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Abstract. An accurate estimate of precipitation is essential
to improve the reliability of hydrological models and helps in
decision making in agriculture and economy. Merged radar–
rain-gauge products provide precipitation estimates at high
spatial and temporal resolution. In this study, we assess the
ability of the INCA (Integrated Nowcasting through Com-
prehensive Analysis) precipitation analysis product provided
by ZAMG (the Austrian Central Institute for Meteorology
and Geodynamics) in detecting and estimating precipitation
for 12 years in southeastern Austria. The blended radar–
rain-gauge INCA precipitation analyses are evaluated us-
ing WegenerNet – a very dense rain-gauge network with
about one station per 2 km2 – as “true precipitation”. We
analyze annual, seasonal, and extreme precipitation of the
1 km × 1 km INCA product and its development from 2007
to 2018. From 2007 to 2011, the annual area-mean precip-
itation in INCA was slightly higher than WegenerNet, ex-
cept in 2009. However, INCA underestimates precipitation
in grid cells farther away from the two ZAMG meteorolog-
ical stations in the study area (which are used as input for
INCA), especially from May to September (“wet season”).
From 2012 to 2014, INCA’s overestimation of the annual-
mean precipitation amount is even higher, with an average
of 25 %, but INCA performs better close to the two ZAMG
stations. Since new radars were installed during this period,
we conclude that this increase in the overestimation is due to
new radars’ systematic errors. From 2015 onwards, the over-
estimation is still dominant in most cells but less pronounced

than during the second period, with an average of 12.5 %. Re-
garding precipitation detection, INCA performs better during
the wet seasons. Generally, false events in INCA happen less
frequently in the cells closer to the ZAMG stations than in
other cells. The number of true events, however, is compa-
rably low closer to the ZAMG stations. The difference be-
tween INCA and WegenerNet estimates is more noticeable
for extremes. We separate individual events using a 1 h mini-
mum inter-event time (MIT) and demonstrate that INCA un-
derestimates the events’ peak intensity until 2012 and over-
estimates this value after mid-2012 in most cases. In gen-
eral, the precipitation rate and the number of grid cells with
precipitation are higher in INCA. Considering four extreme
convective short-duration events, there is a time shift in peak
intensity detection. The relative differences in the peak inten-
sity in these events can change from approximately−40 % to
40 %. The results show that the INCA analysis product has
been improving; nevertheless, the errors and uncertainties of
INCA to estimate short-duration convective rainfall events
and the peak of extreme events should be considered for fu-
ture studies. The results of this study can be used for further
improvements of INCA products as well as for future hydro-
logical studies in regions with moderately hilly topography
and convective dominance in summer.
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1 Introduction

Precipitation is one of the most important components of the
hydrological cycle and plays a crucial role in shaping the
Earth’s climate. It can trigger numerous natural hazards such
as flash floods, soil erosion, and landslide, which often jeop-
ardize human life and can cause tremendous economic loss
(Lengfeld et al., 2020). More accurate precipitation estimates
improve the reliability of hydrological models and numerical
weather prediction models (NWPs) and can lead to a better
understanding of uncertainties in climate model outputs. Fur-
thermore, having a reliable estimate of precipitation is vital
for decision making in hydrology, agriculture, and the econ-
omy (Ebert et al., 2007). Since the characteristics of a pre-
cipitation event can change rapidly in both time and space,
accurate estimates with high spatial and temporal resolution
remain challenging, especially in smaller-scale events (Vil-
larini et al., 2008).

Rain gauges have been used as direct measuring devices
to estimate precipitation for decades. Besides station-based
data, remote sensing estimates, such as weather radar and
satellite data, are meanwhile widely used. Each of these ap-
proaches has its strengths and weaknesses. For instance, rain
gauges are more accurate in measuring intensity due to their
direct measurement techniques. However, a spatially dense
gauge network is required to detect small-scale convective
events. Moreover, gauge data are subject to different types
of errors, such as wind undercatch (Habib et al., 2001; Pol-
lock et al., 2018; Schleiss et al., 2020). Furthermore, most
rain gauges in mountainous areas are located in the valleys,
which can lead to an underestimation of orographic rainfall
in those areas (Ebert et al., 2007).

On the other hand, satellites can cover the entire globe, and
weather radars have a high spatial resolution. They can esti-
mate precipitation using various ranges of electromagnetic
waves. Radar estimates are based on converting reflectivity
of hydrometeors to rain rate (also known as the Z–R rela-
tionship), and different sources of errors and uncertainties
can have considerable effects on these estimates. Beam over-
shooting, partial beam filling, non-uniformity in the vertical
profile of reflectivity (VPR), hardware calibration, a fixed Z–
R relationship for different precipitation types, and random
sampling errors are some examples of weather radar errors
(AghaKouchak, 2010).

In general, considering these two approaches to be com-
plementary and merging them can lead to more reliable es-
timates with a higher resolution (Goudenhoofdt and De-
lobbe, 2009). Using multiple sources of data, including radar,
gauges, and model outputs, is beneficial to overcome some
of the limitations addressed above (Ayat et al., 2021). How-
ever, the aforementioned errors and weaknesses in both rain
gauges and radar estimates can still affect the reliability of
the merged data and need to be considered (Haiden et al.,
2011). The Integrated Nowcasting through Comprehensive
Analysis (INCA) of the Austrian Central Institute for Meteo-

rology and Geodynamics (ZAMG) provides high-resolution
precipitation analyses and nowcasts by combining ground
station, remote sensing, high-resolution topographic data,
and NWP data. INCA’s meteorological products are used, for
example, as inputs for flood forecasting in the Alpine region
and winter rail maintenance (Kann and Haiden, 2011).

The aim of this study is to evaluate INCA precipitation
analyses over a period of 12 years, using gridded precipita-
tion fields that are generated based on the dense WegenerNet
weather and climate station network in southeastern Austria.
The main focus lies on analyzing the ability of INCA to de-
tect and estimate precipitation and on studying the impact
of modifications of INCA algorithms and input data during
these 12 years. We analyze annual data, seasonal data, and
extremes using different metrics. Moreover, INCA’s detec-
tion skill is studied using categorical metrics. Furthermore,
we identify individual events using a simple threshold based
on the interval between two consecutive events and compare
the events’ characteristics in both datasets. Finally, we sep-
arately study extreme convective short-duration events and
demonstrate four representative examples. The following re-
search questions are addressed and discussed in this study.

1. How well can INCA detect and estimate precipitation in
an area with a moderate topography?

2. How did the developments in the Austrian radar net-
work affect INCA’s performance?

3. How reliable are INCA estimates of extremes?

This paper is structured as follows. In Sect. 2, we introduce
the study area and each dataset’s main features; in Sect. 3,
the methodology is described. The results based on different
timescales and individual events are discussed in Sect. 4, and
we conclude in Sect. 5.

