Articles | Volume 25, issue 10
https://doi.org/10.5194/hess-25-5603-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-5603-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identifying sensitivities in flood frequency analyses using a stochastic hydrologic modeling system
Research Applications Laboratory, National Center for Atmospheric
Research, Boulder, CO, USA
Amanda G. Stone
Technical Service Center, Bureau of Reclamation, Lakewood, CO,
USA
Manabendra Saharia
Research Applications Laboratory, National Center for Atmospheric
Research, Boulder, CO, USA
now at: Department of Civil Engineering, Indian Institute
of Technology, New Delhi, India
Kathleen D. Holman
Technical Service Center, Bureau of Reclamation, Lakewood, CO,
USA
Nans Addor
Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
Martyn P. Clark
Research Applications Laboratory, National Center for Atmospheric
Research, Boulder, CO, USA
now at: Centre for Hydrology, University of Saskatchewan, Canmore,
Alberta, Canada
Related authors
Mari R. Tye, Ming Ge, Jadwiga H. Richter, Ethan D. Gutmann, Allyson Rugg, Cindy L. Bruyère, Sue Ellen Haupt, Flavio Lehner, Rachel McCrary, Andrew J. Newman, and Andy Wood
Hydrol. Earth Syst. Sci., 29, 1117–1133, https://doi.org/10.5194/hess-29-1117-2025, https://doi.org/10.5194/hess-29-1117-2025, 2025
Short summary
Short summary
There is a perceived mismatch between the spatial scales on which global climate models can produce data and those needed for water management decisions. However, poor communication of specific metrics relevant to local decisions is also a problem. We assessed the credibility of a set of water management decision metrics in the Community Earth System Model v2 (CESM2). CESM2 shows potentially greater use of its output in long-range water management decisions.
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024, https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
Short summary
Ensemble geophysical datasets are crucial for understanding uncertainties and supporting probabilistic estimation/prediction. However, open-access tools for creating these datasets are limited. We have developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). Through several experiments, we demonstrate GPEP's ability to estimate precipitation, temperature, and snow water equivalent. GPEP will be a useful tool to support uncertainty analysis in Earth science applications.
Ulises M. Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci., 26, 3419–3445, https://doi.org/10.5194/hess-26-3419-2022, https://doi.org/10.5194/hess-26-3419-2022, 2022
Short summary
Short summary
This paper characterizes parameter sensitivities across more than 5500 grid cells for a commonly used macroscale hydrological model, including a suite of eight performance metrics and 43 soil, vegetation and snow parameters. The results show that the model is highly overparameterized and, more importantly, help to provide guidance on the most relevant parameters for specific target processes across diverse climatic types.
Guoqiang Tang, Martyn P. Clark, Simon Michael Papalexiou, Andrew J. Newman, Andrew W. Wood, Dominique Brunet, and Paul H. Whitfield
Earth Syst. Sci. Data, 13, 3337–3362, https://doi.org/10.5194/essd-13-3337-2021, https://doi.org/10.5194/essd-13-3337-2021, 2021
Short summary
Short summary
Probabilistic estimates are useful to quantify the uncertainties in meteorological datasets. This study develops the Ensemble Meteorological Dataset for North America (EMDNA). EMDNA has 100 members with daily precipitation amount, mean daily temperature, and daily temperature range at 0.1° spatial resolution from 1979 to 2018. It is expected to be useful for hydrological and meteorological applications in North America.
Guoqiang Tang, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Simon Michael Papalexiou, Vincent Vionnet, and Paul H. Whitfield
Earth Syst. Sci. Data, 12, 2381–2409, https://doi.org/10.5194/essd-12-2381-2020, https://doi.org/10.5194/essd-12-2381-2020, 2020
Short summary
Short summary
Station observations are critical for hydrological and meteorological studies, but they often contain missing values and have short measurement periods. This study developed a serially complete dataset for North America (SCDNA) from 1979 to 2018 for 27 276 precipitation and temperature stations. SCDNA is built on multiple data sources and infilling/reconstruction strategies to achieve high-quality estimates which can be used for a variety of applications.
