 Case studies

2.3.1 Study sites

There are two SuDS sites with different drainage areas, SuDS
practice types, and data availabilities examined in this study.
Study site 1 is located on Washington Street, Geauga County,
Ohio, USA (hereinafter referred to as WS). Multiple types of
SuDS were built in WS to treat stormwater runoff generated
by a nearby commercial building and parking lot, as shown
in Fig. 4a (Darner et al., 2015). Runoff from approximately
half of the commercial building roof (i.e., an impervious area
of 316 m2) drain into a rain garden with a surface area of
37 m2. The 762 m2 parking lot was constructed using porous
pavements to allow infiltration.

Study site 2 is the Shayler Crossing Watershed (SHC) in
Clermont County, Ohio, USA, as shown in Fig. 4b. SHC is
a sub-watershed of the East Fork Little Miami River water-
shed. The drainage area of SHC is approximately 0.92 km2

(Hoghooghi et al., 2018), and the land use type is primarily
residential. The drainage system of SHC consists of conduits,
channels, detention ponds, dry ponds, and wet ponds (Lee et
al., 2018a). In SHC, stormwater runoff generated by indi-
rectly connected impervious areas (e.g., sidewalks) is treated
by the nearby pervious areas, which are termed buffering per-
vious areas and have similar functions to grass filter strips
(Lee et al., 2018b). SHC represents a typical residential area
in the USA and is thus selected to test the applicability of the
proposed ML methods in modeling small urban catchments.

In WS, a 10 min resolution rainfall discharge time series
is available from on-site monitoring between 2009 and 2013.
The outflow from WS was collected and measured by three
flumes. Flumes 1, 2, and 3, respectively, collect the surface
runoff from the parking lot, overflow from the surface layer
of the rain garden, and underdrain flows from the parking lot.
The on-site monitoring was conducted by the United States
Geological Survey (USGS), and more details of the monitor-
ing work can be found in Darner and Dumouchelle (2011)
and Darner et al. (2015). In SHC, 10 min resolution rain-
fall time series from 2009–2010 is available, in addition to a
10 min resolution discharge time series measured at the out-
let between July and August 2009 by the USA Environmental
Protection Agency. The data set used in this study is the same
as in Lee et al. (2018a, b), in which more details on the data
set can be found.
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Figure 4. (a) Layout of the SuDS and monitoring network on the Washington Street site (WS), Geauga County, Ohio, USA. This figure is
adapted from Darner et al. (2015). (b) Map of the Shayler Crossing Watershed (SHC). The subcatchment boundaries and drainage system
shown on the map are defined by Lee et al. (2018a).

It can be challenging to set up process-based models for
both sites. In WS, the physical properties and exact design
of the different drainage system elements are not precisely
known (Darner et al., 2015). For instance, the rain garden is
not isolated from the gravel storage layer of the porous pave-
ments; however, the exact flow conditions in the storage layer
are unknown. In SHC, the main challenge lies in the heavy
workload and uncertainties in estimating the model parame-
ters that characterize the complex drainage system. For ex-
ample, to accurately represent the drainage processes, SHC
should be divided into multiple subcatchments connected by
a drainage network, and each subcatchment should be further
subdivided into multiple subareas, such as directly and indi-
rectly connected impervious subareas (Lee et al., 2018a). The
task of the sub-area division, however, requires substantial
effort, considering the relatively large number of subcatch-
ments that are involved.

2.3.2 Numerical experiments

Rainfall–runoff models are built for both SHC and WS us-
ing ML methods. In WS, the output variable is the flow rate
of the total runoff collected by the three flumes recorded at
regular 10 min intervals during the warm season (i.e., April
to October; Darner et al., 2015). The input variables include
the 10 min resolution rainfall time series recorded prior to
runoff, the month in which the runoff occurs (optional), and
the accumulative rainfall depth recorded since the beginning

