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Abstract. South and Southeast Asia is subject to signifi-
cant hydrometeorological extremes, including drought. Un-
der rising temperatures, growing populations, and an ap-
parent weakening of the South Asian monsoon in recent
decades, concerns regarding drought and its potential im-
pacts on water and food security are on the rise. Reliable
sub-seasonal to seasonal (S2S) hydrological forecasts could,
in principle, help governments and international organiza-
tions to better assess risk and act in the face of an on-
coming drought. Here, we leverage recent improvements
in S2S meteorological forecasts and the growing power
of Earth observations to provide more accurate monitoring
of hydrological states for forecast initialization. Informa-
tion from both sources is merged in a South and South-
east Asia sub-seasonal to seasonal hydrological forecast-
ing system (SAHFS-S2S), developed collaboratively with
the NASA SERVIR program and end users across the re-
gion. This system applies the Noah-Multiparameterization
(NoahMP) Land Surface Model (LSM) in the NASA Land
Information System (LIS), driven by downscaled meteoro-
logical fields from the Global Data Assimilation System
(GDAS) and Climate Hazards InfraRed Precipitation prod-
ucts (CHIRP and CHIRPS) to optimize initial conditions.
The NASA Goddard Earth Observing System Model sub-
seasonal to seasonal (GEOS-S2S) forecasts, downscaled us-
ing the National Center for Atmospheric Research (NCAR)
General Analog Regression Downscaling (GARD) tool and
quantile mapping, are then applied to drive 5 km resolution
hydrological forecasts to a 9-month forecast time horizon.

Results show that the skillful predictions of root zone soil
moisture can be made 1 to 2 months in advance for forecasts
initialized in rainy seasons and up to 8 months when initial-
ized in dry seasons. The memory of accurate initial condi-
tions can positively contribute to forecast skills throughout
the entire 9-month prediction period in areas with limited
precipitation. This SAHFS-S2S has been operationalized at
the International Centre for Integrated Mountain Develop-
ment (ICIMOD) to support drought monitoring and warning
needs in the region.

1 Introduction

South and Southeast Asia is one of the most populated areas
in the world, and a significant portion of livelihoods depend
directly or indirectly on smallholder agriculture. Agriculture
is one of the most weather-dependent human activities (Hat-
field et al., 2011), and smallholder systems are particularly
vulnerable to weather variability, including extreme events
such as drought. South and Southeast Asia has been experi-
encing anthropogenic warming since the 1950s (Sivakumar
and Stefanski, 2010), and the warming is projected to con-
tinue in the near future (Barros and Field, 2014). The fre-
quency of extreme weather events, including droughts, has
also been increasing under this warming trend, with implica-
tions for food security and social stability in a conflict-prone
region that already includes extensive marginal agriculture
on semi-arid lands (Samaniego et al., 2018).
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Sub-seasonal-to-seasonal hydrological forecast systems
(S2S-HFS) have the potential to aid preparedness for these
extreme events. Such systems have been implemented all
over the world at the scale of large river basins (Yuan et al.,
2016; Getirana et al., 2009), countries (Xia et al., 2012; Bell
et al., 2017; Shah et al., 2017), continents (Wanders et al.,
2019; Sheffield et al., 2014; Yuan et al., 2013) and the entire
globe (Alfieri et al., 2013; Yuan et al., 2011; Wanders and
Van Lanen, 2015).

An S2S-HFS generally includes three components — a me-
teorological forecast, a downscaling method, and a hydro-
logical or land surface model (Yuan et al., 2015; Hao et al.,
2017). The presence of a land surface model in this sys-
tem means that hydrological forecasts can draw skill from
both the quality of meteorological forecast and the accuracy
of modeled initial hydrological states. The influence of ini-
tial hydrological states has a more substantial impact during
the early prediction period, while meteorological forecast-
ing dominates later months (Shukla and Lettenmaier, 2011).
The initial condition, however, can still positively contribute
to the forecast skill several months after the initialization
(Samaniego et al., 2019). This contribution can come from
the memory of deeper soil moisture, groundwater storage and
cumulated snow pack in earlier seasons, which provides the
potential for hydrological forecasts to have skills greater than
meteorological S28S forecasts (Koster et al., 2010).