Nele Reyniers, Qianyu Zha, Nans Addor, Timothy J. Osborn, Nicole Forstenhäusler, and Yi He
Earth Syst. Sci. Data, 17, 2113–2133, https://doi.org/10.5194/essd-17-2113-2025, https://doi.org/10.5194/essd-17-2113-2025, 2025
Short summary
Short summary
We present bias-corrected UK Climate Projections 2018 (UKCP18) regional datasets for temperature, precipitation, and potential evapotranspiration (1981–2080). All 12 members of the 12 km ensemble were corrected using quantile mapping and a change-preserving variant. Both methods effectively reduce biases in multiple statistics while maintaining projected climatic changes. We provide guidance on using the bias-corrected datasets for climate change impact assessment.
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data, 17, 1461–1479, https://doi.org/10.5194/essd-17-1461-2025, https://doi.org/10.5194/essd-17-1461-2025, 2025
Short summary
Short summary
This dataset covers 654 rivers all flowing in France. The provided time series and catchment attributes will be of interest to those modelers wishing to analyze hydrological behavior and perform model assessments.
Mari R. Tye, Ming Ge, Jadwiga H. Richter, Ethan D. Gutmann, Allyson Rugg, Cindy L. Bruyère, Sue Ellen Haupt, Flavio Lehner, Rachel McCrary, Andrew J. Newman, and Andy Wood
Hydrol. Earth Syst. Sci., 29, 1117–1133, https://doi.org/10.5194/hess-29-1117-2025, https://doi.org/10.5194/hess-29-1117-2025, 2025
Short summary
Short summary
There is a perceived mismatch between the spatial scales on which global climate models can produce data and those needed for water management decisions. However, poor communication of specific metrics relevant to local decisions is also a problem. We assessed the credibility of a set of water management decision metrics in the Community Earth System Model v2 (CESM2). CESM2 shows potentially greater use of its output in long-range water management decisions.
Claudia Färber, Henning Plessow, Simon Mischel, Frederik Kratzert, Nans Addor, Guy Shalev, and Ulrich Looser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-427, https://doi.org/10.5194/essd-2024-427, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Large-sample datasets are essential in hydrological science to support modelling studies and advance process understanding. Caravan is a community initiative to create a large-sample hydrology dataset of meteorological forcing data, catchment attributes, and discharge data for catchments around the world. This dataset is a subset of hydrological discharge data and station-based watersheds from the Global Runoff Data Centre (GRDC), which are covered by an open data policy.
Shervan Gharari, Paul H. Whitfield, Alain Pietroniro, Jim Freer, Hongli Liu, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 28, 4383–4405, https://doi.org/10.5194/hess-28-4383-2024, https://doi.org/10.5194/hess-28-4383-2024, 2024
Short summary
Short summary
This study provides insight into the practices that are incorporated into discharge estimation across the national Canadian hydrometric network operated by the Water Survey of Canada (WSC). The procedures used to estimate and correct discharge values are not always understood by end-users. Factors such as ice cover and sedimentation limit accurate discharge estimation. Highlighting these challenges sheds light on difficulties in discharge estimation and the associated uncertainty.
Tek Kshetri, Amir Khatibi, Yiwen Mok, Shahabul Alam, Hongli Liu, and Martyn P. Clark
EGUsphere, https://doi.org/10.5194/egusphere-2023-3049, https://doi.org/10.5194/egusphere-2023-3049, 2024
Preprint withdrawn
Short summary
Short summary
This study reveals a crucial discovery: when tweaking model parameters, similar performance metrics might mislead—different parameter settings can yield comparable results in snow depth predictions. This "equifinality" challenges past studies, suggesting that evaluating model tweaks based on performance alone might not reflect actual variations in snow depth forecasts.
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024, https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
Short summary
Ensemble geophysical datasets are crucial for understanding uncertainties and supporting probabilistic estimation/prediction. However, open-access tools for creating these datasets are limited. We have developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). Through several experiments, we demonstrate GPEP's ability to estimate precipitation, temperature, and snow water equivalent. GPEP will be a useful tool to support uncertainty analysis in Earth science applications.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-2023, https://doi.org/10.5194/hess-27-1151-2023, 2023
Short summary
Short summary
In an analysis of future drought projections for Great Britain based on the Standardised Precipitation Index and the Standardised Precipitation Evapotranspiration Index, we show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought characteristics, although both result in increased drying. This highlights the need to understand the interplay between increasing atmospheric evaporative demand and drought impacts under a changing climate.
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023, https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.