of monitoring (optional). The optional features are consid-
ered to account for the possible time-varying performance
of the SuDS during its service life (Yong et al., 2013) and
the potential seasonality of the SuDS hydrological properties
(Muthanna et al., 2008). Whether the two sets of optional
features should be included is controlled by two binary fea-
ture engineering hyperparameters, and the other three feature
engineering hyperparameters are m, l, and n, as described
in Sect. 2.1.2. The ranges of the hyperparameter values are
listed in Table 1, and their optimal values are determined us-
ing Bayesian optimization methods. The rainfall discharge
data collected between 2010 and 2013 by USGS are used
in this study. A total of 142 independent rainfall events are
identified using a 24 h dry spell threshold (Guo and Senior,
2006). A nested cross-validation (CV) resampling procedure
is implemented in which a five-fold CV is used for both the
inner and outer CV iterations. The folds are created using a
rainfall-event-grouped stratified sampling method (Zeng and
Martinez, 2000), i.e., data associated with the same rainfall
event are grouped into the same fold, and the peak discharge
of the rainfall events in each fold roughly follows the same
distribution. This is to prevent data leakage and ensure that
the data in each fold are representative (Kuhn and Johnson,
2013). In general, each outer CV iteration can be considered
as being an experiment to assess the effectiveness of an ML
method using a specific split of the data set, and its associ-
ated inner CV iterations are considered as being procedures
to derive the model to be evaluated on the test data set.
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Table 1. Hyperparameter values considered for the two study sites.

Study site no. 1 WS Study site no. 2 SHC

Candidate
feature
engineering
hyperpa-
rameter
values

m is a random integer between 144 and 1440, l is a random integer
between 1 and 36, and n is a random integer between 2 and 36. The
first term of the arithmetic sequence of the interval lengths between
time steps t − l− 1 and t −m is 2. The inclusion or exclusion of the
accumulative rainfall depth and the occurring month of the runoff event
is controlled by two binary variables.

m, l, and n are integers, and their ranges
are the same as that for study site no. 1.

Candidate
XGBoost
hyperpa-
rameter
values

eta is a real number between 0.005 and 0.1, max_depth is an integer
between 2 and 10, min_child_weight is an integer between 1 and 10,
subsample is a real number between 0.2 and 1, colsample_bytree is a
real number between 0.2 and 1, and gamma is a real number between 0
and 10. The maximum value of nrounds is 5000, and its optimal value
is determined using an early stopping criterion that the training stops
if there is no improvement in validation accuracy for 20 consecutive
rounds.

Same as study site no. 1.

In SHC, the output variable is the watershed outlet dis-
charge measured at 10 min intervals, and the input variable
is the rainfall time series recorded before the discharge mea-
surement. Only 2 months of runoff data are available in this
study. The nested CV procedure is not used due to the small
data set size; instead, the data set is split into training, vali-
dation, and test data sets that each contains at least one large
runoff event. The Bayesian optimization methods are then
used to identify the optimal hyperparameters (as shown in
Table 1) that minimize the prediction error on the validation
data set when the model is trained on the training data set.
The training and validation data sets are then combined, and
the ML methods with the optimal hyperparameters are ap-
plied. The resulting models are then tested on the test data
set.

For each site, the resampling and hyperparameter opti-
mization methods are also applied to train linear regression
models, which are used as a baseline for evaluating XGBoost
models. The only difference in the training processes be-
tween the two model types is that only the feature engineer-
ing hyperparameters are used when fitting linear regression
models to the data. For SHC, the process-based model de-
veloped by Lee et al. (2018a) is also compared with the ML
models built in this study. Their model is built using SWMM
software, in which SHC is divided into 191 subcatchments,
and the drainage processes in each subcatchment are charac-
terized using various parameters. The prediction accuracies
of different types of models are then compared for each site.

The proposed method is then applied to explain the basis
of each prediction for the two sites, i.e., for each discharge
prediction, the contribution of rainfall of each time step (i.e.,
τk (xt )) is computed. Both the observational and interven-
tional SHAP values are used in the derivation, which results
in two versions of the τk (xt ) values. The following experi-

ments on inferring hydrological processes from ML model-
ing results are conducted based on the τk (xt ) values.