2 Study area and datasets

2.1 WegenerNet

The WegenerNet network is a dense climate station network
located in the Feldbach region in southeastern Austria (see
Fig. 1). The network includes 155 ground stations, almost
uniformly spread over an area of about 22 km× 16 km (i.e.,
about 1 station per 2 km2) provided by the Wegener Cen-
ter for Climate and Global Change, University of Graz, Aus-
tria (Kirchengast et al., 2014; Fuchsberger et al., 2021b). The
highest altitude in this region is 609 m a.m.s.l. (above mean
sea level), located in the southern part. The altitude decreases
northward to the valley of the Raab River (see Fig. 1). The
Feldbach region is affected by both Mediterranean and con-
tinental climates. Most of the precipitation occurs from May
until September (here defined as the “wet season”), when
monthly average precipitation is approximately twice as high
as during the “dry season” from October to April (O and
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Foelsche, 2019). Considering that the average number of
days with fresh snow in this area is less than 15 d during 1971
to 2000 (Prettenthaler et al., 2010) and has been decreasing
over time, snowfall is relatively unimportant in this area.

Based on different instrumentations, WegenerNet includes
five different station types (reference, primary, special base,
base, and external stations). The base and special base sta-
tions in addition to an external station (141 stations in total)
have unheated sensors to measure liquid precipitation. On
the other hand, the primary and reference stations and an-
other external station (14 stations in total) are equipped with
heated sensors, and therefore they can measure snow and
other forms of frozen precipitation too. We refer to Fuchs-
berger et al. (2021b) for more details on the different station
types. WegenerNet has provided station time series and grid-
ded datasets (based on the station data) of temperature, hu-
midity, precipitation, and other parameters with 5 min tempo-
ral resolution since January 2007. The raw measurements are
checked by seven layers of the quality control system (QCS),
from checking station operation and availability to intersta-
tion consistency. For detailed descriptions of the quality con-
trol system, we refer to Kabas et al. (2011b), Kirchengast et
al. (2014), Scheidl (2014), and Fuchsberger et al. (2021b). In
this study, we used WegenerNet gridded data from Wegen-
erNet’s level-2 data (Fuchsberger et al., 2021a), generated
with the inverse-distance-squared weighting method based
on quality-controlled station data and provided on a 200 m
grid. WegenerNet data have been validated against data from
operational weather stations (O et al., 2018) and are shown
to have a reliable performance in terms of magnitude, fre-
quency, and the exact location of extreme events (O and
Foelsche, 2019). The data have been used as a reference in
multiple validation studies, a selection of which is addressed
below.

Kann et al. (2015) used WegenerNet data to validate
6 months of INCA data (see Sect. 2.2), and O et al. (2017)
used WegenerNet data as a reference to evaluate satellite
data from the Global Precipitation Measurement (GPM) mis-
sion. Based on half-hourly Integrated Multi-satellitE Re-
trievals for GPM (IMERG) rainfall estimates for the period
of April–October in 2014 and 2015, the results indicate that
all IMERG products perform better in estimating moderate
rainfall (0.3 to 3 mm per 30 min) than light and heavy rainfall
events. In general, IMERG Early and IMERG Late overesti-
mate low rain rates, and all three IMERG runs tend to under-
estimate heavy rain. In another study, Lasser et al. (2019) di-
rectly evaluated space-based GPM dual-frequency precipita-
tion radar (DPR) estimates using WegenerNet gridded fields
and showed that GPD DPR products tend to underestimate
rainfall.

O and Foelsche (2019) analyzed the spatial variability of
heavy rainfall events using WegenerNet gridded data. In ad-
dition, they described the dependency of area-mean rain-
fall on the number of gauges and temporal resolution during
heavy events. The study showed that from May to Septem-

ber, the spatial variability in rainfall is higher than from
October to April due to a higher proportion of convective
events. Based on their results, the high density and the reg-
ular distribution of WegenerNet stations generate spatially
homogeneous gridded rainfall fields. A complete up-to-date
list of WegenerNet-related literature can be found at https:
//wegcenter.uni-graz.at/en/wegenernet/publications/ (last ac-
cess: 30 June 2021).

2.2 INCA

The INCA precipitation analysis provides data on a
1 km× 1 km spatial grid with 15 min temporal resolution,
using a combination of rain-gauge data, weather radar esti-
mates, and high-resolution topography (Haiden et al., 2011).
The following data are used as input for generating the INCA
precipitation analysis product.

– The topography, based on digital elevation data pro-
vided by the United States Geological Survey (USGS).

– Precipitation data from about 250 semi-automatic
ground stations (Teilautomatische Wetterstationen,
TAWES), operated by the ZAMG, with an average inter-
station distance of 18 km, all of them located in Austria
and two of them in the study area. Note that more sta-
tions have been added to the INCA analysis algorithm
during the study period.

– Precipitation data from the Austrian hydrographic ser-
vice (AHYD), which were added over time.

– Radar data from five Austrian C-band radars, supple-
mented by data from weather radars of neighboring
countries. Starting from 2011, four of the Austrian
radars were replaced by new ones (see Table B1 for
more details).

INCA data are generated based on a Lambert conformal
conic projection as a coordinate system, with reference lati-
tudes 46 and 49◦ N and a central reference point at 47◦30′ N,
13◦20′ E. Steps taken to produce INCA precipitation analy-
ses are described by Haiden et al. (2011). A brief summary
of this process is given below.

1. Interpolation of station data using inverse-distance-
squared weighting. Note that there are two ZAMG sta-
tions in the study area, namely, Feldbach station (11298)
and Bad Gleichenberg (11244), which measure precip-
itation with 1 min temporal resolution. These two sta-
tions were added to this step in September 2011. Note
that the average horizontal distance between ZAMG sta-
tions is approximately 18 km for the whole of Austria.
The distance between Station 11298 and Station 1224,
however, is approximately 10 km.
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Figure 1. Location and topography of the study area and locations of WegenerNet stations.

2. Climatological scaling of the radar data using a clima-
tological scaling factor to partially correct topographic
shielding. The scaling factor is the ratio between the
multi-year, 3-monthly accumulated precipitation from
the station data and the corresponding accumulated
radar precipitation data.

3. Rescaling radar data using the latest observations: based
on the comparison of observations and radar fields at
the station locations, the fields from the last step are
rescaled again. The rescaling is a weighted average of
the ratio between the data from the radar and the nearest
rain gauge, where the weight decreases with increasing
distance, increasing difference in climatological scal-
ing, and decreasing rain at the station.

4. Final combination: the precipitation fields from steps 1
and 3 are combined into INCA fields through a weight-
ing relationship, where the weight factor decreases with
increasing climatological scaling. At the station loca-
tions, INCA is equal to the interpolated station field of
step 1. Between the stations, the weight of radar infor-
mation increases. In the areas where the radar return is
weak due to orographic shielding, the analysis reduces
to station interpolation, considering elevation effects.

