Articles | Volume 25, issue 1
https://doi.org/10.5194/hess-25-41-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-41-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Developing a hydrological monitoring and sub-seasonal to seasonal forecasting system for South and Southeast Asian river basins
Yifan Zhou
Department of Earth and Planetary Sciences, Johns Hopkins University,
Baltimore, Maryland, USA
Benjamin F. Zaitchik
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, Johns Hopkins University,
Baltimore, Maryland, USA
Sujay V. Kumar
Hydrological Sciences Laboratory, NASA Goddard Space Flight Center,
Greenbelt, Maryland, USA
Kristi R. Arsenault
Hydrological Sciences Laboratory, NASA Goddard Space Flight Center,
Greenbelt, Maryland, USA
Science Applications International Corporation, Reston, Virginia, USA
Mir A. Matin
International Centre for Integrated Mountain Development, Kathmandu,
Nepal
Faisal M. Qamer
International Centre for Integrated Mountain Development, Kathmandu,
Nepal
Ryan A. Zamora
Department of Earth and Planetary Sciences, Johns Hopkins University,
Baltimore, Maryland, USA
Kiran Shakya
International Centre for Integrated Mountain Development, Kathmandu,
Nepal
Related authors
No articles found.
Louise Busschaert, Michel Bechtold, Sara Modanesi, Christian Massari, Dirk Raes, Sujay V. Kumar, and Gabriëlle J. M. De Lannoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2550, https://doi.org/10.5194/egusphere-2025-2550, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study estimates irrigation in the Po Valley using AquaCrop and Noah-MP models with sprinkler irrigation. Noah-MP shows higher annual rates than AquaCrop due to more water losses. After adjusting, both align with reported irrigation ranges (500–600 mm/yr). Soil moisture estimates from both models match satellite data, though both have limitations in vegetation and evapotranspiration modeling. The study emphasizes the need for observations to improve irrigation estimates.
Cenlin He, Tzu-Shun Lin, David M. Mocko, Ronnie Abolafia-Rosenzweig, Jerry W. Wegiel, and Sujay V. Kumar
EGUsphere, https://doi.org/10.5194/egusphere-2024-4176, https://doi.org/10.5194/egusphere-2024-4176, 2025
Short summary
Short summary
This study integrates the refactored community Noah-MP version 5.0 model with the NASA Land Information System (LIS) version 7.5.2 to streamline the synchronization, development, and maintenance of Noah-MP within LIS and to enhance their interoperability and applicability. The model benchmarking and evaluation results reveal key model strengths and weaknesses in simulating land surface quantities and show implications for future model improvements.
Min Huang, Gregory R. Carmichael, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph
Atmos. Chem. Phys., 25, 1449–1476, https://doi.org/10.5194/acp-25-1449-2025, https://doi.org/10.5194/acp-25-1449-2025, 2025
Short summary
Short summary
We use model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutant budgets in this area as local anthropogenic emissions drop.
Peyman Abbaszadeh, Fadji Zaouna Maina, Chen Yang, Dan Rosen, Sujay Kumar, Matthew Rodell, and Reed Maxwell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-280, https://doi.org/10.5194/hess-2024-280, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
To manage Earth's water resources effectively amid climate change, it's crucial to understand both surface and groundwater processes. We developed a new modeling system that combines two advanced tools, ParFlow and LIS/Noah-MP, to better simulate both land surface and groundwater interactions. By testing this integrated model in the Upper Colorado River Basin, we found it improves predictions of hydrologic processes, especially in complex terrains.
