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Abstract. This study employs a stochastic hydrologic mod-
eling framework to evaluate the sensitivity of flood frequency
analyses to different components of the hydrologic modeling
chain. The major components of the stochastic hydrologic
modeling chain, including model structure, model parameter
estimation, initial conditions, and precipitation inputs were
examined across return periods from 2 to 100 000 years at
two watersheds representing different hydroclimates across
the western USA. A total of 10 hydrologic model structures
were configured, calibrated, and run within the Framework
for Understanding Structural Errors (FUSE) modular mod-
eling framework for each of the two watersheds. Model pa-
rameters and initial conditions were derived from long-term
calibrated simulations using a 100 member historical meteo-
rology ensemble. A stochastic event-based hydrologic mod-
eling workflow was developed using the calibrated models
in which millions of flood event simulations were performed
for each basin. The analysis of variance method was then
used to quantify the relative contributions of model struc-
ture, model parameters, initial conditions, and precipitation
inputs to flood magnitudes for different return periods. Re-
sults demonstrate that different components of the modeling
chain have different sensitivities for different return periods.
Precipitation inputs contribute most to the variance of rare
floods, while initial conditions are most influential for more
frequent events. However, the hydrological model structure
and structure–parameter interactions together play an equally
important role in specific cases, depending on the basin char-

acteristics and type of flood metric of interest. This study
highlights the importance of critically assessing model un-
derpinnings, understanding flood generation processes, and
selecting appropriate hydrological models that are consistent
with our understanding of flood generation processes.

1 Introduction

Understanding flood risk is important to support infrastruc-
ture design and operations. Hydrologic hazard curves and
flood hydrographs are used to evaluate hydrologic risks for
a given facility, e.g., a dam. A hydrologic hazard curve is a
curve that relates the probability of occurrence to the magni-
tude of a flood. There are numerous approaches to develop-
ing these curves, including (1) statistical stream gauge analy-
sis, e.g., calculating the annual exceedance probability (AEP;
National Research Council 1988), (2) design storm rainfall–
runoff hydrologic model estimates, where the return period
of the flood is equal to the return period of the precipitation
(e.g., Packman and Kidd, 1980; Boughton and Droop, 2003;
Swain et al., 2006; Wright et al., 2020), (3) more complex
fully stochastic rainfall–runoff modeling to explicitly repre-
sent the impacts of hydrological processes on floods (Rah-
man et al., 2002; Schaefer and Barker, 2002; Nathan et al.,
2003; Wright et al., 2014), and (4) an analysis of paleo-flood
records (England et al., 2010). Typically, multiple methods
are employed in these analyses to evaluate the uncertainty
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of model results (e.g., England et al., 2014). Many of these
methods rely on the assumption of AEP neutrality, i.e., that a
rainfall event has a similar AEP to the flood event.

The assumption of AEP neutrality is often not verifi-
able or justified (e.g., Rahman et al., 2002; Kuczera et al.,
2006; Small et al., 2006; Pathiraja et al., 2012; Paquet et al.,
2013; Ivancic and Shaw, 2015; Sharma et al., 2018; Yu et
al., 2019). One way to address this is to perform stochastic
rainfall–runoff modeling. In stochastic rainfall–runoff mod-
eling, flood frequency (FF) estimates are typically produced
using stochastic event simulations using a single hydrologic
model with randomly perturbed model parameters, initial
conditions (ICs), and precipitation input forcing scenarios
from defined precipitation frequency distributions (Rahman
et al., 2002; Paquet et al., 2013; Wright et al., 2020). This
modeling chain permits deviations from AEP neutrality and
quantifies the impacts of ICs, model parameters, and precip-
itation input forcing variability in FF estimates.

However, past research on hydrologic model behavior also
emphasizes the differences in model performance and re-
sponses for various event types given different model param-
eters and structures across hydroclimates (e.g., Clark et al.,
2008; Mendoza et al., 2015; Markstrom et al., 2016; Newman
et al., 2017; Mizukami et al., 2019), highlighting the possi-
ble need to include multiple model structures in stochastic
flood modeling studies. Model structure can vary widely. For
example, a model may simply be defined by a loss methodol-
ogy, where an initial and continuous losses are defined at the
start of and during the event simulation, e.g., Boughton and
Droop (2003), or it can be more complex, employing vari-
ous methods to explicitly simulate the dominant hydrologi-
cal processes (e.g., snowmelt and surface runoff generation).
Additionally, most methods used to perturb model parame-
ters and meteorological forcings do not allow us to identify
which components are the most sensitive in an FF estimate.
Therefore, we systematically explored the sensitivity FF esti-
mates to provide a better understanding of which components
of the modeling chain have the most impact on FF estimates
across example hydroclimatic regimes using basins within
the western USA.

To our knowledge, the systematic examination of model
structure contributions to variations in flood frequencies is a
novel contribution to the flood modeling literature. Previous
work has examined uncertainty and sensitivities in statistical
methods (e.g., Hosking and Wallis, 1986; Stedinger et al.,
1993; Klemes, 2000; Kidson and Richards, 2005; Merz and
Thieken, 2005, 2009; Hu et al., 2020) or from probabilistic
hydrologic modeling systems (Hashemi et al., 2000; Fran-
chini et al., 2000; Blazkova et al., 2009; Arnaud et al., 2017;
Peleg et al., 2017; Zhu et al., 2018). The companion papers of
Hashemi et al. (2000) and Franchini et al. (2000) undertake a
one-at-a-time local sensitivity analysis and a full sensitivity
analysis using a factorial sampling design to examine basin
climate characteristics and hydrologic model parameters im-
pacts on FF estimates. Hashemi et al. (2000) find that several

parameters related to the basin climate (e.g., average rain-
fall and storm intermittency), along with several hydrologic
model parameters such as the percolation rate, have higher
sensitivity than other model parameters and climate charac-
teristics when considering FF estimates. They also conclude
that the soil moisture at event onset is the linking mecha-
nism that explains why their particular parameters are the
most sensitive. For example, soil moisture states closer to
saturation result in larger floods for a given event with wetter
soils modulated by a wetter mean climate or lower percola-
tion rates. Franchini et al. (2000) perform a full sensitivity
analysis and confirm the local sensitivity results. However,
model structure is not systematically varied in Hashemi et
al. (2000) and Franchini et al. (2000). In a related study, Zhu
et al. (2018) perform an analysis of variance on a spatially
distributed stochastic hydrologic model to show that initial
conditions have a strong influence on flood frequency esti-
mates.

The overall goal of this study is to improve the quality
of hydrologic risk estimates for infrastructure design. The
specific objective is to understand which components of the
modeling chain have the largest impact on FF estimates. To
address this objective, we ask the following question: what
aspects of the modeling chain in stochastic FF analysis have
the most sensitivity across a range of return intervals span-
ning 2–100 000 years?