Related to this study, it should be noted that the closest
radars to the study area are Zirbitzkogel (approx. 100 km)
and Rauchenwarth (approx. 140 km) (see Table B1). Consid-
ering these distances and the mountains between the study
area and radars, the minimum detection height by the radar
network in the study area is about 2000 m above the ground,
leading to detection and estimation errors. Based on Kann et
al. (2015), the ground clutter correction is the only correction
of radar data. Hence, some errors such as bright band, signal
attenuation, scan strategy, radar miscalibration, radome wet-

ting, and errors due to non-meteorological echoes may still
exist in INCA precipitation products.

The WegenerNet and INCA datasets are generated dif-
ferently regarding topography; i.e., WegenerNet is based on
a simple inverse distance weighting (IDW) method, while
INCA is generated considering the elevation effect. It should
be noted that the INCA analysis dataset is produced for the
whole of Austria. Since parts of Austria are covered by the
Alps and their topography can significantly affect the precip-
itation estimates, these effects are considered in the INCA
algorithm. However, the Feldbach region is located in a mod-
erately hilly landscape, and the difference between the high-
est and lowest altitudes is approximately 300 m. So, we do
not expect that topography can significantly affect the re-
sults in this area. Also, we did not find any systematic ef-
fect due to topography in our study (see Sect. 3.4). Haiden
et al. (2011) presented INCA analysis and nowcasting prod-
ucts. In the study, they verified these products for the whole
of Austria for a summer month and a winter month in 2009
and 2010, respectively. Kann and Haiden (2011) assessed
the INCA analysis product for four events in 2008 in four
different regions. Kann et al. (2015) used WegenerNet sta-
tion data to evaluate 5 min INCA analysis data (rapid-INCA)
for the wet season (April–September) of 2011 and four dif-
ferent heavy precipitation events. The study showed a gen-
eral underestimation in rapid-INCA during the wet season.
The rapid-INCA also underestimated the average precipita-
tion rate in three out of four events. They also showed the
roles of rain gauges and radars in rapid-INCA analysis per-
formance.

However, the purpose of this study is to evaluate the INCA
analysis product for 12 years (from 2007 to 2018) to show
the changes in the INCA performance due to the installation
of new radars and improving the INCA algorithm. Also, the
performance of INCA to estimate precipitation extremes is
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shown using 12 years of data. In addition, an event-based
approach is implemented to analyze all the individual events
during these 12 years.

3 Methodology

3.1 Data preparation

Precipitation data from 2007 to 2018 are used in this study.
After transforming WegenerNet gridded data to the Lam-
bert conformal conic projection, we used the conservative
remapping scheme (Jones, 1999) to generate 1 km gridded
fields (see Fig. B1). The conservative remapping scheme is
based on preserving water flux and has been widely used as a
remapping scheme for precipitation observations and climate
model outputs (e.g., Chen and Knutson, 2008; O’Gorman,
2012; Nikulin et al., 2012; Sillmann et al., 2013; Prein and
Gobiet, 2017; Tapiador et al., 2020; Fallah et al., 2020). We
accumulated the 5 min WegenerNet data to 15 min to have
the same temporal resolution in both datasets. As an exam-
ple, Fig. 2 shows an intense precipitation event in May 2009
in INCA and WegenerNet gridded data with 15 min temporal
resolution.

Although WegenerNet gridded data are generated from
quality-controlled station data (Kirchengast et al., 2014),
some errors may still remain in the data. The Mahalanobis
distance method – an approach to find multivariate outliers
(Ben-Gal, 2005) – was implemented to detect these possible
errors in WegenerNet gridded data. A brief explanation of
this approach can be found in Appendix A. We only found a
few grid cells that had to be treated as outliers for parts of the
measurement period (see Table A1): Station 44 is peculiar
because it is located on top of a tall building, at 55 m above
ground, and therefore suffers from stronger wind-induced
undercatch. Station 145 is another outlier, which was de-
tected by the WegenerNet team in 2015, which led to a re-
placement of its rain gauge. Since we found only a few out-
liers, it can be concluded that the operational quality control
system of WegenerNet can filter outliers reasonably well.

3.2 Approaches

We use the annual area-mean precipitation and compare it
in both datasets to gain a general overview of INCA devel-
opments and find possible systematic errors. The annual dif-
ference between the two datasets in each pixel is also calcu-
lated to portray the spatial pattern and the possible relation
to ZAMG stations’ distance. This is supported by a compar-
ison of the INCA, ZAMG station, and WegenerNet data at
the Feldbach station location (hereafter Feldbach cell). For
WegenerNet values, we used the average of the four closest
stations to the Feldbach cell (station numbers: 45, 46, 60,
and 61), since there is no WegenerNet station located in this
cell. As mentioned in Sect. 2.1, most of the precipitation oc-
curs from May until September (hereafter wet season) due to

a high proportion of convective events, and the other months
(October to April) have noticeably less precipitation (here-
after dry season). To determine possible dependencies on the
seasonality, we separately compare INCA and WegenerNet
in the wet and dry seasons, respectively.

Since the Austrian weather radars overlook events that
happen lower than about 2000 m above the ground in this re-
gion (due to radar beam blockage by the surrounding moun-
tains) and the radar data are only corrected for ground clutter,
some detection errors such as missing events and classify-
ing non-precipitation phenomena as precipitation can occur.
We implement three indices, probability of detection (POD),
false alarm ratio (FAR), and critical success index (CSI)
(Wilks, 2011), to address these errors in INCA. We calcu-
late POD and FAR indices for each grid cell, classifying them
into seven different precipitation intensities from 0.1 to 5 mm
per 15 min. We then illustrate them for each pixel in order to
analyze possible dependencies on the distance from the two
ZAMG stations.

One way to address extreme precipitation is to consider the
higher part of the intensity distribution (e.g., 99th quantile)
as a threshold and calculate the average intensity of all time
steps with higher intensities (the highest 1 %). The benefit of
using this approach is that it includes changes in all events
above the threshold (Haylock and Nicholls, 2000). We con-
sider all events equal to or more than 0.1 mm per 15 min that
happened in both datasets simultaneously and then calculate
the average intensity of the highest 1 % for each dataset.

