Articles | Volume 25, issue 8
https://doi.org/10.5194/hess-25-4335-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4335-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of Integrated Nowcasting through Comprehensive Analysis (INCA) precipitation analysis using a dense rain-gauge network in southeastern Austria
Esmail Ghaemi
CORRESPONDING AUTHOR
Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics (IGAM/IP), NAWI Graz, University of Graz, Graz, Austria
Wegener Center for Climate and Global Change (WEGC), University of
Graz, Graz, Austria
Ulrich Foelsche
Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics (IGAM/IP), NAWI Graz, University of Graz, Graz, Austria
Wegener Center for Climate and Global Change (WEGC), University of
Graz, Graz, Austria
Alexander Kann
Department of Forecasting Models, Central Institute for Meteorology
and Geodynamics (ZAMG), Vienna, Austria
Jürgen Fuchsberger
Wegener Center for Climate and Global Change (WEGC), University of
Graz, Graz, Austria
Related authors
No articles found.
Stephanie J. Haas, Andreas Kvas, and Jürgen Fuchsberger
Weather Clim. Dynam., 6, 949–963, https://doi.org/10.5194/wcd-6-949-2025, https://doi.org/10.5194/wcd-6-949-2025, 2025
Short summary
Short summary
In southeast Austria, summer thunderstorms often cause severe damage but are very hard to accurately forecast. With data from the WegenerNet 3D Open-Air Laboratory, we study these storms from beginning to end in multiple atmospheric parameters, like temperature, cloud properties, and wind speed. The characteristic features we find in these parameters expand our understanding of intense storms and can improve their prediction.
Bahareh Rahimi and Ulrich Foelsche
Atmos. Meas. Tech., 18, 2481–2507, https://doi.org/10.5194/amt-18-2481-2025, https://doi.org/10.5194/amt-18-2481-2025, 2025
Short summary
Short summary
The study investigates using Global Navigation Satellite System Radio Occultation (GNSS-RO) to analyze the vertical structure of humidity in atmospheric rivers (ARs). Specific humidity and integrated water vapor from the COSMIC Data Analysis and Archive Center (CDAAC) and the Wegener Center (WEGC) are compared with the Special Sensor Microwave Imager/Sounder (SSMIS), showing that GNSS-RO adds vertically resolved data. Despite a slight low bias, combining GNSS-RO and SSMIS improves AR analysis.
Andreas Kvas, Gottfried Kirchengast, and Jürgen Fuchsberger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-176, https://doi.org/10.5194/essd-2025-176, 2025
Preprint under review for ESSD
Short summary
Short summary
The WegenerNet 3D Open-Air Laboratory for Climate Change Research in southeastern Austria observes the atmosphere from the surface up to an altitude of 10 kilometers. A variety of different sensors measure precipitation, water vapor content, humidity, temperature, and cloud properties in high spatial and temporal resolution. This enables detailed analyses of weather phenomena in a changing climate, such as heavy rainfall events and thunderstorms.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 19, 2237–2256, https://doi.org/10.5194/cp-19-2237-2023, https://doi.org/10.5194/cp-19-2237-2023, 2023
Short summary
Short summary
Louis Morin consistently recorded precipitation intensity and duration between 1665 and 1713. We use these records to reconstruct precipitation totals. This reconstruction is validated by several methods and then presented using precipitation indexes. What is exceptional about this dataset is the availability of a sub-daily resolution and the low number of missing data points over the entire observation period.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 18, 1685–1707, https://doi.org/10.5194/cp-18-1685-2022, https://doi.org/10.5194/cp-18-1685-2022, 2022
Short summary
Short summary
We have digitized and analyzed meteorological variables (temperature, direction of the movement of the clouds, and cloud cover), which were noted by Louis Morin in the period 1665–1713 in Paris. This time period is characterized by cold winters and autumns and moderate springs and summers. A low frequency of westerlies in the winter months leads to a cooling. Morin's measurements seem to be trustworthy. Only cloud cover in quantitative terms should be taken with caution.