Given that variance in FF estimates arise from (1) model
structure, (2) model parameters, (3) initial conditions, and
(4) precipitation event forcing, our null hypothesis is that,
for rare floods (floods with return periods greater than 50 000
years), the sensitivity related to the precipitation event forc-
ing dominates the total variance of a FF estimate (Fig. 1a).
We postulate that there may be other dominant factors con-
tributing to FF sensitivity outside of precipitation event forc-
ing for rare floods. We explore these components of the mod-
eling chain by (1) using a multi-hydrologic model ensem-
ble, (2) sampling model parameters across the model struc-
tures, (3) sampling model initial conditions that are internally
consistent for each model structure from calibrated continu-
ous long-term simulations, and (4) incorporating statistical
uncertainty in the distributions that define the precipitation
forcing. Furthermore, we explore the impact of meteorology
specification within the event simulation by performing two
sets of event simulations using exactly the same precipitation
inputs. In the first, we force the model with a single precip-
itation input followed by zero precipitation; in the second,
we force the model with a single precipitation event and ran-
dom historical weather after the defined precipitation input
to drive a stochastic (ensemble) event simulation framework,
which better represents real world conditions. The two dif-
ferent meteorological sequence methodologies were used to
mimic different USA agency methodologies (Sect. 3.6). We
use the analysis of variance (ANOVA) methodology to exam-
ine relative contributions of variance to FF estimates across
the return periods of interest for all factors for both mete-
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orological sequences. While the focus of this study was on
stochastic rainfall–runoff modeling, the methods and impli-
cations discussed here may be applicable to simpler methods
such as AEP-neutral model estimates.

2 Study basins

The Island Park Dam (Idaho) and Altus Dam (Oklahoma)
watersheds are used as representative basins of mountain-
ous snowmelt (Island Park) and semiarid high plains (Altus)
hydroclimates, respectively. These basins were selected be-
cause not only are they representative of the dominant hy-
droclimates of the western USA, they also have been the
subject of past flood studies where basin delineations, ob-
served streamflow, and precipitation frequency distributions
were developed by Reclamation (2016a).

Island Park (Fig. 2a) is located on Henrys Fork River, ap-
proximately 56 km north of Ashton, Idaho, and water stored
at Island Park is used locally for irrigation. The Island Park
watershed is roughly 1297 km2 and includes steep mountain
slopes along portions of the watershed boundary to nearly
level slopes around Henrys Lake. Soils for the watershed
range from low permeability clays in the west to perme-
able volcanic sand in the east. There are areas within the
watershed which are heavily forested and other areas which
are barren. Elevations within the drainage area range from
1921 m at the crest of the spillway to 3231 m at Sheep Point
along the northern boundary of the watershed (Reclamation,
2016b). Island Park has a strong seasonal cycle of precipita-
tion, soil moisture, and streamflow, with most of the water-
shed precipitation occurring as snow in October through May
in the higher elevations. This results in a seasonal snowpack,
maximized in late spring which then melts through the sum-
mer, which maximizes soil moisture and streamflow during
late spring and early summer.

Altus Dam is on the North Fork Red River about 27 km
north of the city of Altus, OK. The purposes of the dam and
reservoir are to provide irrigation storage for lands in south-
western Oklahoma, flood control on the North Fork of the
Red River, an augmented municipal water supply for the city
of Altus, fish and wildlife conservation benefits, and recre-
ation. The watershed extends from Altus Dam in Oklahoma
westward to Amarillo, Texas (Fig. 2b). The watershed con-
sists of generally rolling terrain, with medium to coarse tex-
tured soils, and spans an elevation from about 1120 m at
the western edge of the basin to 450 m at the eastern outlet.
This area contains many topographic features known as playa
lakes (closed basins with a low area in the center that may see
water storage following heavy rainfall), and thus, the total
contributing area is smaller than the total area of the water-
shed. We used the Reclamation (2012) estimated contribut-
ing area of 5051 km2. Much of the basin above Altus Dam
is devoted to agriculture, with a majority of the land cover
consisting of cultivated crops, pasture, and hay production.

The drainage basin contains no large forested areas, but there
are treed riparian zones along the watercourses and trees in
cultivated shelterbelts (Reclamation, 2012). Altus Dam is a
semiarid basin that also has a seasonal cycle to precipitation,
with most occurring in winter through summer, primarily as
rainfall. The spring and summer rainfall events are primar-
ily convective in nature, with sometimes very intense rainfall
rates and high total accumulations over short periods of time
that may coincide with peak basin soil moisture in the spring.

3 Data and methods

3.1 Modeling workflow

Our stochastic hydrologic modeling workflow includes the
Framework for Understanding Structural Errors (FUSE) hy-
drologic modeling framework (Sect. 3.2), the shuffled com-
plex evolution (SCE) optimization algorithm (Sect. 3.2),
and precipitation frequency distributions from Reclamation
(2012, 2016a) (Sect. 3.5). Additionally, we have used the law
of total probability (e.g., Tijms, 2003; Nathan et al., 2003;
this Sect. 3.1, the next paragraph, and Sect. 3.7) and the
ANOVA method (Sect. 3.7) to compute the FF estimates and
partition the variance across the workflow components, re-
spectively. Figure 3 provides a workflow diagram describing
our stochastic hydrologic modeling system.

For each basin, hydrologic models are configured and cal-
ibrated using an ensemble of historical meteorology (New-
man et al., 2015). To simplify the experimental design, we
chose to represent the basins using watershed or lumped hy-
drologic models, removing the need to calibrate a distributed
hydrologic model and add other dimensions accounting for
the spatial variability of rainfall and ICs (e.g., Zhu et al.,
2018). Examination of how varying spatial representation
of watersheds impacts FF estimates could be the subject of
further research. Long-term continuous simulations are used
to generate spin-up initial conditions for event simulations
(shown in the upper left panel of Fig. 3 and discussed more in
Sects. 3.3–3.4). Event simulations are then performed across
hydrologic models, model parameters, initial conditions, and
precipitation frequency distribution estimates for two meteo-
rology sequence possibilities, flood event precipitation only,
and flood event precipitation plus historical precipitation, as
discussed more in Sect. 3.6. For each precipitation frequency
distribution, we split the probability density function into 50
bins, sample 25 events per bin, and perform 2500 model sim-
ulations for each possible model parameter–IC–precipitation
frequency combination. This study follows the methodol-
ogy used by Reclamation (e.g., Reclamation 2012, 2016b)
in the stochastic flood modeling, as shown in the upper right
panel of Fig. 3, and provides for uniform sampling across
the precipitation frequency distribution, including extremely
rare precipitation events. These precipitation inputs are then
used in the event simulations with the precipitation frequency

https://doi.org/10.5194/hess-25-5603-2021 Hydrol. Earth Syst. Sci., 25, 5603–5621, 2021



5606 A. J. Newman et al.: Identifying sensitivities in flood frequency analyses

Figure 1. Conceptual contribution of relative variance contribution from initial conditions (blue), model parameters (red), model structure
(orange), and precipitation event forcing (green) across return periods (larger return periods towards the right) for (a) the base case and (b)
one possible alternative, where model structure has similar importance to precipitation event forcing for extreme events.