Since event-based analysis is important for some hydro-
logical studies, such as soil erosion and runoff generation, we
separate events in each dataset and evaluate INCA’s ability
from this perspective. We use a simple threshold based on the
minimum dry period between two consecutive events (min-
imum inter-event time, MIT) to separate individual events.
This approach has been used in different studies (e.g., Brown
et al., 1985; Haile et al., 2011) to identify individual events. A
wide range of MIT values has been selected in the literature.
Choosing different MIT values leads to different character-
istics of derived events. There should be a compromise be-
tween the independency of events and intra-event variability
(Dunkerley, 2008). Since the study is affected by both con-
vective and large-scale systems, we choose the MIT value
to be 1 h and the minimum precipitation to be 0.1 mm per
15 min at any pixel. After separating events based on these
criteria for each dataset, we analyze the characteristics of
these events, such as event duration, accumulated precipita-
tion, area-average intensity, peak intensity and average num-
ber of wet cells, in both INCA and WegenerNet. Note that
the accumulated precipitation is the total amount of area-
average precipitation during an event (mm), area-average in-
tensity is the total precipitation divided by the duration of an
event (mm h−1), peak intensity is the maximum intensity at a
pixel during an event (mm per 15 min), and the average num-
ber of wet cells is the average number of cells that have more
than 0.1 mm per 15 min of precipitation during an event.
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Figure 2. A convective event on 18 May 2009 that was observed by WegenerNet in original 200 m resolution (top) and 1 km resolution
(center) and by INCA (bottom).

To study extreme convective short-duration events (ECS-
DEs) based on the events in the previous paragraph, we de-
fine an ECSDE as having three characteristics: (1) the area-
average intensity is more than the 95th quantile of Wegener-
Net intensities, (2) the duration is less than 4 h, and (3) a cov-
erage of less than 2/3 of the study area. We evaluate INCA’s
performance in these events with a focus on the spatial char-
acteristics of four ECSDEs in both datasets along with the
area-mean and peak intensities.

3.3 Comparison metrics

Error metrics have been widely used in many different disci-
plines, such as hydrology and hydrometeorology, to quan-
tify model result accuracies or compare observations and
forecasts. Each metric has its own strengths and weaknesses
and quantifies a different aspect of the model performance.
Hence, using multiple metrics for the comparison is more
desirable (Jackson et al., 2019). We use four common met-
rics, bias, relative difference (RD), root mean square er-
ror (RMSE), and correlation coefficient (CC), for compar-
ing INCA precipitation estimates with WegenerNet. These
indices are computed according to Eqs. (1) to (4) in Table 1
below.

Additionally, in order to evaluate INCA’s ability to detect
precipitation, we analyzed three categorical indices, POD,
FAR, and CSI, based on the equations in Table 2 below.

3.4 The effect of topography

To check the topography effect, we try two approaches. First,
we check whether there is a meaningful relationship be-
tween altitude and precipitation using WegenerNet station
data. The highest and lowest stations’ altitudes are 257 and
520 m, respectively. The median is 327 m, and only two sta-
tions are located above 400 m (Fuchsberger et al., 2021b).
Figure B2 shows the annual precipitation for each station
and its corresponding altitude. Note that the annual precipita-
tion is calculated using the average of annual data from 2007
to 2018 for each station. As can be seen, there is no notice-
able trend regarding the effect of topography. It is worth men-
tioning that the stations with annual precipitation lower than
750 mm yr−1 are stations 44, 151, and 145. As discussed in
Sect. 3.1, these stations tend to systematically underestimate
precipitation.

In another approach we choose a non-convective event
in both INCA and WegenerNet datasets and check whether
there is a relationship between altitude and the difference
between these two datasets. Based on the individual events
(Sect. 3.2), we select an event where more than 300 cells
are wet cells (on average) and the duration of the event is
more than 4 h. Based on these criteria, we select an event
on 11 October 2015. Then, we choose the highest altitude
point (x = 11, y = 4) and the lowest point in the Raab Valley
(x = 21, y = 9) in the gridded data. After that, we calculate
the difference between INCA and WegenerNet for both of
these points. In addition, we consider the spatial average of
differences between INCA and WegenerNet. Similarly to the
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Table 1. Comparison indices used in this study and their equations (partly adopted from Jackson et al., 2019).

Number Name Equation Range Notes

(1) Bias Bias= 1
N

N∑
i=1

RRi −WRi −∞ to +∞ Closer to 0 indicates

better performance

(2) Relative RD=

N∑
i=1

(RRi−WRi )

N∑
i=1

WRi

× 100 −∞ to +∞ Closer to 0 indicates

difference better performance

(3) Root mean RMSE=

√
N∑

i=1

(RRi−WRi )
2

N
0 to +∞ Closer to 0 indicates

square error better performance

(4) Correlation CC=

N∑
i=1

(
RRi−RR

)(
WRi−WR

)
√

N∑
i=0

(
RRi−RR

)2√ N∑
i=0

(
WRi−WR

)2 −1 to +1 Closer to 1 indicates

coefficient better performance

RR and WR indicate the precipitation estimates by INCA and by WegenerNet, respectively; i is the index of the time step, N is the number
of time steps and the top bar shows the average over time.

Table 2. Detection indices used in this study and their equations.

Number Name Equation Range Note

(5) POD POD= a
a+c 0 to 1 1 indicates the best performance

of precipitation detection

(6) FAR FAR= b
a+b

0 to 1 0 indicates the best performance
of precipitation detection

(7) CSI CSI= a
a+b+c

0 to 1 1 indicates the best performance
of precipitation detection, a
combination of POD and FAR

a is the number of events that both datasets could capture, b is the number of false events detected by
INCA, and c is the number of missed events.

first approach, no trend was found due to the topography of
the study area, which can affect our analysis (not shown).

4 Results and discussion

4.1 Annual precipitation

The area mean of annual precipitation in INCA and We-
generNet datasets and the average of WegenerNet stations
are shown in Fig. 3a. The annual average of precipitation
in the 12 years from 2007 to 2018 is 979 mm in INCA and
881 mm in WegenerNet. Overall, INCA area-mean values ex-
ceed WegenerNet values, with an average relative difference
of 11 %. The only year that INCA underestimates precipita-
tion is 2009, a year with particularly high precipitation: at
the long-term ZAMG station Bad Gleichenberg, it was the

wettest year since 1937. From 2012 to 2014, the overestima-
tion by INCA is even larger, with an average relative differ-
ence of 24.5 %. It is worth noting here that the difference be-
tween the average precipitation of WegenerNet stations and
the area-mean gridded data is negligible (0.15 % on average).

Annual precipitation in the Feldbach cell is shown in
Fig. 3b. Similarly to the annual area-mean value, INCA
also overestimates precipitation in this cell but to a smaller
amount, with an average relative difference of 3 %. In this
cell, from 2007 until 2014, INCA overestimated precipita-
tion with an average of about 5 % and a maximum of 13 %
in 2012. Starting from 2015, INCA tends to underestimate
precipitation by an average of 1.3 % and a maximum of 2.8 %
in 2016. Compared to the annual-mean values, INCA per-
forms better in this cell, indicating the importance of the
rescaling step (step 3 in Sect. 2.2) in the INCA estimates.
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Figure 3. (a) Annual area-mean precipitation. (b) Annual precipitation for ZAMG Station 11298 (Feldbach) and its corresponding cell.