Louise Busschaert, Michel Bechtold, Sara Modanesi, Christian Massari, Dirk Raes, Sujay V. Kumar, and Gabrielle J. M. De Lannoy
EGUsphere, https://doi.org/10.2139/ssrn.4974019, https://doi.org/10.2139/ssrn.4974019, 2024
Preprint archived
Short summary
Short summary
This study estimates irrigation in the Po Valley using AquaCrop and Noah-MP models with sprinkler irrigation. Noah-MP shows higher annual rates than AquaCrop due to more water losses. After adjusting, both align with reported irrigation ranges (500–600 mm/yr). Soil moisture estimates from both models match satellite data, though both have limitations in vegetation and evapotranspiration modeling. The study emphasizes the need for observations to improve irrigation estimates.
Justin M. Pflug, Melissa L. Wrzesien, Sujay V. Kumar, Eunsang Cho, Kristi R. Arsenault, Paul R. Houser, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 28, 631–648, https://doi.org/10.5194/hess-28-631-2024, https://doi.org/10.5194/hess-28-631-2024, 2024
Short summary
Short summary
Estimates of 250 m of snow water equivalent in the western USA and Canada are improved by assimilating observations representative of a snow-focused satellite mission with a land surface model. Here, by including a gap-filling strategy, snow estimates could be improved in forested regions where remote sensing is challenging. This approach improved estimates of winter maximum snow water volume to within 4 %, on average, with persistent improvements to both spring snow and runoff in many regions.
Eunsang Cho, Yonghwan Kwon, Sujay V. Kumar, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 27, 4039–4056, https://doi.org/10.5194/hess-27-4039-2023, https://doi.org/10.5194/hess-27-4039-2023, 2023
Short summary
Short summary
An airborne gamma-ray remote-sensing technique provides reliable snow water equivalent (SWE) in a forested area where remote-sensing techniques (e.g., passive microwave) typically have large uncertainties. Here, we explore the utility of assimilating the gamma snow data into a land surface model to improve the modeled SWE estimates in the northeastern US. Results provide new insights into utilizing the gamma SWE data for enhanced land surface model simulations in forested environments.
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, and Rhae Sung Kim
The Cryosphere, 17, 3915–3931, https://doi.org/10.5194/tc-17-3915-2023, https://doi.org/10.5194/tc-17-3915-2023, 2023
Short summary
Short summary
As a future snow mission concept, active microwave sensors have the potential to measure snow water equivalent (SWE) in deep snowpack and forested environments. We used a modeling and data assimilation approach (a so-called observing system simulation experiment) to quantify the usefulness of active microwave-based SWE retrievals over western Colorado. We found that active microwave sensors with a mature retrieval algorithm can improve SWE simulations by about 20 % in the mountainous domain.
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, Rhae Sung Kim, and Jennifer M. Jacobs
Hydrol. Earth Syst. Sci., 26, 5721–5735, https://doi.org/10.5194/hess-26-5721-2022, https://doi.org/10.5194/hess-26-5721-2022, 2022
Short summary
Short summary
While land surface models are a common approach for estimating macroscale snow water equivalent (SWE), the SWE accuracy is often limited by uncertainties in model physics and forcing inputs. In this study, we found large underestimations of modeled SWE compared to observations. Precipitation forcings and melting physics limitations dominantly contribute to the SWE underestimations. Results provide insights into prioritizing strategies to improve the SWE simulations for hydrologic applications.
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022, https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
Short summary
The Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) global and Central Asia data streams described here generate routine estimates of snow, soil moisture, runoff, and other variables useful for tracking water availability. These data are hosted by NASA and USGS data portals for public use.
Min Huang, James H. Crawford, Gregory R. Carmichael, Kevin W. Bowman, Sujay V. Kumar, and Colm Sweeney
Atmos. Chem. Phys., 22, 7461–7487, https://doi.org/10.5194/acp-22-7461-2022, https://doi.org/10.5194/acp-22-7461-2022, 2022
Short summary
Short summary
This study demonstrates that ozone dry-deposition modeling can be improved by revising the model's dry-deposition parameterizations to better represent the effects of environmental conditions including the soil moisture fields. Applying satellite soil moisture data assimilation is shown to also have added value. Such advancements in coupled modeling and data assimilation can benefit the assessments of ozone impacts on human and vegetation health.