Figure 2. Island Park (a) and Altus (b) watershed locations. Base layers are from © Esri (Environmental Systems Research Institute).

distributions representing 1 d events for Altus and 2 d events
for Island Park Dam, and Island Park Dam precipitation in-
puts are randomly split across 2 d. Note that performing long
integration continuous simulations using a stochastic rain-
fall simulator is another valid approach (e.g., Calver et al.,
1999; Yu et al., 2019) that could be used within our general
ANOVA framework, where direct specification of ICs and
precipitation frequency curves would be replaced by specifi-
cation of a stochastic rainfall (and other meteorological vari-
ables) generator (Yu et al., 2019). Finally, flood events are
defined as 14 d volume floods for Island Park and single day
peak flows at Altus.

We implemented a factorial experimental design, using all
combinations of the 10 hydrologic models (Sect. 3.2), 11 pa-
rameter sets (10 for Altus Dam) (Sect. 4.1), four initial condi-
tion sets (Sect. 3.4), and 11 precipitation frequency estimates
for Island Park Dam (three precipitation frequency estimates
for Altus Dam; Sect. 3.5) for a total of 4840 combinations,
with 2500 model simulations per combination, resulting in
12.1 million event simulations for Island Park Dam (hereafter
referred to as Island Park) and 3.3 million event simulations
for Altus Dam (hereafter referred to as Altus). The differ-
ent precipitation frequency estimates come from the fact that
this project leveraged previously completed studies for these
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Figure 3. Workflow diagram of the complete stochastic modeling system described in Sect. 3. The calibration, initial condition generation,
and precipitation-input-generation steps are shown in more detail in the upper two gray panels, which then feed to the lower right gray panel.
Merging of the flood event precipitation, with specified 0 precipitation days or historical meteorology, is show in the lower right figure. Color
coding follows Fig. 1. 1 Select daily initial conditions are matched for a given model and parameter set and are taken as the 90th, 94th, 97th,
and 99th percentile of total column moisture for that model and parameter set combination. 2 Select model parameter sets are taken as the
top-performing model parameter sets from the 100 available calibrations for each model structure for each basin, following Sect. 4.1.

data. We do not believe that this will significantly impact the
results, as the ANOVA analysis takes these sampling differ-
ences into account.

3.2 Hydrologic model framework

The FUSE hydrologic modeling system is a freely avail-
able, modular modeling framework that enables the devel-
oping and testing of many conceptual hydrologic models in a
single computational framework. It incorporates multiple pa-
rameterizations for many hydrologic fluxes (or processes) at
the individual flux level, with each equation formulated as a
function of the model state, each in a separate code module.
This allows the numerical solver to be separated from the flux
parameterizations so that every FUSE configuration relies on
exactly the same numerical scheme. FUSE also incorporates

a conceptual temperature index snow model, using elevation
bands with user-specified precipitation and temperature lapse
rates to represent seasonal snowpack and changes in meteo-
rology with elevation. Control at the individual flux level is
key to understanding how changes in process representation
affect the modeling system behavior. Clark et al. (2008) and
Henn et al. (2015) provide more details on the FUSE model-
ing framework.

FUSE uses several configuration files in which the user
can specify the model decisions for process representation,
numerical solver parameters, model calibration options, ac-
cess to input and output data, etc. The structural modularity
in FUSE is underpinned by one file prescribing the equa-
tions to be used for each model component. This file can
be changed independently from the other model settings, en-
abling the user to isolate the effects of the model structure de-
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cisions on the simulations. FUSE has been coupled with the
SCE optimization algorithm (Duan et al., 1993) to calibrate
any hydrologic structure the user specifies. SCE is a robust
global optimization algorithm that is widely used across the
operational and research communities. FUSE uses the net-
work common data format (netCDF) for all input and output
data streams (forcing meteorology, any available observa-
tions for calibration, calibration results, and simulated states
and fluxes), using the same file format regardless of hydro-
logic model configuration. Overall, the design of the FUSE
system enables easy configuration, calibration, and simula-
tion of multiple hydrologic models for long term continuous
simulations or short event simulations.

FUSE is first used to mimic three widely used hydro-
logic models, namely the Hydrologic Engineering Center–
Hydrologic Modelling System (HEC-HMS) model (Bennett,
1998), the variable infiltration capacity (VIC) model (Liang
et al., 1994), and the SACramento–Soil Moisture Account-
ing (SAC-SMA) model (e.g., Anderson, 2002). This pro-
vides a relatable base set of models to operational groups
within the USA. Note that the FUSE instantiations of the
models only mimic the actual models cited. FUSE does not
use the same numerical solver, some process simplifications
are made (particularly for VIC, where we simplify evapotran-
spiration), different parameter estimations schemes are used,
and FUSE does not contain the same coding errors as the
original models (see Clark et al., 2008, for FUSE details). As
a result, when mimicking a pre-existing model using a mod-
ular framework, some substantial differences between their
simulations can exist (Knoben et al., 2019). We then assem-
bled seven other hydrologic model structures by varying par-
ticular processes from the three base models for a total of
10 structures that we used to compute FF estimates for both
basins (see Table 1 for the full list). Again, we use a water-
shed or lumped spatial configuration of FUSE in this study.

3.3 FUSE meteorological forcing and calibration

All 10 hydrologic models for both basins were calibrated us-
ing the SCE optimization algorithm (Fig. 3). We used the
Kling–Gupta efficiency (KGE) and the root mean squared er-
ror (RMSE) as objective functions because the choice of ob-
jective function is subjective and dependent on available data
and user needs. Additionally, recent work has highlighted
that careful consideration needs to be given to the choice
of objective function for high-flow events (Mizukami et al.,
2019). Root mean squared error (RMSE) is directly related
to the Nash–Sutcliffe efficiency (NSE). Furthermore, it can
be shown that RMSE/NSE is made up of the following three
component contributions to the total value (Murphy, 1988;
Clark et al., 2021): correlation (r), variability (α), and bias
(β). The Kling–Gupta efficiency (KGE) is a reformulation of
these same components, which allows the user to easily un-
derstand their individual contributions to the total KGE value

(Gupta et al., 2009) and is shown in (Eq. 1) as follows:

EDs =

√
[sr · (r − 1)]2

+ [sα · (α− 1)]2
+
[
sβ · (β − 1)

]2
, (1)

where EDs is the scaled Euclidian distance from the ideal
point, and sr , sα , and sβ are scale factors to adjust the weight-
ing of the correlation, variability, and bias terms (each scale
factor is typically set to 1). The KGE is also beneficial to
use because the scale factors can be adjusted to emphasize
the different components of KGE. Here we tested RMSE and
KGE calibrations using daily streamflow and KGE computed
using annual peak flow values. We also examined modifying
the KGE sα scale factor from 1 to 5 to emphasize model flow
variance in an effort to better capture flood peaks. Inflated sα
values resulted in model behavior very similar to KGE using
annual peak flows, in agreement with Mizukami et al. (2019),
and are not discussed further.