1. The predicted hydrographs are decomposed into mul-
tiple hydrographs associated with the rainfall recorded
between the past 0–1, 1–2 h, and so on using Eq. (12).
Whether the hydrograph separation method can gener-
ate physically plausible results is examined using a few
simple hydrological principles, which include the fol-
lowing: (a) rainfall have positive contributions to runoff,
and (b) runoff in small urban catchments are mostly
contributed by rainfall that occurred in the recent past.

2. The overall importance of rainfall of each time step
to discharge prediction (Eq. 11) is computed for each
site using all the samples. These importance scores are
then used to infer the hydrological processes of the sys-
tem being modeled. The physical realism of the in-
ferred processes is evaluated using principles derived
from hydrological knowledge of the system being mod-
eled, which includes the idea that (a) smaller catchments
commonly have faster responses to rainfall compared
to larger catchments and (b) the importance scores of
rainfall change smoothly across time steps. Principle (b)
is derived from hydrological knowledge that rainfall of
similar magnitudes in adjacent time steps are expected
to have similar impacts on the runoff generation pro-
cesses.

3. This experiment aims to investigate whether different
ML explanation methods lead to similar inferred hy-
drological processes. The gain, cover, and frequency
metrics are computed for each XGBoost model of WS.
These scores are then distributed among rainfall of each
time step proportionally to its associated rainfall depth
of all the samples, and the resulting quantities are com-
pared to the normalized importance scores derived in
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experiment no. 2. The SHAP-related importance scores
are normalized such that the resulting scores associated
with all predictors sum to 1.

4. This experiment aims to investigate whether more accu-
rate models are more likely to provide physically plau-
sible explanations to the physical processes being mod-
eled. The XGBoost models trained using 10 %, 20 %,
40 %, and 60 % of the observed samples of WS are eval-
uated in terms of their prediction accuracy and ability
to provide consistent explanations to the modeled pro-
cesses. The models’ optimal hyperparameters are es-
timated using a resampling method (i.e., a training–
validation split) and Bayesian optimization methods.
The test data set used in prediction accuracy estima-
tion contains 40 % of the samples and is the same for
all models (that are trained on data sets of various
sizes). The remaining 60 % of the samples are then used
for creating training data sets that contain 10 %, 20 %,
40 %, and 60 % of the samples. Note that the training
data set that contains 60 % of the samples is created us-
ing all the remaining samples (that are not contained
in the test data set). For each training data set, a fur-
ther training–validation split is defined, and 10 models
are then trained by repeatedly applying the Bayesian
optimization methods (which are stochastic). For each
sample size, the training data set creation and training–
validation splitting procedures are repeated 10 times
and each such procedure produces 10 models (by apply-
ing Bayesian optimization methods repeatedly). That
is, 100 versions of models are derived for each sam-
ple size. The importance score of rainfall of each time
step is then derived following the methods in experi-
ment no. 2, which is then used to infer the hydrologi-
cal processes being modeled. The consistency of the in-
ferred processes is then evaluated based on whether the
importance scores of rainfall change smoothly across
time steps using the test data set, where a threshold of
5× 10−5 L/s is used to account for numerical error.

3 Results and discussion

3.1 Prediction accuracy of machine learning models

The prediction accuracies of the various WS and SHC
models are compared in Fig. 5. The root mean square er-
ror (RMSE), coefficient of determination (R2), and Nash–
Sutcliffe coefficient of efficiency (NSE; Nash and Sutcliffe,
1970) of the predictions on the test data sets are com-
pared, except for the SWMM model developed by Lee et
al. (2018a), which was tested on a part of its training data
set due to small data set size. The prediction accuracies of
the XGBoost models, i.e., NSE> 0.7 and R2 > 0.7, can be
considered satisfactory, considering that they were relatively
easy to set up and that it was impossible or very difficult

to build process-based models for either site. The XGBoost
models for both sites consistently outperform the linear re-
gression (LM) models, suggesting that more sophisticated
ML algorithms, such as XGBoost, are able to better cap-
ture the complex rainfall–runoff correlations than simple LM
methods. The SHC XGBoost models have comparable pre-
diction accuracies to SWMM, although the former were built
with considerably less effort. Thus, in future SuDS studies,
it can be useful to quickly train some ML models based on
available data and use them as a reference to evaluate the pre-
diction accuracies of process-based models. The proposed
ML model training methods can be potentially extended to
study other small-scale urban catchments that have similar
configurations to SHC.