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022, https://doi.org/10.5194/hess-26-2365-2022, 2022
Short summary
Short summary
The MENA (Middle East and North Africa) region faces significant food and water insecurity and hydrological hazards. Here we investigate the value of assimilating remote sensing data sets into an Earth system model to help build an effective drought monitoring system and support risk mitigation and management by countries in the region. We highlight incorporating satellite-informed vegetation conditions into the model as being one of the key processes for a successful application for the region.
Jawairia A. Ahmad, Barton A. Forman, and Sujay V. Kumar
Hydrol. Earth Syst. Sci., 26, 2221–2243, https://doi.org/10.5194/hess-26-2221-2022, https://doi.org/10.5194/hess-26-2221-2022, 2022
Short summary
Short summary
Assimilation of remotely sensed data into a land surface model to improve the spatiotemporal estimation of soil moisture across South Asia exhibits potential. Satellite retrieval assimilation corrects biases that are generated due to an unmodeled hydrologic phenomenon, i.e., irrigation. The improvements in fine-scale, modeled soil moisture estimates by assimilating coarse-scale retrievals indicates the utility of the described methodology for data-scarce regions.
Justin Schulte, Frederick Policelli, and Benjamin Zaitchik
Nonlin. Processes Geophys., 29, 1–15, https://doi.org/10.5194/npg-29-1-2022, https://doi.org/10.5194/npg-29-1-2022, 2022
Short summary
Short summary
The skewness of a time series is commonly used to quantify the extent to which positive (negative) deviations from the mean are larger than negative (positive) ones. However, in some cases, traditional skewness may not provide reliable information about time series skewness, motivating the development of a waveform skewness index in this paper. The waveform skewness index is used to show that changes in the relationship strength between climate time series could arise from changes in skewness.
Min Huang, James H. Crawford, Joshua P. DiGangi, Gregory R. Carmichael, Kevin W. Bowman, Sujay V. Kumar, and Xiwu Zhan
Atmos. Chem. Phys., 21, 11013–11040, https://doi.org/10.5194/acp-21-11013-2021, https://doi.org/10.5194/acp-21-11013-2021, 2021
Short summary
Short summary
This study evaluates the impact of satellite soil moisture data assimilation on modeled weather and ozone fields at various altitudes above the southeastern US during the summer. It emphasizes the importance of soil moisture in the understanding of surface ozone pollution and upper tropospheric chemistry, as well as air pollutants’ source–receptor relationships between the US and its downwind areas.
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021, https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Short summary
In this study, we simulated the water balance over the South American Dry Chaco and assessed the impact of land cover changes thereon using three different land surface models. Our simulations indicated that different models result in a different partitioning of the total water budget, but all showed an increase in soil moisture and percolation over the deforested areas. We also found that, relative to independent data, no specific land surface model is significantly better than another.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
Mahmoud Osman, Benjamin F. Zaitchik, Hamada S. Badr, Jordan I. Christian, Tsegaye Tadesse, Jason A. Otkin, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 25, 565–581, https://doi.org/10.5194/hess-25-565-2021, https://doi.org/10.5194/hess-25-565-2021, 2021
Short summary
Short summary
Our study of flash droughts' definitions over the United States shows that published definitions yield markedly different inventories of flash drought geography and frequency. Results suggest there are several pathways that can lead to events that are characterized as flash droughts. Lack of consensus across definitions helps to explain apparent contradictions in the literature on trends and indicates the selection of a definition is important for accurate monitoring of different mechanisms.
Justin Schulte, Frederick Policielli, and Benjamin Zaitchik
Hydrol. Earth Syst. Sci., 24, 5473–5489, https://doi.org/10.5194/hess-24-5473-2020, https://doi.org/10.5194/hess-24-5473-2020, 2020
Short summary
Short summary
Wavelet coherence is now a commonly used method for detecting scale-dependent relationships between time series. In this study, the concept of wavelet coherence is generalized to higher-order wavelet coherence methods that quantify the relationship between higher-order statistical moments associated with two time series. The methods are applied to the El Niño–Southern Oscillation (ENSO) and the Indian monsoon to show that the ENSO–Indian monsoon relationship is impacted by ENSO nonlinearity.