South and Southeast Asia presents both a challenge and an
opportunity in this regard. The challenge is that S2S meteo-
rological forecasts can be quite difficult in some areas. For
example, de Andrade et al. (2019) study the skill of meteo-
rological S2S forecasts and find that for multiple initializa-
tion dates, the forecasts lose meaningful skill within 4 weeks
of initialization. Similarly, Jie et al. (2017) conclude that the
operational climate models from the WCRP Seasonal to Sub-
seasonal Prediction Project lack the skill for prediction of
the Asian summer monsoon, a major precipitation source of
most areas in South Asia, beyond 1 month in advance. The
opportunity is that many rivers in major basins of South and
Southeast Asia are sourced from mountainous regions with
significant snowpack and seasonally frozen soil water, such
that a properly initialized hydrological forecast has the po-
tential to add considerable predictive power beyond the me-
teorological forecast.

In this study, we aim to establish an operational fine-
resolution, continental hydrological monitoring and fore-
casting system for South and Southeast Asia: the South
and Southeast Asia Hydrological Forecast System — S2S
(SAHFS-S28S). This system includes downscaled meteoro-
logical fields from a dynamically based S2S meteorological
forecast system, an advanced land surface model, and post-
processing tools to derive drought indicators. The system
aims to provide end-users in South and Southeast Asia with
water resources information to help manage local drought
risks and strengthen food security.
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We first test the forecasting system in hindcast experi-
ments against a retrospective run of the monitoring system,
which is our best estimate of hydrological states, and avail-
able satellite-derived estimates of soil moisture, the critical
variable for our drought monitoring goals. An additional con-
trol set of hindcast simulations are designed to evaluate the
importance of initial conditions to the hydrological forecast
skill. All settings in this set of control hindcast simulations
are the same as the forecast system except that the initial con-
ditions are set as the same climatological hydrologic states
averaged from the entire hindcast period.

Section 2.1 describes the precipitation pattern in research
areas and major river basins. Section 2.2 describes the dataset
used in this study. Details of the monitoring and forecasting
system are described in Sect. 2.3 and 2.4, respectively. The
post-processing of both systems is described in Sect. 2.5. The
comparisons among different simulations, the importance of
the initial conditions, and validation of both systems and ap-
plications of the systems are discussed in Sect. 3. Finally, the
implications, limitations, and possible future work are dis-
cussed in Sect. 4.

2 Methods
2.1 Research area and precipitation patterns

In this study, all simulations are performed on a domain
within the South and Southeast Asia region, ranging from
8 to 45° N and 58 to 123° E. The analysis, however, focuses
on a study domain, mainly including five major river basins
and surrounding areas (Fig. 1a). The five major river basins
in this South and Southeast Asia study domain are the Hel-
mand, Indus, Ganges, Brahmaputra, and Mekong basins.
Among these five river basins, the Mekong, Brahmaputra,
and Ganges have the highest average precipitation, annually:
1677, 1227, and 1108 mm, respectively. These three basins
are strongly influenced by the South Asian monsoon pattern,
and most precipitation falls in the summertime monsoon sea-
son (80 % in the Mekong basin, 70 % in the Brahmaputra
basin, and 85 % in the Ganges basin). The monsoon seasons
generally start in May, June, and July in the Mekong basin,
the Brahmaputra basin, and the Ganges basin, respectively,
and end in late September or early October. The Mekong
and Brahmaputra basins have considerable precipitation vari-
ations between the upper and lower basins. Moisture that en-
ters the basins from the south is naturally blocked by the Hi-
malayan ranges and cannot reach the upper basins of these
river systems. The upper Brahmaputra basin suffers from a
direct rain shadow effect of the Himalayas and has precip-
itation amount less than one-fourth of the precipitation in
the lower Brahmaputra basin (Immerzeel, 2008). Although
the monsoon precipitation falls mostly in the lower Mekong
basin, snow accumulated in the upper Mekong basin provides
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Figure 1. (a) The extent of simulation area, research domain and five major river basins in South and Southeast Asia; Seasonal precipitation
climatology for 2000-2018 (b) December, January, and February; (¢) March, April, and May; (d) June, July and August; (e) September,
October and November. The seasonal precipitation climatology is estimated from Climate Hazards Center InfraRed Precipitation with Station

(CHIRPS) data.

vital water resources for the entire basin during pre-monsoon
and dry seasons (Syaukat, 2012).