Each data point in Fig. 5 shows the results obtained for a
specific split of a data set (i.e., the division of data into train-
ing, validation, and test data sets), and the points that corre-
spond to the same split are connected by lines. The prediction
accuracies of XGBoost and LM models varied considerably
for different splits of a data set. The variations indicate that
the sample distributions in the different versions of training
and test data sets appreciably differ, even though a stratified
sampling method was used to balance the sample distribu-
tion in the different folds. The imbalanced sample distribu-
tion is associated with the limited number of samples used
for the model training and evaluation, which implies that the
4 years of rainfall–runoff data of WS still contained an insuf-
ficient number of samples for the ML methods examined in
this study. For instance, only a few high-flow events were ob-
served each year in WS, which may be insufficient for train-
ing ML models that provide accurate high-flow predictions.
Even fewer samples were available for training and testing
the SHC models; thus, the uncertainties of the prediction ac-
curacies may be even larger.

3.2 Physical realism of the decomposed hydrographs

The results obtained for numerical experiment no. 1 are pre-
sented in this section. As an example, Fig. 6 shows the
predicted decomposed hydrographs of WS associated with
rainfall of different periods for a large, medium, and small
runoff event. As shown in Fig. 6, runoff is mostly contributed
by the rainfall that occurred within the past 1 h, regardless
of the runoff event magnitude, especially for the peak dis-
charge. These patterns are generally expected from small
catchments, where runoff are mostly contributed by recent
rainfall. As WS is a small-scale catchment, the inferred fast
runoff responses are consistent with our hydrological knowl-
edge.

Although it is not exactly clear how to quantitatively assess
the physical realism of the contribution values assigned to
rainfall of each hour, they express some patterns that are ob-
viously inconsistent with our hydrological knowledge. First,
Fig. 6 shows that rainfall can have negative contributions to
runoff, which are physically impossible. Although rainfall is
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Figure 5. Prediction accuracies of the various models built for the Washington Street SuDS site (WS) and Shayler Crossing Watershed
(SHC). The prediction accuracies are evaluated in terms of the root mean square error (RMSE), coefficient of determination (R2), and Nash–
Sutcliffe coefficient of efficiency (NSE). The RMSE units are liters per second (hereafter L/s) for WS and cubic meters per second (hereafter
m3/s) for SHC. Each data point in the figure shows the prediction accuracy evaluated using a specific split of the data set. The prediction
accuracies derived using the same test data set are connected by lines. The SWMM model for SHC was built by Lee et al. (2018a).

Figure 6. (a) Rainfall time series and (b) decomposed hydrographs of a large, medium, and small runoff event from the Washington Street
SuDS site (WS). The model used to derive the hydrographs was obtained in the outer cross-validation iteration 1. Observational SHAP values
were used in the computation.
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the only forcing variable that is used by the model, the nega-
tive contributions may also be explained by the other implicit
variables that can be predicted by rainfall, e.g., evapotranspi-
ration is correlated with rainfall and can cause water losses
from the catchment. However, it is nontrivial to exclude the
contributions of the implicit variables such that rainfall’s con-
tributions to runoff are strictly nonnegative. Second, there
is a constant bias term in the decomposed hydrographs that
are independent of the rainfall. This term is the average pre-
diction for all samples and accounts for the differences be-
tween the predicted values and the contributions assigned to
all variables in the SHAP method. However, this constant
term does not clearly correspond to any processes in hydrol-
ogy. Additionally, a model might use features that are not
derived from rainfall (e.g., the age of the SuDS practice) as
a predictor, which will also be assigned with contributions to
runoff when the SHAP method is used to examine the basis
of predictions. However, it is unclear how to use these con-
tributions in hydrograph separation.