A maximum of 40 000 model runs was allowed for the
SCE calibration of each model structure and basin. Recon-
structed daily inflow data from Reclamation (2016b) was
used for Island Park, while annual peak flow data developed
by Reclamation (2012) was used for Altus due to lack of bet-
ter available data for calibration at the time of this study. The
impact of these different objective functions and calibration
data for the basins will be discussed in Sect. 4.

The meteorological forcing data consisted of a 100-
member ensemble of gridded precipitation and temperature
at 6 km resolution, as described in Newman et al. (2015).
Observations of precipitation and temperature and the pro-
cess of projecting point measurements to grids across some-
times complex terrain are inherently uncertain. This ensem-
ble data set was designed to estimate those uncertainties
and provide many plausible historical traces for hydrologic
model applications. The ensemble precipitation and temper-
ature grids are merged to the watershed scale using fractional
areal weighting for all meteorological grid cells that intersect
a basin polygon. Watershed-scale forcing derived from each
individual meteorological ensemble member was used to cal-
ibrate each hydrologic model, resulting in a 100-member en-
semble of calibrated model parameters for each model for
each basin (100 ensembles× 10 models× 2 basins; Fig. 3).
Because of the available observational data, different spin-up
and calibration periods were used. For Island Park, the hydro-
logic models were spun up for water years (WYs) 1970–1979
and calibrated on WY 1980–2014 (35 WYs), while Altus was
spun up for WY 1980–1984 and calibrated on WY 1985–
2011 (27 WYs). Again, while the number of WYs for both
catchments is similar, data availability meant that Altus cal-
ibration only relied on annual peaks, while for Island Park
daily streamflow values were used. Finally, given the limited
data for both basins, we chose not to withhold any data for
out-of-sample performance assessments because this study
is not focused on out-of-sample model performance, and we
preferred to have the largest possible calibration sample size.
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Table 1. FUSE hydrologic processes (far left column) and the various selected process representations for the 10 hydrologic models.

FUSE config. HEC-HMS VIC SAC-SMA Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Rainfall error multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e

Upper-layer tension1_1 onestate_1 tension1_1 tension2_1 onestate_1 tension2_1 onestate_1 tension1_1 onestate_1 tension1_1
architecture

Lower-layer unlimfrc_2 fixedsiz_2 tens2pll_2 unlimfrc_2 unlimfrc_2 unlimpow_2 tens2pll_2 tens2pll_2 tens2pll_2 unlimfrc_2
architecture
and baseflow

Surface runoff arno_x_vic arno_x_vic prms_varnt arno_x_vic arno_x_vic prms_varnt prms_varnt prms_varnt prms_varnt arno_x_vic

Percolation perc_f2sat perc_w2sat perc_lower perc_f2sat perc_f2sat perc_lower perc_lower perc_f2sat perc_w2sat perc_lower

Evaporation sequential rootweight sequential sequential sequential sequential sequential sequential rootweight sequential

Interflow intflwnone intflwnone intflwsome intflwnone intflwnone intflwsome intflwsome intflwnone intflwnone intflwsome

Time delay rout_gamma rout_gamma rout_gamma rout_gamma rout_gamma rout_gamma rout_gamma rout_gamma rout_gamma rout_gamma
in runoff

Snow model temp_index temp_index temp_index temp_index temp_index temp_index temp_index temp_index temp_index temp_index

3.4 Initial condition specification

Continuous simulations were performed using the optimized
model parameters and full model states were output each day
for the full calibration periods for each hydrologic model and
basin. These states were sampled to determine the ICs for
the event simulations. Sampling initial states from continu-
ous simulations has the advantage of providing ICs that are
consistent with the specific hydrologic model and parameter
set versus applying random IC perturbations. Applying ran-
dom perturbations to an IC may result in unrealistic states
and subsequent simulation results.

For Island Park, the focus was on ICs from April through
June that had minimal (<10 mm) snow water equivalent
snowpack to represent flood events near the end of the
snowmelt season around peak climatological soil moisture
storage. For Altus, the focus was on late winter through mid-
summer ICs (February–July), when both soil moisture and
precipitation event intensity and volumes are near their cli-
matological maximums. For both basins and all models, four
ICs were sampled in the top 10 %, i.e., the 90th, 94th, 97th,
and 99th percentiles of total column soil moisture within all
validation years and selected months. Here we chose to focus
on wetter ICs, following the general Reclamation FF estima-
tion methodologies (e.g., Reclamation 2012, 2016b, 2018).
However, we show results across even frequent return peri-
ods, and the reliance on only wet ICs may influence the im-
portance of IC uncertainty for these more frequent return pe-
riods (Yu et al., 2019). The assumption that larger floods are
associated with wetter ICs may not be valid in all hydrologic
regimes, especially in more arid environments where condi-
tions, such as surface sealing and rock-mantled slopes, may
actually result in more severe flooding under intense short-
duration thunderstorms. While the basins tested here did not
consider those conditions, a wider distribution of ICs could
be considered in future work which, again, may increase the
importance of ICs in flood response.

3.5 Precipitation frequency estimates

Regional frequency analysis (RFA) is a useful method for
extending the period of record in environmental data sets by
means of a space-for-time substitution, where additional in-
formation in space supplements the lack of information in
time. The basic assumption of RFA is that extreme events
recorded at stations located within a predetermined homoge-
neous region can be described by the same probability dis-
tribution. By scaling the data by the respective at-site mean
(ASM), the user assumes that a single probability distribution
is valid for every location within the homogeneous region,
while the magnitude can vary spatially.

The L-moments method (Hosking and Wallis, 1997) is one
example of a regional frequency method. The basis of the L-
moments algorithm is that linear combinations of moments
can be used to estimate model parameters for extreme value
distributions. The moments of interest (also referred to as
L-statistics) include L-CV, L-skewness, and L-kurtosis and
are computed for every site utilized in an analysis. Regional
moments are developed using weighted averages of the site-
specific moments, where the weight is proportional to pe-
riod of record. The regional L-moments are then used to de-
fine the regional growth curve (RGC), a dimensionless quan-
tile function that represents the cumulative distribution func-
tion of the frequency distribution valid for all sites located
within the homogenous region. Site-specific precipitation–
frequency estimates (Qi(F ); Eq. 2) are developed by scal-
ing the RGC (q(F )) by a site-specific ASM (µi), allowing
the magnitudes of precipitation–frequency estimates to vary
spatially across the region of interest.