In the Indus basin, the seasonal cycle is also influenced
by the monsoon climate (Chen et al., 2016). Most precipita-
tion falls during the monsoon season from July to September
(199 mm), accounting for 51 % of the annual average pre-
cipitation (389 mm). The pre-monsoon and winter seasons,
however, also contribute an essential part of the precipitation,
while the post-monsoon period is the driest season. Despite
providing less total precipitation than the summer monsoon,
winter precipitation is vital for wheat and barley crops. Indus
also has significant spatial precipitation variation. Most pre-
cipitation falls in the mountainous regions in the upper basin,
while the lower basin lies in one of the driest areas in South
Asia. Melting water from snow and glaciers in these moun-
tain ranges provides a considerable amount of fresh water to
the Indus river (Fowler and Archer, 2006).

https://doi.org/10.5194/hess-25-41-2021

The Helmand basin has a hyperarid to arid climate (Whit-
ney, 2006), with an annual average precipitation of only
144 mm. The seasonal cycle of precipitation is different from
the other four basins, as the maximum precipitation occurs
during the winter season, which accounts for 76 % of the to-
tal precipitation. The Helmand basin also suffers from high
temperatures and extreme wind which intensify the aridity in
the basin.

2.2 Data

Datasets used in this research include the daily Climate
Hazards Center InfraRed Precipitation data (CHIRP) and
Climate Hazards Center InfraRed Precipitation with Sta-
tion data (CHIRPS), National Oceanic and Atmospheric Ad-
ministration (NOAA)’s Global Data Assimilation System
(GDAS), NASA’s Goddard Earth Observing System Model
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sub-seasonal to seasonal forecast version 1 and version 2
(GEOS-S2S-V1 and V2), and the European Space Agency’s
Climate Change Initiative for Soil Moisture (ESA-CCI SM)
(Table 1).

CHIRP is a precipitation dataset developed by the Climate
Hazards Center at University of California, Santa Barbara.
This dataset has a quasi-global (50°S-50°N and all lon-
gitudes) spatial coverage and is derived from satellite data
(Funk et al., 2015). The data are available from 1981 to near
real-time present with a 2-3 d latency. These data have 0.05°
spatial resolution, and the daily precipitation product is used
in this research. CHIRPS is a precipitation dataset derived by
combining the CHIRP dataset with in situ station data (Funk
et al., 2015). The specifications of the dataset are similar to
CHIRP, except that this dataset has about 3-week latency. In
this study, the CHIRP-CHIRPS dataset provides the precip-
itation field in the monitoring system (see Sect. 2.3 for de-
tails), and CHIRPS is used as the reference for downscaling
precipitation forecasts in the forecasting system (see Sect. 2.4
for details).

GDAS is an atmospheric analysis system developed at
the National Center for Environmental Prediction (NCEP)
at NOAA (National Climatic Data Center, 2020). It is
produced by assimilating surface observations into a Global
Forecast System (GFS). The assimilated surface observation
includes balloon data, wind profiler data, aircraft reports,
buoy observations, radar observations, and satellite observa-
tions (https://www.ncdc.noaa.gov/data-access/model-data/
model-datasets/global-data-assimilation-system-gdas, last
access: 17 December 2020). The GDAS dataset has a
6-hourly temporal resolution and produces short-term
meteorological forecasts at 0, 3, 6 and 9h lead time. GDAS
data are available from 2000 onward and have real-time
updates. The spatial resolution starts at about 1° x 1° in the
year 2000 and has gradually improved to an equivalent grid
of 0.125° x 0.125°, since early 2015. In this study, seven
meteorological variables from GDAS are used as forcings
in the monitoring system (see Sect. 2.3 for details) and
baselines for meteorological downscaling in the forecasting
system (see Sect. 2.4 for details). These variables include
downward long-wave radiation, downward shortwave radi-
ation, air temperature, specific humidity, air pressure, and
zonal and meridional wind speed fields.

GEOS-S2S-V1 is a meteorological forecast dataset pro-
duced by the GEOS atmospheric model at the Global Mod-
eling and Assimilation Office (GMAQO) at NASA Goddard
Space Flight Center. GEOS-S2S-V1 forecasts were initial-
ized about every 5d in hindcast experiments and forecasts
from 2000 to 2017 and produce daily forecasts for 9 months.
In each month, one forecast initialization date contains 10
ensemble members while others only have one. GEOS-S2S-
V1’s spatial resolution is 1° x 1.25°.

Eight variables from daily GEOS-S2S-V1, including the
same seven variables as in GDAS and precipitation rate vari-
ables (the eighth variable), are used in this research.