Figure 4. Annual relative difference between INCA and WegenerNet in each pixel. The black dots indicate the two ZAMG stations in the
study area.

Also, INCA values are consistently higher than those of the
ZAMG station Feldbach, with an average of 7 %. As shown
in Fig. 3b, INCA has considerably higher values than the
Feldbach station in 2012 and 2013, with a relative difference
of 21 % and 17 %, respectively. It is worth mentioning that
the Feldbach station has lower values than WegenerNet ex-
cept for 2007, 2009, and 2010. Based on these results, we
can conclude that using the merged radar-gauge data leads to
more accurate estimates than individual ZAMG station data,
even at the ZAMG station location. Furthermore, and simi-
larly to Fig. 3b, we show the annual precipitation in the cell
where station Bad Gleichenberg is located (Fig. B3). Com-
pared to station Feldbach, the difference between INCA and
WegenerNet is higher, which could be due to the weight of
this station in step 1 (see Sect. 2.2).

Figure 4 shows annual maps of the relative differences be-
tween INCA and WegenerNet. Similarly to Fig. 3, there is a
considerable overestimation in INCA from 2012 to 2014, es-
pecially in the cells that are far from ZAMG stations. Since

there was a replacement period of the Austrian radars (start-
ing in October 2011, details in Table B1) and since the clos-
est radar (Zirbitzkogel) was off during two periods of time
(June 2012–October 2012 and February 2013–March 2013),
we interpret this overestimation as an error of the radar data.
This error was partly removed close to the ZAMG stations
by step 4 of the INCA data preparation (see Sect. 2.2).

As shown in Fig. 4, the INCA performance can be di-
vided into three different periods: 2007–2011, 2012–2014,
and 2015–2018. From 2007 to 2011, INCA generally overes-
timated precipitation, except for 2009. In general, the annual
area-mean differences differ between −3.9 % and +4.3 %,
with an average of 1.9 % in this period. In addition, there
was no specific pattern close to the two ZAMG stations since
these stations were added to the INCA algorithm in Septem-
ber 2011. Although the relative differences of area-mean val-
ues are positive in this period except 2009, INCA underesti-
mates precipitation in some cells.
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From 2012 to 2014, INCA considerably overestimated
precipitation in almost all grid cells, and the annual area-
mean difference rose to almost 29 % in 2013. As shown, rel-
ative differences are lower at the cells closer to ZAMG sta-
tions, especially around the Feldbach station. We interpret
this increase in overestimation as an error, introduced by the
new radar, which was partly removed by the calibration with
ZAMG station data.

From 2015 to the end of 2018, the overestimation by
INCA was still predominant. The overestimation, however,
is smaller compared to the previous period. Nevertheless,
annual-mean differences are almost always positive, with
typical values between +11 % and +15 % and an average of
+12.5 %. This overestimation is smaller in the grid cells near
the two ZAMG stations, indicating again the role of these sta-
tions in adjusting radar data in the INCA algorithm.

Note that we also calculate RMSE for the annual precip-
itation (see Fig. B4). There is no noticeable spatial pattern
in the first period, and the minimum and maximum of area-
mean annual RMSE are 45.0 and 57.5 mm, respectively. This
error is considerably higher in the second period, with a min-
imum and maximum of 191.0 and 278.0 mm, respectively.
In this period, RMSE is lower close to the Feldbach station
(just like the relative difference in Fig. 4). Similarly to the
relative difference, the area-mean annual RMSE decreases in
the 2015–2018 period. For this period, the minimum RMSE
is 92.6 mm in 2015 and the maximum RMSE is 124.1 mm
in 2018.

As mentioned before, more stations were added to the
INCA algorithm during the years. To study possible changes
in INCA estimates after adding these stations, the raw radar
data used in INCA should be included in future analyses.

4.2 Precipitation detection

Figure 5 shows POD and FAR values for different thresholds
for each cell for the three different time periods identified
above. The dashed black and solid black lines indicate POD
and FAR for the Feldbach cell. As can be seen, INCA’s abil-
ity to detect precipitation decreases at higher intensities. The
change in POD and FAR in the Feldbach cell is different. At
thresholds lower than 0.5 mm per 15 min, it has lower POD
than other cells, especially since 2012. The FAR value per-
forms better compared to other cells at lower thresholds. This
could be due to the INCA algorithm for removing false pre-
cipitation events, which unintentionally removes some light
precipitation events.

Generally, INCA has the highest POD values at a threshold
of 0.1 mm per 15 min. With increasing precipitation inten-
sity, POD tends to decrease. The FAR values also have the
best performance at 0.1 mm per 15 min and start to increase
with higher intensities. When longer time intervals (e.g., 1,
3, and 6 h) are considered, the detection errors decrease (not
shown).

Figure 5. POD and FAR values based on different thresholds for
each cell for 2007–2011 (a), 2012–2014 (b), and 2015–2018 (c).
Note that the dashed black and black lines indicate POD and FAR
for the Feldbach cell, respectively.

Figure 6 shows POD and FAR for each grid cell based on
the 0.1 mm per 15 min threshold for the three periods, sep-
arated into wet and dry seasons. The FAR performs better
in the grid cells near the two ZAMG stations. POD, however,
has lower values in those cells. As previously mentioned, this
may be due to the INCA algorithm, which unintentionally
removes some light events. The ability of INCA in detecting
precipitation is noticeably higher in wet seasons.

We also calculated CSI for each cell (Fig. B5). Since
CSI is a combination of POD and FAR, its behavior is a
combination of POD and FAR; i.e., CSI performs better
during the wet season. CSI values are higher in the third
period (2015–2018) for the dry seasons. Since the weight
of the radar estimate becomes higher with increasing dis-
tance from the ZAMG stations in the INCA algorithm (see
Sect. 2.2), we conclude that the radar detected some precip-
itation events, which were not observed by ground stations.
Since the radar sees precipitation in the study area only be-
yond about 2000 m above the ground and some errors are not
corrected (see Sect. 2.2), “false events” can be due to events
that do not reach the ground due to evaporation or due to non-
precipitating phenomena. The latter error can explain higher
FAR values in the cells with longer distances from ZAMG
stations.

4.3 Seasonal comparison

Figure 7 displays the mean relative differences between
INCA and WegenerNet in the wet (May–September) and
dry (October–April) seasons for the three periods. In con-
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Figure 6. POD and FAR for 15 min data based on the 0.1 mm threshold for three different periods of time for wet (a) and dry (b) seasons.
The black dots indicate the two ZAMG stations.