Qi (F )= µiq (F ) . (2)

Reclamation (2016a) developed median and uncertainty
precipitation–frequency curves for the Island Park water-
shed using a regional L-moments approach combined with
Latin hypercube resampling procedures. More specifically,
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the authors used annual maximum 2 d precipitation totals
from 45 stations in a homogeneous region surrounding the
Island Park watershed to estimate parameters of the four-
parameter Kappa distribution. The authors used Latin hy-
percube sampling methods in R, via the qnorm function,
to perform Monte Carlo sampling to create 300 param-
eter sets using variations in five parameters, namely the
at-site mean, regional L-CV, regional L-skew, regional L-
kurtosis, and areal reduction factor (ARF), to account for
converting point precipitation frequency estimates to the
basin-average precipitation frequency estimates. For Island
Park, the authors of that study applied a constant ARF for
all exceedance probabilities, even though ARFs have been
shown to vary by exceedance probability (e.g., Bell, 1976).
More specifically, Reclamation (2016a) multiplied the point-
specific precipitation–frequency curve by a constant ARF of
0.85, which they estimated using a historical point and basin-
average precipitation depths available in HMR 55A (Hansen
et al., 1988) and HMR 57 (Hansen et al., 1994). Results from
the Island Park analysis include 11 frequency distributions
(5th, 14th, 23th, 32th, 41th, 50th, 59th, 68th, 77th, 85th,
and 95th percentiles). Kappa parameters from Reclamation
(2016a) are reproduced in Table 2. During the stochastic sim-
ulations performed here, we force 2 d historical precipitation
inputs to equal the basin-average magnitudes sampled from
the 2 d precipitation frequency curve valid over the Island
Park watershed.

Similarly, Reclamation (2012) developed precipitation–
frequency estimates, including median and uncertainty
bounds for the Altus watershed, using a regional L-moments
approach combined with Latin hypercube sampling proce-
dures. The authors focused on annual maximum 1 d (or 24 h)
precipitation totals recorded at 482 stations, with at least 5
years of data, and used Latin hypercube sampling to pro-
duce 150 parameter sets based on variations in the follow-
ing same five parameters listed above: at-site mean, regional
L-CV, regional L-skewness, regional L-kurtosis, and ARF.
The ARF for Altus was developed using a linear relation-
ship between point and basin-average storm totals, using
12 different storms that impacted the Altus watershed iden-
tified in HMR 51 (Schreiner and Riedel, 1978), HMR 52
(Hansen et al., 1982), and HMR 55A (Hansen et al., 1988).
The Altus report provides all precipitation–frequency esti-
mates in the form of fourth-order polynomials, with coeffi-
cients reproduced in Table 3. Similar to Island Park simu-
lations, we force 1 d historical precipitation events to equal
basin-average magnitudes sampled from the 1 d precipitation
frequency curve valid over the Altus watershed. Median pre-
cipitation frequency curves for both basins, including the 5th
and 95th statistical sampling percentiles, are shown in Fig. 4.

3.6 Meteorology specification

Some stochastic modeling studies at Reclamation force the
rainfall–runoff model with a specified precipitation input

(e.g., 2 d input from a precipitation frequency distribution),
followed by no precipitation for the remaining simulation
time (Reclamation, 2018). The lack of additional precipita-
tion after the specified precipitation input is not based on any
physical reasoning; thus, we examine both zero and histor-
ical precipitation sequences after the specified precipitation
input (2 d at Island Park and 1 d at Altus; Sects. 2 and 3.5). In
the specified meteorological sequence, we set precipitation
to zero after the specified precipitation input. In the histor-
ical meteorology sequence, we randomly sample ensemble
member meteorology using the same event start date from
the selected IC. In both meteorological sequences, the spec-
ified precipitation forcing is exactly the same. Future work
should examine event sequencing in greater detail, particu-
larly to quantify the impacts of possible future circulation
changes on FF estimates and sensitivities.

3.7 Flood frequency estimation and ANOVA

As noted in Sect. 3.1, the total probability theorem is used
to compute modeled basin runoff at return periods of 2,
5, 10, 20, 50 100, 500, 1000, 5000, 10 000, 50 000, and
100 000 years from the stochastic simulations for all model,
parameter, IC, and precipitation distribution combinations
for both meteorology sequences. To do this, the distribution
of flood event runoff was divided into 50 bins, following the
division of the precipitation frequency distributions (Fig. 3;
upper right box). All event simulations exceeding the mod-
eled runoff threshold in a given bin were counted, and then
the probability of exceedance of that runoff threshold was
computed as the summation of the probability of precipita-
tion inputs occurring in that specific bin times the number of
flood events. We then used linear interpolation to estimate the
runoff at the specific return periods listed above. Again, 14 d
volumes are used at Island Park and maximum daily runoff
are used at Altus to define the flood event.

An ANOVA analysis is then performed on the runoff val-
ues for all the return periods for both meteorology sequences
and basins. The ANOVA framework is a computationally
frugal way to estimate individual component contributions
to the total variance of a variable such as runoff by rely-
ing on a sum of squares decomposition. ANOVA analyses
have been widely used in hydrometeorology to separate the
components of future climate changes (Hawkins and Sut-
ton, 2009; Lehner et al., 2020) and to determine which el-
ements of the model chain contribute most to the spread of
the projected changes in streamflow (Bosshard et al., 2013;
Addor et al., 2014; Breuer et al., 2017; Chegwidden et al.,
2019). By estimating the fractional (relative) variance con-
tributions of each factor and all (two) factor interactions, we
identified the pieces of the modeling workflow which con-
tribute most to FF sensitivity for each return period. We used
the anovan MATLAB function, as implemented in MATLAB
version 9.8.0.1380330 (2020a) update 2. This function al-
lows for N-way ANOVA computations with mixed contin-
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Figure 4. Precipitation frequency estimates for Altus (1 d; blue) and Island Park (2 d; black) including the median (solid), and the 5th and
the 9th percentiles (dashed).

Table 2. Parameters used to define the four-parameter Kappa distribution. Table is reproduced from Table 4.5 in Reclamation (2016a).