The results of this experiment show that the inferred hy-
drological processes can be only partially consistent with the
knowledge of the system being modeled. Some ML expla-
nation methods, such as SHAP, can generate explanations
that are inherently inconsistent with hydrological principles,
such as the rainfall’s negative contributions to runoff and the
constant contributions to runoff that are not associated with
any variable. Nevertheless, it would be meaningful to com-
pare the decomposed hydrographs to those derived using ap-
proaches in process-based modeling and tracer and isotope
hydrology to further evaluate the validity of the explanations
derived using ML methods.

3.3 Physical realism of the importance of rainfall of
different time steps to discharge prediction

The results of numerical experiment no. 2 are shown in
Fig. 7. In both WS and SHC, rainfall recorded prior to 100
time steps in the past (i.e., 16.7 h) have almost no impact on
discharge prediction, which is reasonable considering their
small catchment sizes. The rainfall that occurred in 1 and 4
time steps (i.e., 10 and 40 min) in the past are found to have
the highest impact on discharge prediction for WS and SHC,
respectively. This pattern is expected as SHC is considerably
(which is around 800 times) larger than WS, and thereby, the
time required for stormwater to travel through the catchment
is also longer in SHC. Although the exact response time of
both catchments is unknown, it is possible to use the knowl-
edge regarding the relations between the response time of
the two catchments to conduct an assessment. Utilizing rela-
tional patterns in assessing the consistency of multiple enti-
ties has been demonstrated in Yang and Chui (2021).

It is also worth noting that the importance scores assigned
to rainfall fluctuate across time steps for SHC, which indi-
cates that the models find that the rainfall in some specific
time steps is more important for discharge prediction when

compared to the others, which is inconsistent with our hydro-
logical knowledge. In WS, these inconsistent patterns are not
observed where the importance scores of rainfall generally
change monotonically from the past 1 time step to the current
time step and the time steps in the more distant past. The in-
consistent patterns might be caused by insufficient data used
in model training and evaluation, which is discussed further
in Sect. 3.5.

In WS, the rainfall of a specific time step can be assigned
with notably different importance scores when the models
trained using different training data sets are used, which
is an indication of considerably different model structures.
The structural differences in ML models are also reported in
Schmidt et al. (2020), where the existence of multiple pos-
sible model structures is referred to as equifinality (Beven
and Freer, 2001). The different importance scores will nat-
urally result in different explanations of the processes be-
ing modeled, and apparently, these explanations cannot be
simultaneously close to reality (Bouaziz et al., 2021). How-
ever, in this case, it is not possible to quantitatively assess
the explanations provided by different models due to the lack
of knowledge. Experiment no. 4 investigate whether models
with higher prediction accuracies can generate more trust-
worthy explanations to the process being modeled, and the
results are presented in Sect. 3.5.

3.4 Comparison of multiple methods for explaining
machine learning modeling results

The results of experiment no. 3 are shown in Fig. 8, where
various feature importance scores of rainfall of different time
steps are compared. All the importance scores derived us-
ing different methods suggest that the rainfall of more re-
cent time steps have a higher impact on discharge prediction.
However, different methods can derive considerably differ-
ent importance scores for the rainfall of a specific time step,
and the relations between the importance scores assigned to
the rainfall of different time steps also vary among different
methods. Some methods, such as interventional SHAP and
frequency, are more sensitive to model structural differences
than others. The differences in various importance scores in-
dicate that the selection of the explanation method is another
source of uncertainty in inferring the processes being mod-
eled.

The importance scores derived from the observational and
interventional SHAP values varied significantly due to the
different methods used for computing the expected predic-
tion, i.e., Eqs. (7) to (8). It is, however, currently unclear how
to evaluate an explanation method’s effectiveness in infer-
ring the processes being modeled. Nevertheless, it is recom-
mended that future studies always report the configurations
of the explanation methods being used and evaluate the un-
certainties associated with the explanation method selection.
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Figure 7. Average importance of the rainfall at different time steps in the past for discharge predictions in the XGBoost models of the
Washington Street SuDS site (WS) and the Shayler Crossing Watershed (SHC). Each line corresponds to an XGBoost model trained on a
specific training data set. Each time step is 10 min. The x axis is on a pseudo-logarithmic scale. Observational SHAP values were used in the
computation.