Figure 7. Mean relative difference between INCA and WegenerNet
for 2007–2011 (left), 2012–2014 (center) and 2015–2018 (right) in
dry (a) and wet (b) seasons. Note that only events equal to or more
than 0.1 mm per 15 min were considered.

trast to the relative differences in Fig. 4, these differences
were calculated for events with precipitation of equal to or
more than 0.1 mm per 15 min that happened in both datasets.
The 0.1 mm threshold is implemented due to the resolution
of the tipping bucket gauges used in WegenerNet. In the first
period, both overestimation and underestimation can be de-
tected in INCA grid cells. Starting in 2012, overestimation is
dominant in most INCA grid cells, similarly to annual pre-
cipitation. This overestimation is higher in the wet seasons
and grid cells farther away from the two ZAMG stations.
We can conclude that the new radar settings (cf. Sect. 2.2)
tend to overestimate precipitation and that the INCA algo-

rithm works reasonably well closer to the two ZAMG sta-
tions. However, the overestimation farther away from those
stations is still considerably large. The higher relative dif-
ference in wet seasons is an indication of difficulties in the
radar network to estimate intense rainfall events. Consider-
ing RMSE, the pattern is similar to the relative difference
(not shown).

Furthermore, we calculate the temporal correlation coef-
ficient between INCA and WegenerNet (Fig. B6). Based on
these results, the correlation is noticeably lower in the wet
seasons. We interpret this as a consequence of a higher per-
centage of convective events, which are harder to capture.
Similarly to the relative difference, INCA performs better in
the cells close to the ZAMG stations in the wet seasons.

4.4 Extreme precipitation

In this section, we compare extreme events in INCA and We-
generNet based on the different seasons for the three periods.
Note that the 99th quantile was calculated for time steps with
precipitation equal to or more than 0.1 mm per 15 min, which
happened in both datasets (see Sect. 3.2). Figure 8 shows the
mean values of all time steps exceeding the 99th quantile in
each pixel for both datasets and the relative differences in wet
and dry seasons.

From 2007 to 2011, INCA tends to overestimate extreme
precipitation in cells close to the two ZAMG stations and
underestimated it in the other parts of the study area, simi-
larly to the mean seasonal values (see Fig. 7). Compared to
the mean seasonal values, underestimation is larger in ex-
treme precipitation, especially in the dry season. The maxi-
mum and minimum differences in this period are 26 % and
−45 %, respectively. It is worth mentioning that the spatio-
temporal evolution of extremes is not particularly well cap-
tured by INCA (cf. Fig. 2).
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Figure 8. Spatial patterns and relative difference of the mean of all time steps exceeding the 99th quantile for INCA and WegenerNet for
(a) wet and (b) dry seasons in the first (left), second (middle), and third (right) periods.

Between 2012 and 2014, an overestimation of INCA in
the corresponding cells of ZAMG stations is also notice-
able, particularly in the wet season. In contrast to annual and
mean-seasonal values, there is no relationship between dis-
tance from ZAMG stations and the relative difference. In the
dry season, INCA shows less underestimation than in the first
period. The maximum and minimum differences in this pe-
riod are 101 % and −36 %, respectively. For wet seasons in
the 2015–2018 period, the behavior was relatively similar to
the second period, with a decrease in overestimation. In this
period, the maximum and minimum differences are 44 % and
−29 %, respectively. Based on these results, the overestima-
tion of INCA is larger in extremes, especially in the wet sea-
sons.

4.5 Event-based evaluation

In this section, we consider individual events, and based on
the criteria we described in Sect. 3.2, we identified 4699 sep-
arate events in INCA and 5116 in WegenerNet over 12 years.
The number of events in different seasons is shown in Fig. 9.
Similarly to Sect. 4.2, the number of detected events in INCA
is lower in the dry seasons. Note that the number of dry-
season events can be slightly biased in WegenerNet, due to
snowfall events, which can get recorded twice: once when
the snow is measured by heated rain gauges and again when
the snow melts at the unheated gauges. In general, snow-
fall events in the region are rare (cf. Sect. 2.1); thus, we do
not expect them to have significant influence in metrics other
than the number of events. Another effect on the number of
dry season events is that the radars tend to miss precipita-
tion more often in winter due to beam blockage by surround-
ing mountains (cf. Sect. 2.2), especially for low-lying clouds,
which are often present in the dry season.

Table 3 describes the statistics of separate events in both
INCA and WegenerNet. Note that the accumulated precipita-

Figure 9. Number of events in different seasons in both datasets.

tion and precipitation rate are based on the area-mean value
in each time step. The peak intensity, however, is the maxi-
mum value that happened in one cell during an event.

Based on Table 3, the average accumulated precipitation
and the precipitation rate measured by INCA are higher than
WegenerNet. Similarly, the average number of wet cells is
higher in INCA, which can affect the accumulated precipita-
tion. The difference between the average number of wet cells
in INCA and WegenerNet is higher in the dry season. This
could be due to a slightly lower effective resolution of INCA
in the study area, where the radar beam of the nearest radar
is already comparatively wide. While the average duration of
events only differs by 3 min, the difference increases signifi-
cantly for longer events.

To check a possible time shift in INCA, we consider events
that fulfill the following conditions: (1) the absolute differ-
ence between the starting time of an event in INCA and We-
generNet is less than 1 h and (2) the absolute difference be-
tween the ending time of an event in INCA and WegenerNet
is less than 1 h. Based on these criteria, INCA started earlier
to detect precipitation in 34 % of these events with an average
of 25 min. Both datasets started at the same time for 35 % of
the events, and for the rest (31 %), INCA started later by an
average of 23 min. For the ending of an event, 54 % of events
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Table 3. Descriptive statistics for separate events in INCA and WegenerNet based on the 1 h interval (based on definitions in Sect. 3.2).

Accumulated Area-average Average number of Peak intensity
Duration (min) precipitation (mm) intensity (mm h−1) wet cells (mm 15 min−1)

INCA WegN INCA WegN INCA WegN INCA WegN INCA WegN

Mean 172 175 2.28 1.90 0.37 0.25 63 41 1.67 1.54
25 % 15 15 0.006 0.001 0.01 0.002 8 2 0.16 0.13
50 % (median) 75 60 0.07 0.01 0.06 0.01 28 8 0.34 0.23
99 % 1305 1665 32.13 29.18 3.76 2.7 288 241 20.99 18.30
Max 2460 4065 101.63 105.86 13.31 9.30 330 313 46.17 35.04

Figure 10. Monthly mean of the peak (mm per 15 min) for each event for WegenerNet and INCA.

end later in INCA by an average of 24 min, and 20 % end ear-
lier by an average of 26 min. Note that starting/ending time
is considered within 15 min since the temporal resolution is
15 min.