Cited articles
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013.
Arsenault, K. R., Kumar, S. V., Geiger, J. V., Wang, S., Kemp, E., Mocko, D. M., Beaudoing, H. K., Getirana, A., Navari, M., Li, B., Jacob, J., Wegiel, J., and Peters-Lidard, C. D.: The Land surface Data Toolkit (LDT v7.2) – a data fusion environment for land data assimilation systems, Geosci. Model Dev., 11, 3605–3621, https://doi.org/10.5194/gmd-11-3605-2018, 2018.
Barros, V. R. and Field, C. B.: Climate change 2014: impacts, adaptation,
and vulnerability. Part B: regional aspects, Cambridge University Press, Cambridge, UK, 2014.
Bell, V. A., Davies, H. N., Kay, A. L., Brookshaw, A., and Scaife, A. A.: A national-scale seasonal hydrological forecast system: development and evaluation over Britain, Hydrol. Earth Syst. Sci., 21, 4681–4691, https://doi.org/10.5194/hess-21-4681-2017, 2017.
Borovikov, A., Cullather, R., Kovach, R., Marshak, J., Vernieres, G.,
Vikhliaev, Y., Zhao, B., and Li, Z.: GEOS-5 seasonal forecast system,
Clim. Dynam., 53, 7335–7361, 2019.
Cai, X., Yang, Z. L., David, C. H., Niu, G. Y., and Rodell, M.: Hydrological
evaluation of the Noah-MP land surface model for the Mississippi River
Basin, J. Geophys. Res.-Atmos., 119, 23–38, 2014.
Chen, G., Yang, Y., Yang, Z., Xie, J., Guo, J., Gao, R., Yin, Y., and
Robinson, D.: Accelerated soil carbon turnover under tree plantations limits
soil carbon storage, Sci. Rep., 6, 19693, https://doi.org/10.1038/srep19693, 2016.
Csiszar, I. and Gutman, G.: Mapping global land surface albedo from NOAA
AVHRR, J. Geophys. Res.-Atmos., 104, 6215–6228, 1999.
de Andrade, F. M., Coelho, C. A., and Cavalcanti, I. F.: Global
precipitation hindcast quality assessment of the Subseasonal to Seasonal
(S2S) prediction project models, Clim. Dynam., 52, 5451–5475, 2019.
Ek, M., Mitchell, K., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno,
G., and Tarpley, J.: Implementation of Noah land surface model advances in
the National Centers for Environmental Prediction operational mesoscale Eta
model, J. Geophys. Res.-Atmos., 108, 8851,
https://doi.org/10.1029/2002JD003296, 2003.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., and Roth, L.: The shuttle radar
topography mission, Rev. Geophys., 45, RG2004
https://doi.org/10.1029/2005RG000183, 2007.
Fowler, H. and Archer, D.: Conflicting signals of climatic change in the
Upper Indus Basin, J. Climate, 19, 4276–4293, 2006.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens.
Environ., 114, 168–182, 2010.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., and Hoell, A.: The climate hazards
infrared precipitation with stations – a new environmental record for
monitoring extremes, Scientific Data, 2, 1–21, 2015.
Getirana, A., Jung, H. C., Arsenault, K., Shukla, S., Kumar, S.,
Peters-Lidard, C., Maigari, I., and Mamane, B.: Satellite gravimetry
improves seasonal streamflow forecast initialization in Africa, Water
Resour. Res., 56, e2019WR026259, https://doi.org/10.1029/2019WR026259, 2020a.
