29 Sep 2020

29 Sep 2020

Review status: this discussion paper is a preprint. It has been under review for the journal Hydrology and Earth System Sciences (HESS). The manuscript was not accepted for further review after discussion.

Runoff sensitivity to spatial rainfall variability: A hydrological modeling study with dense rain gauge observations

Clara Hohmann1,2, Gottfried Kirchengast1,2,3, Sungmin O2,3,a, Wolfgang Rieger4, and Ulrich Foelsche3,1,2 Clara Hohmann et al.
  • 1Wegener Center for Climate and Global Change (WEGC), University of Graz, Graz, Austria
  • 2FWF-DK Climate Change, University of Graz, Graz, Austria
  • 3Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics, University of Graz, Graz, Austria
  • 4Bavarian Environment Agency, Germany
  • anow at: Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany

Abstract. Precipitation is a key input to hydrological models. While rain gauges provide the most direct precipitation measurements, their accuracy in capturing rain patterns highly depends on the spatial variability of rainfall events and the gauge network density. In this study, we employ a high-resolution meteorological station network (mean station distance of 1.4 km), the WegenerNet in southeastern Austria, to investigate the impact of station density and interpolation schemes on runoff simulations. We first simulate runoff during heavy precipitation (three short-duration and three long-duration events) using a physically based hydrological model with precipitation input obtained from a full network of 158 stations. The same simulations are then repeated with precipitation inputs from subnetworks of 5, 8, 16, 32, and 64 stations, using three different interpolation schemes – Inverse Distance Weighting with a weighting power of 2 and of 3, respectively, and Thiessen polygon interpolation. We find that the performance of runoff simulations is greatly influenced by the spatial variability of precipitation input, especially for short-duration rainfall events and in small catchments. For long-duration events, reliable runoff simulations in the study area can be obtained with a subnetwork of 16 or more well-distributed gauges (mean station distance of about 6 km). We find a clear effect of interpolation schemes on runoff modeling as well, but only for low-density gauge networks. The sensitivity to the precipitation input is smaller for long-duration heavy precipitation events and bigger catchments. As a next step we suggest to study an ensemble of precipitation datasets in combination with runoff modeling to be able to decompose the effects of precipitation measurement uncertainties and its spatial variability.

Clara Hohmann et al.

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Clara Hohmann et al.

Data sets

WegenerNet climate station networkLevel 2 data version 7.1 2007-2018 J. Fuchsberger, G. Kirchengast, C. Bichler, A. Leuprecht, and T. Kabas

Clara Hohmann et al.


Total article views: 808 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
605 197 6 808 5 7
  • HTML: 605
  • PDF: 197
  • XML: 6
  • Total: 808
  • BibTeX: 5
  • EndNote: 7
Views and downloads (calculated since 29 Sep 2020)
Cumulative views and downloads (calculated since 29 Sep 2020)

Viewed (geographical distribution)

Total article views: 704 (including HTML, PDF, and XML) Thereof 698 with geography defined and 6 with unknown origin.
Country # Views %
  • 1


Latest update: 21 Oct 2021
Short summary
Heavy precipitation events are still feeding with a large uncertainty into hydrological models. Based on the highly dense station network WegenerNet (one station per 2 km2) we analyzed the sensitivity of runoff simulations to different rain network densities and interpolation methods in small catchments. We find, and quantify relevant characteristics, that runoff curves especially from short-duration convective rainfall events are strongly influenced by gauge station density and distribution.