Ulises M. Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci., 26, 3419–3445, https://doi.org/10.5194/hess-26-3419-2022, https://doi.org/10.5194/hess-26-3419-2022, 2022
Short summary
Short summary
This paper characterizes parameter sensitivities across more than 5500 grid cells for a commonly used macroscale hydrological model, including a suite of eight performance metrics and 43 soil, vegetation and snow parameters. The results show that the model is highly overparameterized and, more importantly, help to provide guidance on the most relevant parameters for specific target processes across diverse climatic types.
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Guoqiang Tang, Martyn P. Clark, Simon Michael Papalexiou, Andrew J. Newman, Andrew W. Wood, Dominique Brunet, and Paul H. Whitfield
Earth Syst. Sci. Data, 13, 3337–3362, https://doi.org/10.5194/essd-13-3337-2021, https://doi.org/10.5194/essd-13-3337-2021, 2021
Short summary
Short summary
Probabilistic estimates are useful to quantify the uncertainties in meteorological datasets. This study develops the Ensemble Meteorological Dataset for North America (EMDNA). EMDNA has 100 members with daily precipitation amount, mean daily temperature, and daily temperature range at 0.1° spatial resolution from 1979 to 2018. It is expected to be useful for hydrological and meteorological applications in North America.
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021, https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Short summary
Assessments of current, local, and regional flood hazards and their future changes often involve the use of hydrologic models. A reliable model ideally reproduces both local flood characteristics and regional aspects of flooding. In this paper we investigate how such characteristics are represented by hydrologic models. Our results show that both the modeling of local and regional flood characteristics are challenging, especially under changing climate conditions.
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter J. M. Knoben, Jefferson S. Wong, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 24, 5953–5971, https://doi.org/10.5194/hess-24-5953-2020, https://doi.org/10.5194/hess-24-5953-2020, 2020
Short summary
Short summary
This work explores the trade-off between the accuracy of the representation of geospatial data, such as land cover, soil type, and elevation zones, in a land (surface) model and its performance in the context of modeling. We used a vector-based setup instead of the commonly used grid-based setup to identify this trade-off. We also assessed the often neglected parameter uncertainty and its impact on the land model simulations.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Guoqiang Tang, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Simon Michael Papalexiou, Vincent Vionnet, and Paul H. Whitfield
Earth Syst. Sci. Data, 12, 2381–2409, https://doi.org/10.5194/essd-12-2381-2020, https://doi.org/10.5194/essd-12-2381-2020, 2020
Short summary
Short summary
Station observations are critical for hydrological and meteorological studies, but they often contain missing values and have short measurement periods. This study developed a serially complete dataset for North America (SCDNA) from 1979 to 2018 for 27 276 precipitation and temperature stations. SCDNA is built on multiple data sources and infilling/reconstruction strategies to achieve high-quality estimates which can be used for a variety of applications.
Vinícius B. P. Chagas, Pedro L. B. Chaffe, Nans Addor, Fernando M. Fan, Ayan S. Fleischmann, Rodrigo C. D. Paiva, and Vinícius A. Siqueira
Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, https://doi.org/10.5194/essd-12-2075-2020, 2020
Short summary
Short summary
We present a new dataset for large-sample hydrological studies in Brazil. The dataset encompasses daily observed streamflow from 3679 gauges, as well as meteorological forcing for 897 selected catchments. It also includes 65 attributes covering topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables. CAMELS-BR is publicly available and will enable new insights into the hydrological behavior of catchments in Brazil.
Cited articles
Addor, N., Rossler, O., Koplin, N., Huss, M., Weingartner, R., and Seibert, J.:
Robust changes and sources of uncertainty in the projected hydrological
regimes of Swiss catchments, Water Resour. Res., 50, 7541–7562,
https://doi.org/10.1002/2014WR015549, 2014.
Anderson, E. A.: Calibration of conceptual hydrologic models for use in
river forecasting, Office of Hydrologic Development, US National Weather
Service, Silver Spring, MD, 2002.
Arnaud, P., Cantet P., and Odry, J.: Uncertainties of flood frequency estimation
approaches based on continuous simulation using data resampling, J. Hydrol., 554, 360–369, 2017.
Bell, F. C.: The areal reduction factors in rainfall-frequency estimation,
Natural Environmental Research Council, Report 35, Institute of Hydrology,
Wallingford, United Kingdom, 1976.