Hydrol. Earth Syst. Sci., 25, 41-61, 2021

ESA-CCI SM is a global gridded surface soil mois-
ture dataset derived from remote sensing observation (Gru-
ber et al., 2019). The ESA-CCI SM contains three sub-
datasets: ACTIVE dataset, PASSIVE dataset, and COM-
BINED dataset. The ACTIVE dataset is derived by merg-
ing satellite datasets measured by active scatterometer in-
struments. The ACTIVE dataset spans from August 1991 to
December 2019. The PASSIVE dataset is derived by merg-
ing satellite datasets measured by passive radiometer instru-
ments. The PASSIVE dataset spans from November 1978
to December 2019. The COMBINED dataset is merged and
rescaled from the ACTIVE and the PASSIVE dataset. All
three sub-datasets have a daily temporal resolution and 0.25°
spatial resolution. The COMBINED dataset is used in this
study to evaluate the hydrological monitoring and forecast-
ing system.

2.3 Monitoring system

The monitoring system is an instance of a land data assimi-
lation system (LDAS), which is a technique that merges ob-
servations with physically based models to produce optimal
estimates of terrestrial hydrological states and fluxes (Rodell
et al., 2004; Mitchell et al., 2004). For the purposes of mon-
itoring hydrological extremes, our process consists of three
steps (Fig. 2): (1) meteorological data processing, (2) land
surface model simulations, and (3) post-processing to obtain
relevant metrics. The first two steps are completed within
NASA’s Land Information System Framework (LIS; Kumar
et al., 2006).

Our meteorological estimates consist of the seven GDAS
variables listed above, plus precipitation. Total precipitation
is extracted from CHIRPS at a daily scale for retrospective
analysis. Daily precipitation is disaggregated to 6-hourly es-
timates based on the diurnal cycle of MERRA-2 precipita-
tion, using LIS’s Land surface Data Toolkit (LDT; Arsenault
et al., 2018). The remaining meteorological forcing variables
are extracted from GDAS and downscaled to the spatial scale
of the monitoring system (5 km), using bilinear interpolation
with lapse-rate and aspect-slope correction within LIS.

The land surface model uses information from mete-
orological forcing variables to estimate hydrologic vari-
ables through a physically based representation of hy-
drologic processes and land surface energy balance. For
this study, we present a monitoring system that uses the
Noah-Multiparameterization (Noah-MP) land surface model.
Noah-MP is an augmentation of the Noah LSM, which was
first implemented in the NCEP Eta Data Assimilation System
(EDAS) mesoscale forecast suite and NCEP Global Forecast
System (GFS) to provide land surface feedback to climate
models (Ek et al., 2003). The Noah LSM provides feedback
by simulating the water fluxes and energy balance among
canopy, vegetation, soil, streamflow, and snow (Livneh et al.,
2010; Ek et al., 2003). Noah-MP augments the model repre-
sentation of physical processes in the surface energy balance,
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Table 1. Summary of datasets used in this study. The meteorological forcing fields include precipitation (precip), downward long-wave
radiation (LW), downward shortwave radiation (SW), air temperature (73,), specific humidity (Q), surface air pressure (P), zonal (U), and
meridional (V) wind speed.

Data Period of Record Spatial Temporal Variable used Reference
resolution resolution
CHIRPS 1981—present 0.05° 1d Precip Funk et al.
(2015)
GDAS 2000—present 1° % 1° 6h LW, SW, T,, O, National
gradually improved P,U,V Climatic Data
to 0.125° x 0.125° Center (2020)
GEOS-S2S-V1  January 1° x 1.25° 1d Precip, LW, Borovikov et al.
1981-2018 SW, T,, O, P, (2019)
u,v
GEOS-S2S5-V2  1981-present 0.5° x 0.5° 1d Precip, LW, Molod et al.
SW, Ty, O, P, (2020)
u,v
ESA-CCI SM November 1978— 0.25° x 0.25° 1d Surface soil Gruber et al.
December 2019 moisture (2019)
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Figure 2. A schematic workflow of the South and Southeast
Asia monitoring and forecasting system. Retrospective simulations
(open-loop), hindcasts with “Real” initial condition (hindcast-RIC)
simulations, and hindcasts with climatological initial condition
(hindcast-CIC) simulations are designed to evaluate the monitoring
and forecasting system.