Martin Stangl and Ulrich Foelsche
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-117, https://doi.org/10.5194/cp-2021-117, 2021
Manuscript not accepted for further review
Short summary
Short summary
We selected the Maunder Minimum (1645–1715), an astrophysically defined section of the Little Ice Age, and compared the historical data from the Grand Duchy of Transylvania with those from Germany, Austria and Switzerland. For a larger period (1500–1950), we examined on a decadal basis the extent to which an influence on the climate through long-term fluctuations in solar activity, as was inferred from isotope reconstructions from ice cores, can be seen.
Jürgen Fuchsberger, Gottfried Kirchengast, and Thomas Kabas
Earth Syst. Sci. Data, 13, 1307–1334, https://doi.org/10.5194/essd-13-1307-2021, https://doi.org/10.5194/essd-13-1307-2021, 2021
Short summary
Short summary
The paper describes the most recent weather and climate data from the WegenerNet station networks, providing hydrometeorological measurements since 2007 at very high spatial and temporal resolution for long-term observation in two regions in southeastern Austria: the WegenerNet Feldbach Region, in the Alpine forelands, comprising 155 stations with 1 station about every 2 km2, and the WegenerNet Johnsbachtal, in a mountainous region, with 14 stations at altitudes from about 600 m to 2200 m.
Cited articles
AghaKouchak, A.: Simulation of remotely sensed rainfall fields using copulas, PhD thesis, Inst. f. Wasserbau, Stuttgart, 2010.
Ayat, H., Evans, J. P., Sherwood, S., and Behrangi, A.: Are Storm Characteristics the Same When Viewed Using Merged Surface Radars or a Merged
Satellite Product?, J. Hydrometeorol., 22, 43–62, https://doi.org/10.1175/JHM-D-20-0187.1, 2021.
Ben-Gal, I.: Outlier Detection, in: Data Mining and Knowledge Discovery Handbook, edited by: Maimon, O. and Rokach, L., Springer US, Boston, MA,
131–146, https://doi.org/10.1007/0-387-25465-X_7, 2005.
Brown, B. G., Katz, R. W., and Murphy, A. H.: Exploratory Analysis of
Precipitation Events with Implications for Stochastic Modeling, J. Clim. Appl. Meteorol., 24, 57–67, https://doi.org/10.1175/1520-0450(1985)024<0057:EAOPEW>2.0.CO;2, 1985.
Chen, C.-T. and Knutson, T.: On the Verification and Comparison of Extreme
Rainfall Indices from Climate Models, J. Climate, 21, 1605–1621,
https://doi.org/10.1175/2007JCLI1494.1, 2008.
Dunkerley, D.: Identifying individual rain events from pluviograph records: a review with analysis of data from an Australian dryland site, Hydrol. Process., 22, 5024–5036, https://doi.org/10.1002/hyp.7122, 2008.
Ebert, E. E., Janowiak, J. E., and Kidd, C.: Comparison of Near-Real-Time
Precipitation Estimates from Satellite Observations and Numerical Models, B. Am. Meteorol. Soc., 88, 47–64, https://doi.org/10.1175/BAMS-88-1-47, 2007.
Fallah, A., Rakhshandehroo, G. R., Berg, P., O, S., and Orth, R.: Evaluation
of precipitation datasets against local observations in southwestern Iran,
Int. J. Climatol., 40, 4102–4116, https://doi.org/10.1002/joc.6445, 2020.
Filzmoser, P.: Identification of Multivariate Outliers: A Performance Study,
Aust. J. Stat., 34, 127–138, https://doi.org/10.17713/ajs.v34i2.406, 2016.
Fuchsberger J., Kirchengast, G., Bichler, C., Leuprecht, A., and Kabas, T.:
WegenerNet climate station network Level 2 data version 7.1 (2007–2020),
University of Graz, Wegener Center for Climate and Global Change, Graz,
Austria, [data set], https://doi.org/10.25364/WEGC/WPS7.1:2021.1, 2021a.
Fuchsberger, J., Kirchengast, G., and Kabas, T.: WegenerNet high-resolution
weather and climate data from 2007 to 2020, Earth Syst. Sci. Data, 13,
1307–1334, https://doi.org/10.5194/essd-13-1307-2021, 2021b.