Bennett, T. H.: Development and application of a continuous soil moisture
accounting algorithm for the Hydrologic Engineering Center Hydrologic
Modeling System (HEC-HMS), University of California, Davis, 1998.
Blazkova, S. and Beven, K.: A limits of acceptability approach to model
evaluation and uncertainty estimation in flood frequency estimation by
continuous simulation: Skalka catchment, Czech Republic, Water Resour.
Res., 45, W00B16,
https://doi.org/10.1029/2007WR006726, 2009.
Bosshard, T., Carambia, M., Goergen, K., Kotlarski, S., Krahe, P., Zappa,
M., and Schär, C.: Quantifying uncertainty sources in an ensemble of
hydrological climate-impact projections, Water. Resour. Res., 49, 1523–1536,
https://doi.org/10.1029/2011WR011533, 2013.
Boughton, W. and Droop, O.: Continuous simulation for design flood estimation
– a review, Environ. Modell. Softw., 18, 309–318, 2003.
Breuer, L., Gosling, S. N., Yang, T., Hoffmann, P., Hattermann, F. F.,
Krysnaova, V., Wada, Y., Su, B., Masaki, Y., Müller, C., Daggupati, P.,
Stacke, T., Fekete, B., Motovilov, Y., Vetter, T., Flörke, F., Liersch,
S., Donnelly, C., and Samaniego, L.: Sources of uncertainty in hydrological
climate impact assessment: a cross-scale study, Environ. Res. Lett., 13, 015006, https://doi.org/10.1088/1748-9326/aa9938, 2017.
Calver, A., Lamb, R., and Morris, S. E.: River flood frequency estimation
using continuous runoff modelling, Proc. Inst. Civ. Eng. Water Marit.
Energy, 136, 225–234, 1999.
Chegwidden, O. S., Nijssen, B., Rupp, D. E., Arnold, J. R., Clark, M. P.,
Hamman, J. J., Kao, S. C., Mao, Y., Mizukami, N., Mote, P. W., Pan, M.,
Pytlak, E., and Xiao, M.: How Do Modeling Decisions Affect the Spread Among
Hydrologic Climate Change Projections? Exploring a Large Ensemble of
Simulations Across a Diversity of Hydroclimates, Earth's Futur., 7,
623–637, https://doi.org/10.1029/2018EF001047, 2019.
Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta,
H. V., Wagener, T., and Hay, L. E.: Framework for Understanding Structural
Errors (FUSE): A modular framework to diagnose differences between
hydrological models, Water Resour. Res., 44, W00B02, https://doi.org/10.1029/2007WR006735, 2008.
Clark, M. P., Vogel, R. M., Lamontagne, J. R., Mizukami, N., Knoben, W. J.,
Tang, G., Gharari, S., Freer, J. E., Whitfield, P. H., Shook, K., and
Papalexiou, S.: The abuse of popular performance metrics in hydrologic
modeling, Water Resour. Res., 57, e2020WR029001, https://doi.org/10.1029/2020WR029001, 2021.
Duan, Q. Y., Gupta, V. K., and Sorooshian, S.: Shuffled complex evolution
approach for effective and efficient global minimization,
J. Optimiz. Theory App., 76, 501–521, 1993.
England Jr., J. E., Godaire, J. E., Klinger, R. E., Bauer, T. R., and Julien, P.
Y.: Paleohydrologic bounds and extreme flood frequency of the Upper Arkansas
River, Colorado, USA, Geomorphology, 124, 1–16, 2010.
England Jr., J. E., Julien, P. Y., and Velleux, M. L.: Physically-based extreme
flood frequency with stochastic storm
transposition and paleoflood data on large watersheds, J. Hydrol., 510,
228–245, 2014.
Franchini, M., Hashemi, A. M., and O’Connell, P. E.: Climatic and basin factors affecting the flood frequency curve: PART II – A full sensitivity analysis based on the continuous simulation approach combined with a factorial experimental design, Hydrol. Earth Syst. Sci., 4, 483–498, https://doi.org/10.5194/hess-4-483-2000, 2000.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol, 377, 80–91,
2009.
Gupta, H. V., Clark, M. P., Vrugt, J. A., Abramowitz, G., and Ye, M.: Towards a
comprehensive assessment of model structural adequacy, Water Resour. Res., 48,
W08301, https://doi.org/10.1029/2011WR011044, 2012.