snow and frozen soil, groundwater, runoff, and leaf dynam-
ics. In addition, Noah-MP enables multiple options for a va-
riety of physical processes within the model (Niu et al., 2011;
Yang et al., 2011).
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A variety of spin-up techniques has been used to acquire
initial conditions for hydrologic models (Seck et al., 2015)
and land surface models (Cai et al., 2014; Nie et al., 2018).
Here, a 57-year offline spin-up is performed by simulating
the period 2000-2018, three times, to obtain equilibrium hy-
drological states (e.g., groundwater storage) under prevailing
climate patterns for our meteorological data sources. These
equilibrium states, in principle, help monitoring simulations
reach the best estimation of hydrological outputs once the
monitoring period begins. The monitoring system is then ini-
tialized on 1 January 2000, owing to the availability of the
GDAS data product and is run up to near real time. The
system operates at a 15 min time step and generates water
and energy fluxes and states at a 5 km spatial resolution that
we save at daily temporal resolution, including soil moisture,
evapotranspiration, terrestrial water storage, and snow water
equivalent, among others. The system has satellite data as-
similation capabilities (Getirana et al., 2020c; Kumar et al.,
2020; Xue et al., 2019; Kumar et al., 2019), but the sim-
ulations presented here are open-loop simulations in which
satellite data are integrated via parameter fields and meteoro-
logical forcings rather than through active land data assimi-
lation.

Satellite-informed input parameters include the 1km?
resolution Moderate Resolution Imaging Spectroradiometer-
International Geosphere Biosphere Program (MODIS-IGBP)
land cover dataset (Friedl et al., 2010), 5 min FAO soil tex-
ture dataset  (http://iridl.Ideo.columbia.edu/SOURCES/
.NASA/.ISLSCP/.GDSLAM/.Hydrology-Soils/.soils/
.dataset_documentation.html, last access: 17 December
2020), 30m Shuttle Radar Topography Mission (SRTM)
elevation dataset (Farr et al., 2007), 0.144° global albedo
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maps (Csiszar and Gutman, 1999), and green vegetation
fraction maps (Gutman and Ignatov, 1998) derived from
measurements made by the advanced very high resolution
radiometer (AVHRR) onboard NOAA’s polar orbiting
satellites. These parameters are represented as climatologies
in our simulations.

‘We ran our monitoring system in retrospective mode from
2000 to 2017, which is initialized with a restart file from the
spin-up simulation. This retrospective simulation serves as
a baseline when evaluating the forecast system. From that
time onward, the monitoring system has run in near-real-
time mode. On account of the 3-week latency of the CHIRPS
product, we use CHIRP precipitation to extend the retrospec-
tive simulation to real time. The simulations during this pe-
riod are re-run with CHIRPS once CHIRPS becomes avail-
able.

2.4 Forecasting system

The forecasting system applies downscaled ensemble GEOS-
S2S forecasts to drive Noah-MP simulations out to a 9-month
forecast lead. The workflow and model specifications of the
forecasting system are similar to the monitoring system ex-
cept for meteorological forcing data processing (Fig. 2).

In the forecasting system, the same meteorological forc-
ing variables as in the monitoring system are extracted
from GEOS-S2S data products (see details of GEOS-S2S in
Sect. 2.2). Due to the coarse resolution and inevitable bias of
global climate model outputs, these forcing variables from
GEOS-S2S-V1 are downscaled and bias-corrected to corre-
sponding monitoring system forcing variables (i.e., precipita-
tion from CHIRPS and other variables from GDAS) using the
Generalized Analog and Regression Downscaling (GARD)
algorithm (https://github.com/NCAR/GARD, last access: 3
April 2020; Gutmann et al., 2020). This downscaling algo-
rithm takes a training dataset, prediction dataset, and ob-
servation dataset as inputs. The observation dataset contains
records of variables (dependent variables) with targeted fine
spatial resolution, for example, the precipitation from the
CHIRPS dataset. The training dataset includes records of
coarse-spatial-resolution variables (independent variables),
which have the same time resolution as the dependent vari-
ables, for example, hindcasted GEOS-S2S-V1 precipitation.
The prediction dataset contains the records of the same
coarse-resolution variables as the training dataset but ac-
quired in the forecast period — for example, new GEOS-S2S-
V1 forecast precipitation. The prediction dataset contains the
records of the same coarse-resolution variables as the train-
ing dataset but acquired in the forecast period — for example,
new GEOS-S2S-V1 forecast precipitation. The GARD algo-
rithm downscales the prediction dataset to the resolution of
the observation dataset with an analog—regression approach.

This downscaling algorithm takes a training dataset, pre-
diction dataset, and observation dataset as inputs. The obser-
vation dataset contains records of variables (dependent vari-
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ables) with targeted fine spatial resolution, for example, the
precipitation from the CHIRPS dataset. The training dataset
includes records of coarse-spatial-resolution variables (in-
dependent variables), which have the same time resolution
as the dependent variables, for example, hindcasted GEOS-
S2S-V1 precipitation. The prediction dataset contains the
records of the same coarse-resolution variables as the train-
ing dataset but acquired in the forecast period — for example,
new GEOS-S2S-V1 forecast precipitation. The GARD algo-
rithm downscales the prediction dataset to the resolution of
the observation dataset with an analog—regression approach.