Getirana, A., Jung, H. C., Van Den Hoek, J., and Ndehedehe, C. E.:
Hydropower dam operation strongly controls Lake Victoria's freshwater
storage variability, Sci. Total Environ., 726, 138343, https://doi.org/10.1016/j.scitotenv.2020.138343, 2020b.
Getirana, A., Rodell, M., Kumar, S., Beaudoing, H. K., Arsenault, K.,
Zaitchik, B., Save, H., and Bettadpur, S.: GRACE Improves Seasonal
Groundwater Forecast Initialization over the United States, J.
Hydrometeorol., 21, 59–71, 2020c.
Getirana, A. C., Bonnet, M.-P., Calmant, S., Roux, E., Rotunno Filho, O. C.,
and Mansur, W. J.: Hydrological monitoring of poorly gauged basins based on
rainfall-runoff modeling and spatial altimetry, J. Hydrol., 379,
205–219, 2009.
Ghatak, D., Zaitchik, B., Kumar, S., Matin, M., Bajracharya, B., Hain, C.,
and Anderson, M.: Influence of Precipitation Forcing Uncertainty on
Hydrological Simulations with the NASA South Asia Land Data Assimilation
System, Hydrology, 5, 57, https://doi.org/10.3390/hydrology5040057, 2018.
Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019, 2019.
Gutman, G. and Ignatov, A.: The derivation of the green vegetation fraction
from NOAA/AVHRR data for use in numerical weather prediction models,
Int. J. Remote Sens., 19, 1533–1543, 1998.
Gutmann, E. D., Hamman, J. J., Clark, M. P., Eidhammer, T., Wood, A. W.,
Arnold, J. R., and Nowak, K.: Evaluating the effect of regional climate
inference methodologies in a common framework, in preparation, 2020.
Hao, Z., Yuan, X., Xia, Y., Hao, F., and Singh, V. P.: An overview of
drought monitoring and prediction systems at regional and global scales,
B. Am. Meteorol. Soc., 98, 1879–1896, 2017.
Hatfield, J. L., Boote, K. J., Kimball, B., Ziska, L., Izaurralde, R. C.,
Ort, D., Thomson, A. M., and Wolfe, D.: Climate impacts on agriculture:
implications for crop production, Agron. J., 103, 351–370, 2011.
ICIMOD: Regional Drought Monitoring and Outlook System for South Asia, available at: http://tethys.icimod.org/apps/regionaldrought/current/, last access: 17 December 2020.
Immerzeel, W.: Historical trends and future predictions of climate
variability in the Brahmaputra basin, International Journal of Climatology,
Q. J. Roy. Meteorol. Soc., 28, 243–254, 2008.
Jie, W., Vitart, F., Wu, T., and Liu, X.: Simulations of Asian Summer
Monsoon in the Sub-seasonal to Seasonal Prediction Project (S2S) database,
Q. J. Roy. Meteorol. Soc., 143, 2282–2295, https://doi.org/10.1002/qj.3085, 2017.
Koster, R. D., Suarez, M. J., Liu, P., Jambor, U., Berg, A., Kistler, M.,
Reichle, R., Rodell, M., and Famiglietti, J.: Realistic initialization of
land surface states: Impacts on subseasonal forecast skill, J.
Hydrometeorol., 5, 1049–1063, 2004.
Koster, R. D., Mahanama, S. P., Livneh, B., Lettenmaier, D. P., and Reichle,
R. H.: Skill in streamflow forecasts derived from large-scale estimates of
soil moisture and snow, Nat. Geosci., 3, 613–616, https://doi.org/10.1038/ngeo944, 2010.
Kumar, S., Mocko, D., Vuyovich, C., and Peters-Lidard, C.: Impact of Surface
Albedo Assimilation on Snow Estimation, Remote Sens., 12, 645, https://doi.org/10.3390/rs12040645, 2020.
Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P. R., Geiger, J.,
Olden, S., Lighty, L., Eastman, J. L., Doty, B., and Dirmeyer, P.: Land
information system: An interoperable framework for high resolution land
surface modeling, Environ. Modell. Softw., 21, 1402–1415,
2006.
Kumar, S. V., Mocko, M. D., Wang, S., Peters-Lidard, C. D., and Borak, J.:
Assimilation of Remotely Sensed Leaf Area Index into the Noah-MP Land
Surface Model: Impacts on Water and Carbon Fluxes and States over the
Continental United States, J. Hydrometeorol., 20, 1359–1377, 2019.
Livneh, B., Xia, Y., Mitchell, K. E., Ek, M. B., and Lettenmaier, D. P.:
Noah LSM snow model diagnostics and enhancements, J.
Hydrometeorol., 11, 721–738, 2010.
Luo, L., Sheffield, J., and Wood, E.: Towards a Global Drought
Monitoring and Forecasting Capability, in: 33rd NOAA Annual
Climate Diagnostics and Prediction Workshop, 20–24 October
2008, Lincoln, Niger, 2008.
Ma, F., Luo, L., Ye, A., and Duan, Q.: Seasonal drought predictability and forecast skill in the semi-arid endorheic Heihe River basin in northwestern China, Hydrol. Earth Syst. Sci., 22, 5697–5709, https://doi.org/10.5194/hess-22-5697-2018, 2018.
Madadgar, S., AghaKouchak, A., Shukla, S., Wood, A. W., Cheng, L., Hsu, K.
L., and Svoboda, M.: A hybrid statistical-dynamical framework for
meteorological drought prediction: Application to the southwestern United
States, Water Resour. Res., 52, 5095–5110, 2016.
Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C.,
Robock, A., Cosgrove, B. A., Sheffield, J., Duan, Q., and Luo, L.: The
multi-institution North American Land Data Assimilation System (NLDAS):
Utilizing multiple GCIP products and partners in a continental distributed
hydrological modeling system, J. Geophys. Res.-Atmos.,
109, 1–32, https://doi.org/10.1029/2003JD003823, 2004.
Molod, A., Hackert, E., Vikhliaev, Y., Zhao, B., Barahona, D., Vernieres,
G., Borovikov, A., Kovach, R. M., Marshak, J., and Schubert, S.: GEOS-S2S
Version 2: The GMAO High-Resolution Coupled Model and Assimilation System
for Seasonal Prediction, J. Geophys. Res.-Atmos., 125,
e2019JD031767, https://doi.org/10.1029/2019JD031767, 2020.
National Climatic Data Center: NCEP EDAS and GDAS (FNL) Model Data
(DSI-6141), NESDIS, NOAA, https://doi.org/10.5065/D65Q4T4Z, 2020.
Nie, W., Zaitchik, B. F., Rodell, M., Kumar, S. V., Anderson, M. C., and
Hain, C.: Groundwater withdrawals under drought: Reconciling GRACE and land
surface models in the United States High Plains Aquifer, Water Resour.
Res., 54, 5282–5299, 2018.
Nie, W., Zaitchik, B. F., Rodell, M., Kumar, S. V., Arsenault, K. R., Li,
B., and Getirana, A.: Assimilating GRACE into a Land Surface Model in the
presence of an irrigation-induced groundwater trend, Water Resour.
Res., 55, 11274–11294, https://doi.org/10.1029/2019WR025363, 2019.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., and Rosero, E.: The community Noah land
surface model with multiparameterization options (Noah-MP): 1. Model
description and evaluation with local-scale measurements, J.
Geophys. Res.-Atmos., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Pegion, K., Kirtman, B. P., Becker, E., Collins, D. C., LaJoie, E., Burgman,
R., Bell, R., DelSole, T., Min, D., and Zhu, Y.: The Subseasonal Experiment
(SubX): A Multimodel Subseasonal Prediction Experiment, B.
Am. Meteorol. Soc., 100, 2043–2060, 2019.