To separate the errors associated with time shift from er-
rors related to intensity, we focus only on those events that
happened at the same time in both datasets, and we found
2949 events. Similar to the results in Table 3, the accumu-
lated precipitation is higher in INCA, and the bias value is
0.14 mm 15 min−1. Although INCA overestimates accumu-
lated precipitation most of the time, the peak intensity is
slightly higher in WegenerNet except during July. The over-
all bias for peak intensity is −0.04 mm 15 min−1.

We also studied the time of the peak intensity in both
datasets and found that the peak happens during the first half
of the event duration. Also, in the majority of events, the
peak intensity in INCA happens slightly later (approximately
5 min) than in WegenerNet.

The monthly average of the peak intensity is shown in
Fig. 10. INCA generally underestimates the precipitation
peaks in the first period but generally overestimates them
from mid-2012 onwards. This behavior is likely due to the
change in the radar network in 2012. There is a noticeable
peak-intensity overestimation in mid-2013. In contrast to the
mean precipitation (see Figs. 3a and 4), the differences in
peak intensity between INCA and WegenerNet decreased
significantly in 2018.

4.5.1 Extreme convective short-duration events

Based on these events and the criteria described in Sect. 3,
there are 62 ECSDEs detected by WegenerNet during the 12-
year study period. Among these 62 events, 47 are detected by
INCA. The same underestimation pattern before 2012 and
overestimation afterward (see Fig. 10) can be seen in accu-
mulated precipitation and peak intensity. The highest under-
estimation of accumulated precipitation happened in 2009
(up to 40 %). For the peak intensity, INCA underestimates
it by up to 60 % in 2008 and overestimates it by approxi-
mately 65 % in 2015. The results are similar to the extremes
in Sect. 4.4.

To check the ECSDE’s spatial patterns in both datasets,
we focus on four examples of these events. As shown in
Fig. 3a and discussed in Sect. 4.1, the precipitation amount
was considerably higher in 2009. We choose the first ECSDE
from this year, which has the highest peak intensity in 2009.
The second event in 2011 is special because INCA over-
estimated accumulated precipitation but underestimated the
peak intensity. The third and fourth events are selected from
the third period (2015–2018) with different characteristics to
show INCA’s performance based on the latest improvements.
The third event has the highest maximum intensity in INCA,
and the fourth event’s peak intensity is highest in this pe-
riod (2015–2018).
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Figure 11. Time series of area-mean and maximum values in INCA and WegenerNet for the event on 18 May 2009.

Figure 12. An event on 1 September 2011 in WegenerNet (top) and INCA (center) and time series of area-mean and maximum values in
INCA and WegenerNet (bottom).

Event on 18 May 2009

In Fig. 2, we already showed the difference in the spatial
structure of this extreme event on 18 May 2009, in both
INCA and WegenerNet. Based on WegenerNet data, the ac-
cumulated rainfall over the entire study area was 23.7 mm in
2 h, but the accumulated rainfall that happened in the wettest
cell was 46.6 mm. As shown in Fig. 11, WegenerNet detected
two peaks for this event at 20:45 and 21:15 CET (central Eu-
ropean time). In INCA, however, the two peaks happened at
21:00 and 22:00 CET. It is worth mentioning that the location
of the peak(s) is also different in INCA (see Fig. 2). The area
mean of rainfall shows a time shift in INCA of 30 min. In

addition, rainfall starts and ends earlier in INCA, and INCA
has more wet cells during this event.

Event on 1 September 2011

During this event, an areal average of 27.6 mm fell in 3.25 h
(50 mm in the wettest cell). There is a time shift in the peak
intensity and area-average rainfall. In contrast to the event
in 2009, the peak intensity happened one time step earlier in
INCA. The differences between INCA and WegenerNet val-
ues are smaller than in the previous event. As can be seen
in Fig. 12, INCA starts to detect earlier and finishes later
than WegenerNet, and INCA has more wet cells. Compar-
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Figure 13. An event on 16 August 2016 in WegenerNet (top) and INCA (center) and time series of maximum and area-mean values in INCA
and WegenerNet (bottom).

ing these results with those by Kann et al. (2015), we see
that the 15 min INCA precipitation analysis performs better
than 5 min rapid-INCA. The time shift in detection was also
observed in rapid-INCA, caused by radar data.

Event on 16 August 2016

Based on WegenerNet data, the areal average of the to-
tal amount of rainfall was 19.4 mm, which fell in 2.25 h
(36.5 mm in the wettest cell). INCA overestimated the event
peak by about 40 % in this event. Similarly to the event
in 2009, there is a time lag in INCA’s detection of the rain-
fall peak (Fig. 13). The highest value of the area-mean rain-
fall happened at 21:30 CET in both datasets. This event starts
earlier and finishes later in INCA, with more wet cells in We-
generNet.

Event on 15 July 2018

The areal average of accumulated rain was just 10.8 mm that
fell in 2.5 h. However, the accumulated rain in the wettest
cell was 59.6 mm in this event. INCA detected the peak in-
tensity one time step later and had lower values than Wegen-
erNet. The maximum value of rainfall in this event happened
at 14:00 CET in WegenerNet, and INCA significantly under-
estimates this value (Fig. 14). It is worth mentioning that the

location of the maximum value is far from the two ZAMG
stations. This event starts and ends earlier in INCA with a
higher number of wet cells.

INCA detects the peak intensity later than WegenerNet,
except for the event on 1 September 2011. INCA underes-
timates the peak intensity in two events (2009 and 2018)
and overestimates this value in the 2016 event. The overes-
timation and underestimation are more pronounced for peak
intensities than for area-mean values. These error and time
shifts in detection may affect the performance of flood warn-
ing systems.

Compared to the rapid-INCA product (Kann et al., 2015),
the INCA analysis product performs similarly in 2011, i.e.,
underestimates precipitation in most cells in the wet season.
The IMERG products (O et al., 2017) underestimate heavy
precipitation during 2014–2015 in the study area. One should
note that this comparison may not be entirely reliable since
the temporal and spatial resolutions of IMERG products are
coarser than INCA analysis products. In general, the INCA
analysis product can be used for different hydrological pur-
poses, considering it is a real-time operational product with
high temporal and spatial resolution. Also, the results show
that improvements in the INCA analysis product are taking
place. It should be noted that INCA precipitation products
have a high spatial and temporal resolution, and some errors
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Figure 14. An event on 15 July 2018 in WegenerNet (top) and INCA (center) and time series of maximum and areal mean values in INCA
and WegenerNet (bottom).

such as wind drift become more pronounced in higher reso-
lutions. Also, the height that radars can detect precipitation
increases with the range from the radar site, which can signif-
icantly impact the accuracy of the radar estimates (Harrison
et al., 2009). Since the closest radar sees precipitation only
above 2000 m from the ground, this can be the main source
of uncertainty in detection and estimation of precipitation in
the INCA analysis products over the study area. Addition-
ally, there are some sources of uncertainties in the Wegen-
erNet products, such as unheated sensors, wind effects, and
the interpolation of data that may have negative effects on the
quality of the WegenerNet gridded dataset.