Figure 8. The importance of rainfall from each time step for making discharge predictions assessed by different feature importance measures
in the Washington Street SuDS site (WS) XGBoost models. Each line shows the results of model trained during an outer cross-validation
(CV) iteration. The x axis is on a pseudo-logarithmic scale. For interventional SHAP, all the training samples are used as background data
set.

3.5 Correlation between the physical realism of
inferred processes and model prediction accuracy

The results of experiment no. 4 are discussed in this section.
As shown in Fig. 9, a models’ prediction accuracy, as mea-
sured by NSE, generally increases as more samples are used
to train the model, despite its large uncertainties associated

with the random sampling of the data set. However, the num-
ber of models that correspond to consistent explanations (i.e.,
the single-peaked patterns of rainfall importance scores), also
shown by the numbers in Fig. 9, did not increase as more
samples are used in training. In fact, consistent results are
not often observed for all training sample sizes. These results
suggest that more accurate models do not necessarily offer
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Figure 9. Box plot of the prediction accuracy, as measured by the Nash–Sutcliffe coefficient of efficiency (NSE), of the Washington Street
SuDS site (WS) XGBoost models when samples of different sizes are used in model training. For each sample size, the models that offer
consistent or inconsistent explanations are grouped together, and the numbers of consistent and inconsistent models (the n values) are shown.
Observational SHAP values were used in the computation.

more physically realistic explanations to the processes being
modeled, and using more data samples in model training does
not guarantee more physically realistic explanations. For the
models trained with the same amount of data, selecting a
more accurate model does not guarantee that the inferences
made based on the selected model are more consistent with
our knowledge. However, it is also possible that our knowl-
edge used in the assessment is biased, and the test data set
may not represent the true data distribution that would be ob-
served on an infinite timescale.

Ilyas et al. (2019) argued that ML models can make predic-
tions based on features that humans cannot comprehend. The
implication of this argument is that ML models can make the
right predictions for the wrong reasons (Ross et al., 2017) or
reasons that are inconsistent with our knowledge, and there-
fore, the prediction accuracy of a model is not a trustwor-
thy measurement of the physical realism of the explanations
it provides. Regularizing ML models using physical princi-
ples, as suggested in Nearing et al. (2021), can potentially
increase the physical realism of the explanations and the in-
ferred physical processes.

3.6 Inferring hydrological processes using machine
learning methods and analyzing ingredients of cake
samples

This section uses a metaphor to explain the processes of in-
ferring hydrological processes using ML methods, as shown
in Fig. 10. An ML model is similar to a cake (baked by
others) in that they both are consumed by humans, and the
exact mechanisms that generate the outcomes (i.e., the pre-
dictions or the tastes) are often unknown due to complex-
ity. Here, the mechanisms refer to the numerical operations
that generate the predictions or the ingredients and proce-

dures that give the flavor. Normally, the predictions or the
tastes are of primary interest. However, it can be useful to
inspect the mechanisms that lead to the outcomes such that
more confidence regarding future outcomes can be gained,
where future outcomes refer to the predictions under new
conditions or more cakes acquired through similar means.
ML explanation methods and chemical composition analy-
sis methods can provide information regarding the elements
that contribute to the prediction or flavor. However, in many
cases, such information can only be treated as circumstan-
tial evidence of certain physical principles being learned by
a model or the presence of certain ingredients. This is be-
cause ML models usually do not have structures that directly
resemble the physical processes and chemical composition
analysis usually does not directly test the presence of a food
ingredient. The raw information is then further processed
by referring to domain-specific knowledge, such as hydro-
logical knowledge or the nutritional facts of foods. For in-
stance, a high degree of association between the predicted
discharge and recent rainfall is an indication of a catchment’s
fast runoff response, which is commonly seen in small urban
catchments, and a high carotene content may indicate that
carrots are used in the cake. The inferred physical processes
or ingredients and procedures are then evaluated against what
would be expected based on domain-specific knowledge of
the system being modeled or baking a specific type of cake.
Finally, whether the ML model learns the expected physi-
cal processes or whether the cake is baked following the ex-
pected recipe is evaluated.