Hansen, E. M., Schreiner, L. C., and Miller, J. F.: Application of Probable
Maximum Precipitation Estimates, United States East of the 105th Meridian,
Hydrometeorological Report No. 52, National Weather Service, National
Oceanic and Atmospheric Administration, U.S. Department of Commerce, Silver
Spring, MD, 168, 1982.
Hansen, E. M., Fenn, D. D., Schreiner, L. C., Stodt, R. W., and Miller, J. F.:
Probable Maximum Precipitation Estimates United States between the
Continental Divide and the 103rd Meridian, Hydrometeorological Report No.
55A, National Weather Service, National Oceanic and Atmospheric
Administration, U.S. Department of Commerce, Silver Spring, MD, 242,
1988.
Hansen, E. M., Fenn, D. D., Corrigan, P., Vogel, J. L., Schreiner, L. C., and
Stodt, R. W.: Probable Maximum Precipitation-Pacific Northwest States,
Columbia River (including portions of Canada), Snake River and Pacific
Coastal Drainages, Hydrometeorological Report No. 57, National Weather
Service, National Oceanic and Atmospheric Administration, U.S. Department of
Commerce, Silver Spring, MD, 338, 1994.
Hashemi, A. M., Franchini, M., and O’Connell, P. E.: Climatic and basin factors affecting the flood frequency curve: PART I – A simple sensitivity analysis based on the continuous simulation approach, Hydrol. Earth Syst. Sci., 4, 463–482, https://doi.org/10.5194/hess-4-463-2000, 2000.
Hawkins, E. and Sutton, R.: The Potential to Narrow Uncertainty in Regional
Climate Predictions, Bull. Am. Meteorol. Soc., 90, 1095–1107,
https://doi.org/10.1175/2009BAMS2607.1, 2009.
Henn, B., Clark, M. P., Kavetski, D., and Lundquist, J. D.: Estimating mountain
basin-mean precipitation from streamflow using Bayesian inference, Water Resour. Res., 51, 8012–8033, 2015.
Hosking, J. R. M. and Wallis, J. R.: Paleoflood hydrology and flood frequency
analysis, Water Resour. Res., 22, 543–550, 1986.
Hosking, J. R. M. and Wallis, J. R.: Regional Frequency Analysis, Cambridge
University Press, Cambridge, UK, 244 pp., https://doi.org/10.1017/CBO9780511529443, ISBN 9780511529443, 1997.
Hu, L., Nikolopoulos, E. I., Marra, F., and Anagnostou, E. N.: Sensitivity of
flood frequency analysis to data record, statistical model, and parameter
estimation methods: An evaluation over the contiguous United States, J. Flood Risk Manage., 13, e12580, https://doi.org/10.1111/jfr3.12580, 2020.
Ivancic, T. J. and Shaw, S. B.: Examining why trends in very heavy precipitation
should not be mistaken for trends in very high river discharge,
Climatic Change,
133, 681–693, https://doi.org/10.1007/s10584-015-1476-1, 2015.
Jakeman, A. J. and Hornberger, G. M.: How much complexity is warranted in a
rainfall-runoff model?, Water. Resour. Res., 29, 2637–2649, 1993.
Klemes, V.: Tall tales about tails of hydrological distributions. I,
J. Hydrol. Eng., 5, 227–231, 2000.
Knoben, W. J. M., Freer, J. E., Fowler, K. J. A., Peel, M. C., and Woods, R. A.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v1.2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous state-space formulations, Geosci. Model Dev., 12, 2463–2480, https://doi.org/10.5194/gmd-12-2463-2019, 2019.
Kuczera, G., Lambert, M. F., Heneker, T. M., Jennings, S., Frost, A., and
Coombes, P.: Joint probability and design storms at the Crossroads,
Australian Journal of Water Resources, 10, 63–79, 2006.
Kidson, R. and Richards, K. S.: Flood frequency analysis: assumptions and
alternatives, Prog. Phys. Geog., 29, 392–410, 2005.
Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., and Hawkins, E.: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6, Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, 2020.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologicallybased model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99, 14415–14428, 1994.