Sim. Percentile xi α K H Basin mean

1 95th 0.8059 0.02842 −0.068 0.1374 1.66
2 85th 0.8083 0.2827 −0.0635 0.1235 1.64
3 77th 0.8108 0.2812 −0.0590 0.1095 1.63
4 68th 0.8132 0.2798 −0.0546 0.0956 1.61
5 59th 0.8157 0.2783 −0.0501 0.0816 1.6
6 50th 0.818 0.2768 −0.0456 0.0676 1.58
7 41st 0.8188 0.2768 −0.0395 0.0634 1.57
8 32nd 0.8195 0.2768 −0.0334 0.0592 1.55
9 23rd 0.8203 0.2767 −0.0272 0.0549 1.54
10 14th 0.821 0.2767 −0.0211 0.0507 1.52
11 5th 0.8217 0.2767 −0.0430 0.0463 1.51

uous and categorical predictors and specification of the inter-
action terms to be estimated (https://www.mathworks.com/
help/stats/anovan.html, last access: 2 March 2021). Here we
specify model structure and parameters as categorial predic-
tors and precipitation event forcing and initial conditions as
continuous predictors. Precipitation event forcing and initial
condition values are normalized before the ANOVA analysis
was performed. Finally, we perform a subsampling and boot-
strapping of the effects that have more samples than the effect
with the fewest samples (e.g., for Island Park, ICs have four
samples and precipitation frequency distributions have 11
samples), following Bosshard et al. (2013). Disparate sample
sizes can bias the fractional variance estimates, overestimat-
ing the contributed variance for effects with more samples.

Performing subsampling with bootstrapping (n= 1000) al-
leviates the bias (Bosshard et al., 2013).

4 Model calibration

When examining daily flow time series, the KGE and RMSE
based on daily flow produce more realistic simulations than
the KGE using annual peak flow, as seen in Fig. 5. This is a
somewhat expected result as the interval metric contains no
time information (correlation) on the daily scale. The daily
KGE-based calibration outperforms the daily RMSE-based
calibration, where the daily RMSE-based calibration under-
estimates the flow variance (not shown), in agreement with
past studies (Gupta et al., 2009). The annual peak-flow-based
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Table 3. Polynomial coefficients (fourth order) that describe the lower, median, and upper precipitation frequency curves for Altus. Table
reproduced from Table 5.7 in Reclamation (2012).

A0 A1 A2 A3 A4

Lower estimate (5 %) 0.906821 0.359010 0.031004 0.009728 −0.000563
Median estimate (50 %) 0.999012 0.391658 0.033909 0.013662 −0.000692
Upper estimate (95 %) 1.082307 0.426903 0.04651 0.017021 −0.000828

Figure 5. Island Park calibration period runoff for water year (WY)
1993, with RMSE using daily flow, KGE using daily flow, and KGE
using annual maximum flow.

KGE calibration represents the peak flows well (with some
overestimation) but has large differences in event recession
curves, with overestimation of flow in the days and weeks
immediately following high-flow events. This erroneous re-
cession curve representation would result in very different
volume-based floods versus daily metric-based calibrations.

Given the above calibration characteristics and the avail-
able calibration data at Island Park (daily flow) and Altus
(annual peak flow), daily KGE was selected as the calibra-
tion metric for Island Park and annual peak-flow-based KGE
as the calibration metric for Altus (Sect. 3.3 defines these
calibration metrics). Daily KGE provides the best all-around
simulation when considering daily peak flows and volume
integrations over days to weeks at Island Park. For Altus,
calibrating to yearly peak-flow-based KGE provided a better
overall peak flow calibration than RMSE calculated using an-
nual peak flows, likely due to the reformulated weighting of
bias and variance as compared to RMSE. Again, these results
agree with Mizukami et al. (2019), who examined some of
the same calibration metrics using multiple hydrologic mod-
els and hundreds of basins across the contiguous USA. They
found that KGE outperforms RMSE-based (or NSE-based)
calibrations, and that peak flow metrics do outperform KGE

for peak flow simulation but result in a much degraded daily
model performance with sometimes severe modeled flow bi-
ases.

Figure 6 highlights the final cumulative density function
(CDF) of the calibrated KGE for all 10 models for Island
Park (Fig. 6a) and Altus (Fig. 6b). It is not possible to make
direct performance comparisons between the models at the
two basins, given that the KGE values are based on daily
(Island Park) and annual peak runoff (Altus). However, in
a broad sense, model behavior at Island Park is much more
constrained than Altus, based on the relative ranges of cal-
ibration scores for each basin (different x-axis ranges from
left to right panels). These differences informed the model
parameter sampling strategies and show that the model be-
havior at Island Park is more constrained than at Altus along
the model parameter dimension.

4.1 FUSE parameter set selection

The 100 parameter sets available for each model and basin
were subsampled for the final FF event simulations. Be-
cause Island Park had more available data for calibration
(Sect. 3.3), the final calibrated model performance was very
similar across the 100 members for all 10 hydrologic mod-
els. Therefore, 11 parameter sets spanning the full range of
model performance were sampled for each hydrologic model
using the 1st, 10th, 20th, 30th, 40th, 50th, 60th, 70th 80th,
90th, and 99th percentiles of the cumulative density function
(CDF) of the calibration objective function. For Altus, the
calibrated model behavior was less constrained due to the
much smaller amount of calibration data available. There-
fore, the 10 best-calibrated parameter sets for each hydro-
logic model were used, which constrained model-parameter-
induced differences in model behavior but still not to the
same level as Island Park.

5 Sensitivity analysis

The ANOVA analysis was performed using the full comple-
ment of FF estimates for both basins (Sect. 3.7) and both
meteorological sequences (Sect. 3.6). All fractional variance
contributions are normalized by the total variance in the FF
estimate for each return period such that if a component has
a fractional variance of 0.5 then that component contributes
half of the total variance for that return period. The plots
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Figure 6. (a) Island Park daily flow calibrated KGE distributions for all 10 models. (b) Altus yearly peak flow calibrated KGE distribution
for all 10 models.

represent the 2, 5, 10, 50, 100, 1000, 10 000, 50 000, and
100 000 year return periods. For Figs. 8–13, the specified in-
put meteorological sequence is always in panel (a) and the
historical input meteorology sequence is always in panel (b),
and the color coding follows Fig. 1. Interaction terms are a
blend of the two primary components (e.g., model structure–
model parameter interactions are red–orange).

First, normalized FF plots, including all possible effect
combinations for both models, are shown in Fig. 7. Annual
exceedances at Island Park in the mean follow a nearly linear
trend on the semi-log x-axis plot, with the range of possible
values having relatively higher spread at larger return inter-
vals (Fig. 7a), which is consistent with the hydrology of Is-
land Park being a less flashy, more snowmelt-flow-dominated
basin. The normalized FF curve at Altus is highly nonlinear,
even with a semi-log x axis, with little flow for many small
return periods (Fig. 7b). Sharp increases in flood responses
after roughly the 500 year return period are seen, with the
normalized spread larger than at Island Park for the largest
return periods (50–100 000 years). The normalized FF plots
in Fig. 7 have similar shapes to the precipitation frequency
distributions (Fig. 4) for both basins, where Island Park has a
more gradual increase as compared to Altus, which has much
larger rare precipitation inputs.