It is important to note that uncertainties are presented in
every step of the assessment. First, different ML explanation
methods or chemical composition analysis methods can lead
to significantly different outcomes, which are used as the ba-
sis for inference. An example is provided in Sect. 3.4. Sec-
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Figure 10. Illustration of the processes of (a) testing whether a cake is made following the desired recipe and (b) testing whether a model
captures the physical processes of the system being modeled.

ond, the inference process can be biased and subjective due to
our incomplete knowledge. For example, a chemical compo-
nent could correspond to an ingredient that we do not know,
and rainfall’s negative contribution to runoff could be caused
by an unknown stormwater harvesting activity in the catch-
ment. Bias and subjectivity, however, cannot be avoided in
an open system, as there may be infinitely many physically
plausible explanations to the same outcome (Oreskes et al.,
1994). Third, the knowledge applied in the final assessment
processes to define assessment criteria can be incomplete.

Are the practices of inferring the physical processes us-
ing ML methods any good? This study considers the con-
sistency evaluation results of the inferences as circumstan-
tial evidence to support a model’s trustworthiness. Although
an ML model does not have to learn the physical principles
to make good predictions, we might prefer that the desired
principles are captured by the models. This is similar to sug-
gesting that we prefer delicious cakes made with ingredients
we considered safe. Models that are associated with infer-
ences that are consistent with our knowledge may be proven
to be more reliable under new circumstances, such as ex-
treme event predictions and predictions under data distribu-
tion drifts (Lu et al., 2019). More research on testing ML
models’ reliability is recommended.

It is also important to note that the inferred processes
should be interpreted cautiously due to the large uncertain-
ties involved in every step of the assessment. The detailed
configurations of the entire inference process should be re-
ported when presenting the inferred processes. In particular,
large uncertainty resides in the process of making inferences
according to the raw explanations derived from ML explana-

tion methods, as many physical processes can give rise to the
same raw explanations. It is, therefore, important to consider
a larger search space for drawing inferences, which may be
considered as an attempt to mitigate the streetlight effect, i.e.,
limiting the search space to be only under a streetlight in the
dark or a specific set of plausible explanations (Demirdjian
et al., 2005).

4 Conclusions

The following conclusions can be drawn.

1. This study shows that ML methods can be useful for
modeling the hydrological responses of SuDS catch-
ments at sub-hourly timescales. In this study, models
with high prediction accuracies (NSE>0.7) are ob-
tained for two SuDS catchments of different sizes,
SuDS practice types, and data availabilities. ML models
can be set up relatively easily, provided that observation
data of the variables of interest are available and, thus,
are recommended to be used as a reference to evaluate
process-based models.

2. The physical processes being modeled can be inferred
based on the results of ML explanation methods. How-
ever, the inferred processes might be inconsistent with
the patterns that would be expected based on the
domain-specific knowledge of the system being mod-
eled. An ML model’s ability to provide accurate predic-
tions can be uncorrelated with its ability to offer plau-
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sible explanations to the physical processes being mod-
eled.

3. This study provides a high-level overview of the pro-
cesses of inferring the physical processes being mod-
eled using ML explanation methods. It shows that large
uncertainties are presented in the processes of explain-
ing model structures using ML explanation methods,
making inferences according to the raw explanations,
and assessing the physical realism of the inferred phys-
ical processes. The inferred hydrological processes nor-
mally should only be considered as circumstantial evi-
dence to support a model’s trustworthiness due to their
indirect connection to the raw explanations. Due to the
existence of the large uncertainties in the inference pro-
cesses, the inferred physical processes should be inter-
preted cautiously, and more physically plausible expla-
nations that correspond to the same raw explanations
can be potentially investigated.
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