Markstrom, S. L., Hay, L. E., and Clark, M. P.: Towards simplification of hydrologic modeling: identification of dominant processes, Hydrol. Earth Syst. Sci., 20, 4655–4671, https://doi.org/10.5194/hess-20-4655-2016, 2016.
Mendoza, P. A., Clark, M. P., Mizukami, N., Newman, A. J., Barlage, M.,
Gutmann, E. D., Rasmussen, R. M., Rajagopalan, B., Brekke, L. D., and Arnold, J.
R.: Effects of hydrologic model choice and calibration on the portrayal of
climate change impacts, J. Hydrometeorol, 16, 762–780, 2015.
Merz, B. and Thieken, A. H.: Separating natural and epistemic uncertainty in
flood frequency analysis, J. Hydrol., 309, 114–132, 2005.
Merz, B. and Thieken, A. H.: Flood risk curves and uncertainty bounds, Nat. Hazards,
51, 437–458, 2009.
Mizukami, N., Rakovec, O., Newman, A. J., Clark, M. P., Wood, A. W., Gupta, H. V., and Kumar, R.: On the choice of calibration metrics for “high-flow” estimation using hydrologic models, Hydrol. Earth Syst. Sci., 23, 2601–2614, https://doi.org/10.5194/hess-23-2601-2019, 2019.
Murphy, A. H.: Skill scores based on the mean square error and their
relationships to the correlation coefficient, Mon. Weather Rev., 116, 2417–2424,
1988.
National Research Council: Estimating Probabilities of Extreme Floods:
Methods and Recommended Research, National Academy Press, Washington, D.C., 160 pp., https://doi.org/10.17226/18935, 1988.
Nathan, R., Weinmann, E., and Hill, P.: Use of Monte Carlo simulation to
estimate the expected probability of large to extreme floods, The Institute
of Engineers Australia, 28th International Hydrology and Water
Resources Symposium, Wollongong, NSW, 10–14 November, 2003.
Newman, A. J., Clark, M. P., Craig, J., Nijssen, B., Wood, A., Gutmann, E.,
Mizukami, N., Brekke, L. D., and Arnold, J. R.: Gridded ensemble precipitation
and temperature estimates for the contiguous United States, J. Hydrometeorol., 16, 2481–2500, 2015.
Newman, A. J., Mizukami, N., Clark, M. P., Wood, A. W., Nijssen, B., and
Nearing, G.: Benchmarking of a physically based hydrologic model, J. Hydrometeorol.,
18, 2215–2225, 2017.
Newman, A. J., Stone, A. G., Saharia, M., and Holman, K. D.: Data and Report from S&T Project 1794: Identifying Sources of Uncertainty in Flood Frequency Analyses, U.S. Dept. of the Interior, Bureau of Reclamation, Reclamation Information Sharing Environment (RISE) [data set], available at: https://data.usbr.gov/catalog/4421 (last access: 13 October 2021), 2020.
Newman, A. J., Clark, M. P., Addor, N., Kavetski, D., and Henn, B.: Framework for Understanding Structural Errors (FUSE) with user specified initial states, Zenodo [code], https://doi.org/10.5281/zenodo.5567163, 2021.
Packman, J. and Kidd, C.: A logical approach to the design storm concept,
Water Resour. Res., 16, 994–1000, 1980.
Paquet, E., Garavaglia, F., Garçon, R., and Gailhard, J.: The SCHADEX
method: A semi-continuous rainfall–runoff simulation for extreme flood
estimation, J. Hydrol., 495, 23–37, 2013.
Pathiraja, S., Westra, S., and Sharma, A.: Why continuous simulation? The role
of antecedent moisture in design flood
estimation, Water Resour. Res., 48, W06534,
https://doi.org/10.1029/2011WR010997, 2012.
Peleg, N., Blumensaat, F., Molnar, P., Fatichi, S., and Burlando, P.: Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling, Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017, 2017.
Rahman, A., Weinmann, P. E., Hoang, T. M. T., and Laurenson, E. M.: Monte Carlo
simulation of flood frequency curves from rainfall, J. Hydrol., 256,
196–210, https://doi.org/10.1016/S0022-1694(01)00533-9, 2002.
Reclamation (Bureau of Reclamation): Altus Dam Hydrologic Hazard and
Reservoir Routing for Corrective Action Study. W.C. Austin Project, OK,
Billings, MT. U.S. Dept. of the Interior, Bureau of Reclamation Great Plains
Region, 230 pp., 2012.