5.1 Island Park

ANOVA results using all available model structures, sam-
pled parameter sets, sampled ICs, and sampled precipitation
frequency distributions for Island Park are shown in Fig. 8.
When all model structures are included, ICs dominate the
frequent floods less than about 5000 years, while the precip-
itation frequency distribution is the most important for rarer
floods. This agrees with other recent studies examining IC
contribution to FF estimates using ANOVA or similar frame-

works (Peleg et al., 2017; Zhu et al., 2018). Model structure
consistently contributes roughly 20 % of the variance and
is generally the second most important effect across all re-
turn periods outside of 1000–10 000 year flood, where ICs,
precipitation frequency curves, and model structure vary in
leading, secondary, or tertiary importance, depending on the
meteorological sequencing. Model parameters and interac-
tion terms contribute roughly 10 % of the variance for less
frequent floods for both meteorological sequences. For rare
floods with return periods larger than 50 000 years, precip-
itation input is about twice as important as model structure
and 3 times more important than ICs for the specified me-
teorological sequence, while, for historical meteorological
sequencing (Sect. 3.6), the precipitation input is only about
1.5× more important than model structure for 100 000 year
floods.

Figure 9 presents the fractional variance contributions for
Island Park using the following three base models: HEC-
HMS, VIC, and SAC-SMA (Sect. 3.2; Table 1). Similar
to all models, ICs and the precipitation frequency distribu-
tion specification are the most important for frequent and
extreme floods, respectively. Model structure is the second
most important contributor to frequent floods, but for return
periods larger than 1000 years, model structure–parameter
interactions become as or more important than the model.
Again, moving from the specified to historical meteorolog-
ical sequence decreases the variance contribution of precip-
itation frequency distributions and increases the importance
of model structure, model structure–parameter interactions,
and ICs across all return periods (compare Fig. 9a to b). This
is somewhat counterintuitive but may be related to the fact
that soil states can strongly influence recession curve char-
acteristics, and the additional precipitation in the historical
meteorological sequence (from zero after the specified input
in the specified sequence) is either stored or released within
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Figure 7. Normalized (by maximum possible flood runoff) FF curves, with the median in red, and the interquartile range (25th–75th per-
centiles), in dark gray, the 10th–90th percentile spread, in medium gray, and the minimum to maximum spread, in light gray, for (a) Island
Park and (b) Altus.

Figure 8. Island Park fractional variance contributions using all 10 model structures for the (a) specified meteorological sequence and
(b) historical meteorological sequence. Only interaction terms that contribute significant variance are shown in Figs. 6–11.

the 14 d volume flood integration period depending on model
structure, parameters, or ICs.

Using a different combination of the 10 possible model
structures results in a slightly different conclusion. The set
of simulations presented in Fig. 10 represents the set of three
hydrologic models that generates the largest flood responses
to larger precipitation event forcing. Overall, the precipita-
tion frequency distribution specification is still the most im-
portant for extreme floods, and ICs are most important for
very frequent floods, but model structure contributes a larger
fraction of the total variance across all return periods and
is often of similar magnitude to either ICs or precipitation
frequency distribution changes (Fig. 10). Here we see that
moving from the specified to historical meteorological se-
quence increases the importance of model structure (com-

pare Fig. 10a to b). This is because these three model struc-
tures (Table 1) have more variation between each other, given
additional precipitation input, than the variability in runoff
changes due to ICs. Differences in surface runoff versus sub-
surface storage and slower baseflow appear to be driving the
model structure variability and are discussed more in Sect. 6.

5.2 Altus

The ANOVA results, using all available model structures,
sampled parameter sets, sampled ICs, and sampled event
forcings, for Altus are shown in Fig. 11. Similar to Island
Park, ICs are most important for frequent floods, while pre-
cipitation event forcing is most important for rarer floods.
There are two differences of note here. First, precipitation
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Figure 9. Island Park fractional variance contributions using the three base models, namely HEC-HMS (model 1), VIC (model 2), and
SAC-SMA (model 3), for the (a) specified meteorological sequence and (b) historical meteorological sequence.

Figure 10. Island Park fractional variance contributions for the three most responsive model structures (i.e., structures associated with the
largest runoff/precipitation ratio), namely HEC-HMS (model 1), HEC variant (model 4), and a SAC-SMA/HEC-HMS combination (model 6),
for the (a) specified meteorological sequence and (b) historical meteorological sequence.

frequency distributions are generally more important across
return periods at Altus versus Island Park. Second, while
model structure is slightly less important, model parameters
and model structure–parameter interactions are of similar im-
portance to model structure, such that the combination of
model structure and parameter effects and interactions is as
important as precipitation frequency distributions across both
meteorological sequences (Sect. 3.6). Finally, it is evident
that meteorological sequencing is inconsequential at Altus,
which makes intuitive sense given the single day peak flow
metric for Altus versus the 14 d integrated volume metric at
Island Park (Sects. 3.1 and 3.7).

The ANOVA results for Altus, using the three base mod-
els, show a similar picture as for Island Park. ICs almost

always contribute the most variance for frequent floods
(less than a few hundred years), and the precipitation fre-
quency distributions are the most important for larger floods
(Fig. 12). However, the precipitation frequency distributions
are even more important for Altus than at Island Park, par-
ticularly for the historical meteorological sequence, as they
contribute around 50 % of the total variance for 50 000–
100 000 year floods as compared to around 30 % at Island
Park. Model structure and model structure–model parameter
interactions are of secondary importance across essentially
all return periods. Again, moving from specified to histori-
cal meteorological sequencing does not change the picture
significantly at Altus (compare Fig. 12a to b), which is ex-
pected, as the flood metric is the single day maximum flow
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Figure 11. Altus fractional variance contributions using all 10 model structures for the (a) specified meteorological sequence and (b) histor-
ical meteorological sequence.

and generally single day maximum flow is directly related
to the extreme precipitation event input and not subsequent
smaller precipitation inputs.

Further examination of multiple model combinations at
Altus revealed that using the two most disparate model re-
sponses, i.e., SAC-SMA (model 3) and the SAC-SMA/HEC-
HMS combination (model 6) models, results in a substantial
increase in the importance of model parameters and model
structure–model parameter interactions (Fig. 13). In fact,
model structure–model parameter interactions contribute the
most variance across all return periods in this case. Addition-
ally, model structure and model parameter effects contribute
similar variance to the precipitation frequency distributions.
Again, moving from specified to historical meteorological
sequencing does not substantially change the message here
as expected (compare Fig. 13a to b). For this case, the model
responses are starkly different, such that it may be possible
to rule out one of the model structures as plausible; however,
model structure selection work is outside the scope of this
study.