Qian, X., Qiu, B., and Zhang, Y.: Widespread decline in vegetation
photosynthesis in Southeast Asia due to the prolonged drought during the
2015/2016 El Niño, Remote Sens., 11, 910, https://doi.org/10.3390/rs11080910, 2019.
Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., and Bosilovich, M.: The
global land data assimilation system, B. Am.
Meteorol. Soc., 85, 381–394, 2004.
Rodrigues, E. R., Oliveira, I., Cunha, R., and Netto, M.: DeepDownscale: a
deep learning strategy for high-resolution weather forecast, Proceedings of the IEEE 14th
International Conference on e-Science,
29 October–1 November, Amsterdam, Netherlands,
415–422, 2018.
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M.,
Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming
exacerbates European soil moisture droughts, Nat. Clim. Change, 8,
421–426, 2018.
Samaniego, L., Thober, S., Wanders, N., Pan, M., Rakovec, O., Sheffield, J.,
Wood, E. F., Prudhomme, C., Rees, G., and Houghton-Carr, H.: Hydrological
forecasts and projections for improved decision-making in the water sector
in Europe, B. Am. Meteorol. Soc., 100, 2451–2472,
2019.
Seck, A., Welty, C., and Maxwell, R. M.: Spin-up behavior and effects of
initial conditions for an integrated hydrologic model, Water Resour.
Res., 51, 2188–2210, 2015.
Shah, R., Sahai, A. K., and Mishra, V.: Short to sub-seasonal hydrologic forecast to manage water and agricultural resources in India, Hydrol. Earth Syst. Sci., 21, 707–720, https://doi.org/10.5194/hess-21-707-2017, 2017.
Sheffield, J., Wood, E. F., Chaney, N., Guan, K., Sadri, S., Yuan, X.,
Olang, L., Amani, A., Ali, A., and Demuth, S.: A drought monitoring and
forecasting system for sub-Sahara African water resources and food security,
B. Am. Meteorol. Soc., 95, 861–882, 2014.
Shukla, S. and Lettenmaier, D. P.: Seasonal hydrologic prediction in the United States: understanding the role of initial hydrologic conditions and seasonal climate forecast skill, Hydrol. Earth Syst. Sci., 15, 3529–3538, https://doi.org/10.5194/hess-15-3529-2011, 2011.
Shukla, S., Funk, C., and Hoell, A.: Using constructed analogs to improve
the skill of National Multi-Model Ensemble March–April–May precipitation
forecasts in equatorial East Africa, Environ. Res. Lett., 9,
094009, https://doi.org/10.1088/1748-9326/9/9/094009, 2014.
Sivakumar, M. V. and Stefanski, R.: Climate change in South Asia, in:
Climate change and food security in South Asia, edited by: Lal, R., Mannava, V. K., Sivakumar, S. M. A., Faiz, A. H. M, Rahman, M., and Islam, K. R., Springer, London, England, 13–30, 2010.
Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J.,
Rippey, B., Tinker, R., Palecki, M., and Stooksbury, D.: The drought
monitor, B. Am. Meteorol. Soc., 83, 1181–1190,
2002.
Syaukat, Y.: Irrigation in Southern and Eastern Asia in figures
AQUASTAT Survey-2011, FAO the United Nation, Rome, Italy, 2012.
Van Der Schrier, G., Klein Tank, A. M., Van Den Besselaar, E. J., and
Swarinoto, Y.: Observed trends and variability in climate indices relevant
for crop yields in Southeast Asia, J. Climate, 29, 2651–2669, 2016.
Wanders, N. and Van Lanen, H. A. J.: Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three general circulation models, Nat. Hazards Earth Syst. Sci., 15, 487–504, https://doi.org/10.5194/nhess-15-487-2015, 2015.
Wanders, N. and Wada, Y.: Human and climate impacts on the 21st century
hydrological drought, J. Hydrol., 526, 208–220, 2015.