Reclamation (Bureau of Reclamation): Island Park Dam Meteorology for Application in Hydrologic Hazard Analysis, Minidoka Project, ID, Boise, ID. U.S. Dept. of the Interior, Bureau of Reclamation Pacific Northwest Region, 88 pp., 2016a.
Reclamation (Bureau of Reclamation): Island Park Dam Hydrologic Hazard for Issue Evaluation, Minidoka Project, ID, Boise, ID, U.S. Dept. of the Interior, Bureau of Reclamation Pacific Northwest Region, 74 pp., 2016b.
Reclamation (Bureau of Reclamation): Unity Dam Hydrologic Hazard for Issue
Evaluation. Burnt River Project, Oregon, Boise, ID, U.S. Dept. of the
Interior, Bureau of Reclamation Pacific Northwest Region, Technical
Memorandum 8250-2018-002, 284 pp., 2018.
Schaefer, M. G. and Barker, B. L.: Stochastic Event Flood Model (SEFM), in: Mathematical Models of Small Watershed Hydrology
and Applications, edited by: Singh, V. J., 950 pp., Highlands Ranch, Colorado, USA, ISBN 9781887201353, 2002.
Schreiner, L. C. and Riedel, J. T.: Probable Maximum Precipitation Estimates,
United States East of the 105th Meridian, Hydrometeorological Report No. 51,
National Weather Service, National Oceanic and Atmospheric Administration,
U.S. Department of Commerce, Silver Spring, MD, 87 pp., 1978.
Sharma, A., Wasko, C., and Lettenmaier, D. P.: If precipitation extremes are
increasing, why aren't floods?, Water Resour. Res., 54, 8545–8551,
https://doi.org/10.1029/2018WR023749, 2018.
Small, D., Islam, S., and Vogel, R. M.: Trends in precipitation and streamflow
in the eastern US: Paradox or perception?, Geophys. Res. Lett., 33, L03403, https://doi.org/10.1029/2005GL024995, 2006.
Stedinger, J. R., Vogel, R. M., and Foufoula-Georgiou, E.: Frequency analysis
of extreme events, in: Handbook of Hydrology, edited by: Maidment, D., 1st edition, 1424 pp.,
McGraw-Hill, New York, ISBN 13 978 0070397323, 1993.
13 978 0070397323
Swain, R. E., England, J. F., Bullard, K. L., Raff, D. A., and United
States.: Guidelines for evaluating hydrologic hazards, Denver, CO, U.S. Dept. of the Interior, Bureau of Reclamation, 91
pp., 2006.
Tijms, H. C.: A first course in stochastic models, John Wiley and Sons, 448 pp., West Sussex, England, ISBN 13 978 0471498803, 2003.
13 978 0471498803
Wright, D. B., Smith, J. A., and Baeck, M. L.: Flood frequency analysis using
radar rainfall fields and stochastic storm transposition, Water Resour. Res.,
50, 1592–1615, https://doi.org/10.1002/2013WR014224, 2014.
Wright, D. B., Yu, G., and England, J. F.: Six decades of rainfall and flood
frequency analysis using stochastic storm transposition: Review, progress,
and prospects, J. Hydrol., 585, 124816, https://doi.org/10.1016/j.jhydrol.2020.124816,
2020.
Yu, G., Wright, D. B., Zhu, Z., Smith, C., and Holman, K. D.: Process-based flood frequency analysis in an agricultural watershed exhibiting nonstationary flood seasonality, Hydrol. Earth Syst. Sci., 23, 2225–2243, https://doi.org/10.5194/hess-23-2225-2019, 2019.
Zhu, Z., Wright, D. B., and Yu, G.: The impact of rainfall space-time structure
in flood frequency analysis, Water Resour. Res., 54, 8983–8998,
https://doi.org/10.1029/2018WR023550, 2018.
Short summary
This study assesses methods that estimate flood return periods to identify when we would obtain a large flood return estimate change if the method or input data were changed (sensitivities). We include an examination of multiple flood-generating models, which is a novel addition to the flood estimation literature. We highlight the need to select appropriate flood models for the study watershed. These results will help operational water agencies develop more robust risk assessments.
This study assesses methods that estimate flood return periods to identify when we would obtain...