Goudenhoofdt, E. and Delobbe, L.: Evaluation of radar-gauge merging methods for quantitative precipitation estimates, Hydrol. Earth Syst. Sci., 13, 195–203, https://doi.org/10.5194/hess-13-195-2009, 2009.
Habib, E., Krajewski, W. F., and Kruger, A.: Sampling Errors of Tipping-Bucket Rain Gauge Measurements, J. Hydrol. Eng., 6, 159–166,
https://doi.org/10.1061/(ASCE)1084-0699(2001)6:2(159), 2001.
Haiden, T., Kann, A., Wittmann, C., Pistotnik, G., Bica, B., and Gruber, C.: The Integrated Nowcasting through Comprehensive Analysis (INCA) System and Its Validation over the Eastern Alpine Region, Weather Forecast., 26, 166–183, https://doi.org/10.1175/2010WAF2222451.1, 2011.
Haile, A. T., Rientjes, T. H. M., Habib, E., Jetten, V., and Gebremichael, M.: Rain event properties at the source of the Blue Nile River, Hydrol.
Earth Syst. Sci., 15, 1023–1034, https://doi.org/10.5194/hess-15-1023-2011, 2011.
Harrison, D. L., Scovell, R. W., and Kitchen, M.: High-resolution precipitation estimates for hydrological uses, Proc. Inst. Civ. Eng. – Water Manage., 162, 125–135, https://doi.org/10.1680/wama.2009.162.2.125, 2009.
Haylock, M. and Nicholls, N.: Trends in extreme rainfall indices for an
updated high quality data set for Australia, 1910–1998, Int. J. Climatol.,
20, 1533–1541, https://doi.org/10.1002/1097-0088(20001115)20:13<1533::AID-JOC586>3.0.CO;2-J, 2000.
Jackson, E. K., Roberts, W., Nelsen, B., Williams, G. P., Nelson, E. J., and Ames, D. P.: Introductory overview: Error metrics for hydrologic modelling – A review of common practices and an open source library to facilitate use and adoption, Environ. Model. Softw., 119, 32–48, https://doi.org/10.1016/j.envsoft.2019.05.001, 2019.
Jones, P. W.: First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates, Mon. Weather Rev., 127, 2204–2210, https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2, 1999.
Kabas, T., Foelsche, U., and Kirchengast, G.: Seasonal and Annual Trends of
Temperature and Precipitation within 1951/1971–2007 in South-Eastern Styria,
Austria, Meteorol. Z., 20, 277–289, https://doi.org/10.1127/0941-2948/2011/0233, 2011a.
Kabas, T., Leuprecht, A., Bichler, C., and Kirchengast, G.: WegenerNet climate station network region Feldbach, Austria: network structure, processing system, and example results, Adv. Sci. Res., 6, 49–54,
https://doi.org/10.5194/asr-6-49-2011, 2011b.
Kann, A. and Haiden, T.: INCA – an operational nowcasting system for hydrology and other applications, in: Vol. 88, Berichte Geol. B.-A.NÖ GEOTAGE, 29–30 September 2011, Haindorf bei Langenlois, Austria, 2011.
Kann, A., Meirold-Mautner, I., Schmid, F., Kirchengast, G., Fuchsberger, J.,
Meyer, V., Tüchler, L., and Bica, B.: Evaluation of high-resolution
precipitation analyses using a dense station network, Hydrol. Earth Syst.
Sci., 19, 1547–1559, https://doi.org/10.5194/hess-19-1547-2015, 2015.
Kirchengast, G., Kabas, T., Leuprecht, A., Bichler, C., and Truhetz, H.:
WegenerNet: A Pioneering High-Resolution Network for Monitoring Weather and
Climate, B. Am. Meteorol. Soc., 95, 227–242, https://doi.org/10.1175/BAMS-D-11-00161.1, 2014.
Lasser, M., O, S., and Foelsche, U.: Evaluation of GPM-DPR precipitation
estimates with WegenerNet gauge data, Atmos. Meas. Tech., 12, 5055–5070,
https://doi.org/10.5194/amt-12-5055-2019, 2019.
Lengfeld, K., Kirstetter, P.-E., Fowler, H. J., Yu, J., Becker, A., Flamig, Z., and Gourley, J.: Use of radar data for characterizing extreme precipitation at fine scales and short durations, Environ. Res. Lett., 15,
085003, https://doi.org/10.1088/1748-9326/ab98b4, 2020.
Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota,
R., Christensen, O. B., Déqué, M., Fernandez, J., Hänsler, A.,
van Meijgaard, E., Samuelsson, P., Sylla, M. B., and Sushama, L.: Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate
Simulations, J. Climate, 25, 6057–6078, https://doi.org/10.1175/JCLI-D-11-00375.1, 2012.
O, S. and Foelsche, U.: Assessment of spatial uncertainty of heavy rainfall
at catchment scale using a dense gauge network, Hydrol. Earth Syst. Sci.,
23, 2863–2875, https://doi.org/10.5194/hess-23-2863-2019, 2019.
O, S., Foelsche, U., Kirchengast, G., Fuchsberger, J., Tan, J., and Petersen, W. A.: Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria, Hydrol. Earth Syst. Sci., 21, 6559–6572, https://doi.org/10.5194/hess-21-6559-2017, 2017.
O, S., Foelsche, U., Kirchengast, G., and Fuchsberger, J.: Validation and
correction of rainfall data from the WegenerNet high density network in
southeast Austria, J. Hydrol., 556, 1110–1122, https://doi.org/10.1016/j.jhydrol.2016.11.049, 2018.
O'Gorman, P. A.: Sensitivity of tropical precipitation extremes to climate
change, Nat. Geosci., 5, 697–700, https://doi.org/10.1038/ngeo1568, 2012.
Pollock, M. D., O'Donnell, G., Quinn, P., Dutton, M., Black, A., Wilkinson, M. E., Colli, M., Stagnaro, M., Lanza, L. G., Lewis, E., and Kilsby, C. G.: Quantifying and mitigating wind‐induced undercatch in rainfall measurements, Water Resour. Res., 54, 3863–3875, https://doi.org/10.1029/2017WR022421, 2018.
Prein, A. F. and Gobiet, A.: Impacts of uncertainties in European gridded
precipitation observations on regional climate analysis, Int. J. Climatol., 37, 305–327, https://doi.org/10.1002/joc.4706, 2017.
Prettenthaler, F., Podesser, A., and Pilger, H.: Klimaatlas Steiermark,
Verlag der Österreichischen Akademie der Wissenschaften, Vienna, 2010.
Scheidl, D.: Improved quality control for the WegenerNet and demonstration for selected weather events and climate, available at:
http://wegcwww.uni-graz.at/publ/wegcreports/2014/WCV-SciRep-No61-DScheidl-Oct2014.pdf
(last access: 19 August 2020), 2014.
Schleiss, M., Olsson, J., Berg, P., Niemi, T., Kokkonen, T., Thorndahl, S.,
Nielsen, R., Ellerbæk Nielsen, J., Bozhinova, D., and Pulkkinen, S.: The
accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and Sweden, Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020, 2020.
Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D.:
Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model
evaluation in the present climate, J. Geophys. Res.-Atmos., 118, 1716–1733, https://doi.org/10.1002/jgrd.50203, 2013.
Tapiador, F. J., Navarro, A., García-Ortega, E., Merino, A., Sánchez, J. L., Marcos, C., and Kummerow, C.: The Contribution of Rain Gauges in the Calibration of the IMERG Product: Results from the First Validation over Spain, J. Hydrometeorol., 21, 161–182, https://doi.org/10.1175/JHM-D-19-0116.1, 2020.
Villarini, G., Mandapaka, P. V., Krajewski, W. F., and Moore, R. J.: Rainfall and sampling uncertainties: A rain gauge perspective, J. Geophys. Res., 113, D11102, https://doi.org/10.1029/2007JD009214, 2008.
Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic
Press, Cambridge, MA, USA, 2011.
Short summary
We assess an operational merged gauge–radar precipitation product over a period of 12 years, using gridded precipitation fields from a dense gauge network (WegenerNet) in southeastern Austria. We analyze annual data, seasonal data, and extremes using different metrics. We identify individual events using a simple threshold based on the interval between two consecutive events and evaluate the events' characteristics in both datasets.
We assess an operational merged gauge–radar precipitation product over a period of 12 years,...