Wanders, N., Karssenberg, D., de Roo, A., de Jong, S. M., and Bierkens, M. F. P.: The suitability of remotely sensed soil moisture for improving operational flood forecasting, Hydrol. Earth Syst. Sci., 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014, 2014.
Wanders, N., Thober, S., Kumar, R., Pan, M., Sheffield, J., Samaniego, L.,
and Wood, E. F.: Development and evaluation of a pan-European multimodel
seasonal hydrological forecasting system, J. Hydrometeorol., 20,
99–115, 2019.
Whitney, J. W.: Geology, water, and wind in the lower Helmand Basin,
Southern Afghanistan U.S. Geological Survey, Reston, Virginia, USA, 2006.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo,
L., Alonge, C., Wei, H., and Meng, J.: Continental-scale water and energy
flux analysis and validation for the North American Land Data Assimilation
System project phase 2 (NLDAS-2): 1. Intercomparison and application of
model products, J. Geophys. Res.-Atmos., 117, D03109,
https://doi.org/10.1029/2011JD016048, 2012.
Xue, Y., Houser, P. R., Maggioni, V., Mei, Y., Kumar, S. V., and Yoon, Y.:
Assimilation of Satellite-Based Snow Cover and Freeze/Thaw Observations Over
High Mountain Asia, Front. Earth Sci., 7, 115, https://doi.org/10.3389/feart.2019.00115, 2019.
Yang, Z. L., Niu, G. Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Longuevergne, L., Manning, K., Niyogi, D., and Tewari, M.: The community
Noah land surface model with multiparameterization options (Noah-MP): 2.
Evaluation over global river basins, J. Geophys. Res.-Atmos., 116, D12110, https://doi.org/10.1029/2010JD015140, 2011.
Yuan, X., Wood, E. F., Luo, L., and Pan, M.: A first look at Climate
Forecast System version 2 (CFSv2) for hydrological seasonal prediction,
Geophys. Res. Lett., 38, L13402,
https://doi.org/10.1029/2011GL047792, 2011.
Yuan, X., Wood, E. F., Roundy, J. K., and Pan, M.: CFSv2-based seasonal
hydroclimatic forecasts over the conterminous United States, J.
Climate, 26, 4828–4847, 2013.
Yuan, X., Wood, E. F., and Liang, M.: Integrating weather and climate
prediction: Toward seamless hydrologic forecasting, Geophys. Res.
Lett., 41, 5891–5896, 2014.
Yuan, X., Wood, E. F., and Ma, Z.: A review on climate-model-based seasonal
hydrologic forecasting: physical understanding and system development, WiRes. Water, 2, 523–536, 2015.
Yuan, X., Ma, F., Wang, L., Zheng, Z., Ma, Z., Ye, A., and Peng, S.: An experimental seasonal hydrological forecasting system over the Yellow River basin – Part 1: Understanding the role of initial hydrological conditions, Hydrol. Earth Syst. Sci., 20, 2437–2451, https://doi.org/10.5194/hess-20-2437-2016, 2016.
Zhou, Y., Zaitchik, B. F.., Kumar, S. V., Arsenault, K. R., and Zamora, R. A.: “Data associated with publication: Developing a hydrological monitoring and sub-seasonal to seasonal forecasting system for South and Southeast Asian river basins”, https://doi.org/10.7281/T1/JYAHTN, Johns Hopkins University Data Archive, V1, 2020.
Short summary
South and Southeast Asia face significant food insecurity and hydrological hazards. Here we introduce a South and Southeast Asia hydrological monitoring and sub-seasonal to seasonal forecasting system (SAHFS-S2S) to help local governments and decision-makers prepare for extreme hydroclimatic events. The monitoring system captures soil moisture variability well in most regions, and the forecasting system offers skillful prediction of soil moisture variability 2–3 months in advance, on average.
South and Southeast Asia face significant food insecurity and hydrological hazards. Here we...