5 Conclusions

The evaluation of precipitation estimates helps to improve
the understanding of errors and uncertainties from different
sources (e.g., systematic errors, random errors, and spatio-
temporal dependency). In this study, we evaluated INCA (In-
tegrated Nowcasting through Comprehensive Analysis) pre-
cipitation analysis products of the ZAMG (the Austrian Cen-
tral Institute for Meteorology and Geodynamics), using We-
generNet high-resolution gridded data from 2007 to 2018 in
southeastern Austria. First, we compared annual precipita-
tion estimates of INCA and WegenerNet for each pixel and

the area-mean values. In general, INCA overestimates the
area-mean annual precipitation except in 2009, which was
a particularly wet year. The performance of INCA can be di-
vided into three different periods: from 2007 to 2011, both
overestimation and underestimation are observed in INCA,
with more pronounced underestimation in the wet season.
Starting in 2012, INCA considerably overestimates precip-
itation by up to 60 %. However, this overestimation is less
pronounced close to the Feldbach station. Since the weight
of the gauge estimation decreases with increasing distance
from the gauge, we concluded that this increase in the overes-
timation is a result of systematic errors from newly installed
radars and can be partly removed closer to the gauges. Start-
ing in 2015, this spatial pattern continues but with a lower
overestimation compared to the second period.

We used categorical metrics to study the ability of INCA in
detecting precipitation. Generally, the number of false events
is smaller in the cells closer to ground stations operated by
the ZAMG (which are used as input for INCA), especially
in the wet season. Surprisingly, the number of true events
close to the ZAMG stations is comparably smaller too. This
could be because the INCA algorithm removes false precipi-
tation events and unintentionally removes some light precip-
itation events. We evaluated extremes during these three pe-
riods and for wet and dry seasons. In the first period, INCA
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overestimates precipitation in cells close to the ZAMG sta-
tions and underestimates it in other cells, especially during
the wet season. This overestimation is more noticeable and
dominates most of the study area in the wet season from 2012
until 2014. However, for the dry seasons in this period, un-
derestimation by INCA is dominant. For the third period, the
pattern for the wet seasons is similar, but INCA tends to over-
estimate extremes during the dry seasons.

We also considered individual events in both datasets and
analyzed their characteristics. Based on these results, INCA
tends to underestimate the peak precipitation intensity of the
events until mid-2012 and overestimates it afterward. The
largest overestimation of the peak intensity happened in July.
Generally, the precipitation rate is higher in INCA, and there
is a time shift for event detection in INCA. Based on our
results, INCA starts to detect precipitation earlier than We-
generNet in 34 % of the events and ends up detecting it later
than WegenerNet in 54 % of the events. Considering four ex-
amples of extreme short-duration convective events, there is
a time shift in detecting the peak intensity in INCA. In these
events, the peak intensity bias is considerably larger than in
all events. INCA has been improving in detecting and esti-
mating precipitation, and the errors of the new radars have
been decreasing since 2015. However, there are errors due
to radar estimates (e.g., radar detection height) and the al-
gorithm for merging radar and rain gauges, which can neg-
atively affect the INCA analysis product. In addition, it is
shown that gauges are crucial for correcting some errors due
to radar estimates. To study the impact of extreme short-
duration events, careful consideration must be taken when
using merged rain-gauge–radar products. Generally, we ex-
pect that these results will be representative of other areas
with the similar topography and climatology (moderately
hilly terrain and convective dominance in summer).

Suggestions for future studies

For future studies, it is suggested to include the raw radar
data used in INCA in the analysis to separate errors due to
radar estimates. Also, we suggest using the results of this
study to consider high-impact events and analyze the effects
of INCA uncertainties on risk management. In addition, the
relation between wind speed and precipitation estimates in
both gauges and radars needs to be considered separately.
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Appendix A

The Mahalanobis distance in matrix notation is calculated by
the formula below:

D2
= [x−m]T C−1

[x−m], (A1)

where x is a data vector, m is the multivariate mean, and C is
the estimated data covariance matrix (Filzmoser, 2016). Af-
ter calculating Mahalanobis distance for each year, we com-
pute the 99th quantile of the chi-square distribution with 2◦

of freedom. Based on this, cells that have Mahalanobis dis-
tances above 13.8 are considered outliers. The numbers and
locations of these outliers are shown in Table A1.

The cell with the coordinates (x = 7, y = 10) underesti-
mated rainfall and was considered an outlier in 2010. This
cell is the corresponding cell of station 44, which is located
on the top of a tall building. Furthermore, the cell with the
coordinates (x = 11, y = 0) underestimated rainfall and was
considered an outlier in 2011. This cell refers to Station 145.
Starting from 2015, the Mahalanobis values for this cell were
below the threshold, which is the year when the station has
been replaced.

Table A1. The numbers and locations of WegenerNet outliers based
on the Mahalanobis approach.

Year Number of outliers Locations (x, y)

2007 1 (15, 0)
2010 2 (7, 10) (6, 10)
2011 2 (11, 0) (1, 5)
2015 1 (1, 14)
2017 1 (1, 5)
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Appendix B

Table B1. Locations and distances of the Austrian radars from the Feldbach station (Station 11298).

Name Longitude Latitude Height of Radar Distance
antenna replacement from

(m a.m.s.l.) date Feldbach
station
(km)

Rauchenwarth 48.076 16.535 224 Oct 2011 140
Zirbitzkogel 47.072 14.560 2372 Oct 2012 101
Patscherkofel 47.209 11.461 2254 Nov 2013 337
Feldkirchen 48.065 13.062 581 Oct 2011 245
Valluga 47.158 10.213 2824 – 431

Figure B1. Locations of WegenerNet stations (black circles) and ZAMG stations (green circles), WegenerNet original (red cells), and after
the transforming–regridding process (blue cells).

Figure B2. Annual precipitation for each WegenerNet station and its corresponding altitude.
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Figure B3. Annual precipitation for ZAMG Station 11244 (Bad Gleichenberg) and its corresponding cell.

Figure B4. Annual RMSE in each pixel. The black circles indicate the two ZAMG stations in the study area.

Figure B5. The CSI values for 2007–2011 (left), 2012–2014 (center), and 2015–2018 (right) in wet (a) and dry (b) seasons. Note that only
events equal to or more than 0.1 mm per 15 min were considered. The black circles indicate the two ZAMG stations in the study area.
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Figure B6. Correlation coefficient between INCA and WegenerNet for 2007–2011 (left), 2012–2014 (center), and 2015–2018 (right) in
wet (a) and dry (b) seasons. The black circles indicate the two ZAMG stations in the study area.
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