6 Discussion

The results of this study demonstrate that workflow and
methodological decisions impact hydrologic model behavior
and the final variance estimates of an FF study. This sug-
gests that careful consideration of the various components
of stochastic flood modeling should be undertaken. To our
knowledge, the inclusion of model structure into FF esti-
mate sensitivity analysis is a novel contribution to our un-
derstanding of stochastic flood modeling systems. We reaf-
firm that calibration metrics only constrain model behavior
for components of the hydrograph most related to the cali-
bration metric (e.g., Mendoza et al., 2015; Mizukami et al.,

2019). For streamflow-based calibration, KGE is a metric
that provides balanced model behavior across all components
of the hydrograph because of its formulation and should be
used over RMSE/NSE if possible. Furthermore, calibration
metrics focusing on high flow only generally result in de-
graded model performance for other parts of the hydrograph,
such as the recession curve, in agreement with Mizukami et
al. (2019). The implication for this work is that calibrated
hydrologic models using RMSE/NSE may have inferior per-
formance for longer-duration volume flood metrics because
of substantial biases introduced during calibration that was
not designed to constrain flow volumes.

The ANOVA results demonstrate that ICs contribute the
most variance for frequent floods, and the precipitation fre-
quency distribution specification contributes the most vari-
ance for extreme floods. One area for future study is the spec-
ification of the precipitation frequency distribution and un-
certainty estimates. Here we relied on previously published
precipitation frequency results, as developing new estimates
is outside the scope of this study. However, it is possible that
the specification of the distribution and the uncertainty es-
timation methodology could have an impact on subsequent
analysis steps. Furthermore, the precipitation frequency dis-
tribution methods differ between the basins, which is an
inconsistency with unquantified impacts. Normalization of
the precipitation inputs before the ANOVA analysis possibly
mitigates these potential issues, but further exploration could
be undertaken in future work. Inclusion of drier ICs could be
made and may further increase the importance of ICs, par-
ticularly for basins that may experience large precipitation
events on drier soils, such as arid environments with specific
soil conditions or common floods with less than a few hun-
dred years return periods (Yu et al., 2019). The addition of
four drier ICs in the factorial experimental design would, in
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Figure 12. Altus fractional variance contributions using the three base models, namely HEC-HMS, VIC, and SAC-SMA, for the (a) specified
meteorological sequence and (b) historical meteorological sequence.

Figure 13. Altus fractional variance contributions for the two most disparate flood responses, namely SAC-SMA (model 3) and a SAC-
SMA/HEC-HMS combination (model 6), for the (a) specified meteorological sequence and (b) historical meteorological sequence.

this case, result in another roughly 15 million simulations, or
210 million simulation days, which may be non-trivial, de-
pending on the computational resources available.

Additionally, model structure, model parameters, and
model structure–parameter interactions may have important
contributions across the return periods, depending on the
flood metric and basin. In this study, all 10 model struc-
tures are treated as equally plausible. Future stochastic FF
studies should consider model structure in their experimental
design, with thought given to constraining the model struc-
ture ensemble to plausible model configurations using avail-
able techniques (Jakeman and Hornberger, 1993; Gupta et
al., 2012). Model parameter and model structure–model pa-
rameter interactions are more important at Altus, where the
available calibration data limited the ability of the calibration

to constrain model performance. Consideration of model pa-
rameter variations should be taken into account when scop-
ing projects with little calibration data available.

Differences in model total storage and subsequent runoff
generation drive the different flood responses across both
basins. Figure 14 shows the average model response for mod-
els 1 (HEC-HMS) and 3 (SAC-SMA) for a subset of precip-
itation event forcings for Island Park. The change in storage
and cumulative runoff are normalized by the total precipita-
tion input to highlight storage and runoff efficiency differ-
ences between the two models. Note the precipitation input
occurs on days 1 and 2. Models with high event-based runoff
ratios generate runoff more readily and have smaller subsur-
face storages, while models with lower flood event runoff ra-
tios allow for more infiltration and storage. Model 3 stores
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Figure 14. Change in storage (black lines) and cumulative runoff
(red lines) normalized by flood event precipitation input for model 1
(solid) and model 3 (dashed) at Island Park for one precipitation
frequency distribution bin, using the median (50th percentile) pre-
cipitation frequency distribution.

about 60 % more of the precipitation event than model 1 and
ends up generating 25 % less cumulative runoff than model 1.
These differences are more important for basins using an in-
tegrated flood metric, such as Island Park here, as respon-
sive models generate larger volumes, while the other mod-
els store more of the precipitation event forcing and release
it over longer periods of time. This point should be the fo-
cus of additional study and provides one physical process
comparison to identify the appropriate model structures for
a given basin. While the focus of this study was on stochas-
tic rainfall–runoff modeling for FF studies, there are poten-
tially broader applications to hydrologic modeling for any
purpose, including planning, design, or restoration often fo-
cused on more frequent floods up to extreme ones for risk
analysis. For example, stochastic rainfall–runoff modeling is
data and labor intensive, thus less intensive methods are fre-
quently used, most commonly AEP-neutral assumptions of
the precipitation return period being equal to the flood return
period. Even in those studies, model selection, parameteri-
zation, initial conditions, calibration, and forcing still play
an important role in model outcome. Additionally, examin-
ing a range of return periods rather than just extreme floods
was intentional to help inform a broader range of applications
beyond those focused on risk for large dams where only ex-
treme floods are relevant. Understanding of the sensitivity in
rainfall–runoff modeling, whether stochastic or not, is im-
portant for flood studies. The results of this study can help
guide model selection and development and provide a better
understanding of variance in a variety of flood studies.

7 Conclusions

The key generalizable conclusions are as follows:

1. ICs and precipitation frequency distributions contribute
the most variance in the stochastic flood modeling chain
for frequent and extreme floods, respectively.

2. Hydrological model structure can be equally important,
particularly for multi-day volume flood metrics. This
highlights the need to critically assess assumptions un-
derpinning models, understand basin flood generation
processes, and develop methods to select appropriate
models. This includes the re-examination of the AEP-
neutral assumption and shifting to model process pa-
rameterizations that are most plausible for the study
catchment.

3. Model parameter and model structure–parameter inter-
actions can be important if the model parameter space
is not well constrained during calibration.

4. Confirming many other studies (e.g., Gupta et al., 2009;
Mizukami et al., 2019), the Kling–Gupta efficiency
(KGE) results in better hydrologic model performance
than NSE (or RMSE) for the calibration of extreme
events and volume-integrated flood metrics and is more
flexible for application-specific uses through the use of
user-specified component weights.
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