In this application, we apply GARD to downscale each
forecast variable as a function of the same variable in the
training datasets (e.g., precipitation to predict precipitation).
GARD has the capability to use multiple predictor variables
to improve downscaling accuracy, but the influence of the
different combinations of independent variables in GARD is
beyond the scope of this paper.

GEOS-S2S-V1 products consist of a series of meteoro-
logical forecasts initialized about every 5d. To construct
proper training datasets, we only use the first several days
(approximately 5d) of each forecast simulation before the
next forecast is initialized to create one record of indepen-
dent variables per day from the year 2000 to 2017. This ap-
proach to creating training datasets aims to take advantage
of frequent (approximately every 5d) GEOS-S2S-V1 hind-
casts and to avoid outliers created by mismatched GEOS-
S2S-V1 variables with corresponding GDAS/CHIRPS vari-
ables due to the sharp forecast skill decline of climate mod-
els in later forecast periods (Jie et al., 2017). CHIRPS
and GDAS are used to construct the observation dataset.
Due to the changing resolution of GDAS data products,
coarser-resolution data in the early years are downscaled to
0.125° x 0.125° using bilinear interpolation with lapse-rate
and aspect-slope correction to unify the spatial resolution.
This 0.125° x 0.125° resolution GDAS product is then aggre-
gated into daily data to unite time intervals with the training
dataset.

In order to correct the evolving bias between longer lead-
time GEOS-S2S-V1 precipitation hindcasts and CHIRPS,
the total precipitation variable is further post-processed using
a cumulative distribution function (CDF) matching method
(Yuan et al., 2014). In each month within the 9-month fore-
cast period, daily GARD-downscaled GEOS-S2S-V1 precip-
itation and CHIRPS precipitation from 2000 to 2017 are used
to construct the precipitation forecast and observation CDF
function separately. We acknowledge that it is possible to
achieve bias correction on a finer timescale by constructing
a GARD training dataset and CDF functions at sub-monthly
scale (e.g., weekly scale), but shortening the timescale will
also reduce the size of the training data.

The downscaled meteorological variables are further dis-
aggregated from the daily timescale to the 6-hourly time se-
ries to capture sub-daily time variation. Total precipitation
and solar radiation are disaggregated using the ratio between
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6-hourly and daily GDAS climatology data, while the other
six variables are disaggregated using the difference between
6-hourly and daily climatology data.

The performance of the downscaling method is evaluated
at the monthly timescale in the five major river basins in
South Asia using root mean squared error (RMSE) (Figs. S1—
S5). The RMSE is first calculated for GEOS before and after
downscaling against the retrospective forcing (i.e., the com-
bination of GDAS and CHIRPS) and then normalized by the
range of the retrospective forcing.

Overall, the RMSE of air temperature, surface pressure,
and relative humidity is greatly reduced after downscaling.
In addition to the GARD algorithm, the applied CDF match-
ing has further reduced the RMSE for precipitation. For other
fields, the impacts of downscaling differ across basins. For
instance, downscaling leads to reduced RMSE of wind speed
for the Ganges basin while its impact on shortwave and long-
wave radiation is marginal.

A set of hindcast simulations has been initialized on 1
May from the year 2000 to 2017. The meteorological forc-
ing of these simulations is GEOS-S2S-V1 initialized on 1
May, downscaled following the forecasting system workflow,
and the initial conditions of these simulations are obtained
from retrospective simulations (i.e., “real” initial condition;
Fig. 2). Each initialized hindcast simulation has 10 ensem-
ble members and lasts for 9 months (i.e., May to January of
next year). 1 May was chosen as the initialization date of this
experiment to capture the monsoon seasons in the monsoon
regions and dry season in the western part of the domain (see
Sect. 2.1 for details). This set of hindcast simulations with
“real” initial conditions (hereafter referred to as hindcast-
RIC simulations) is designed to evaluate the performance of
the forecast workflow.

An additional set of control hindcast simulations with
climatological initial conditions (hereafter referred to as
hindcast-CIC simulations; Fig. 2) is designed to study the
impact of initial conditions on the forecast skill. In this set of
hindcast-CIC simulations, the workflow and all settings are
the same as hindcast simulations except for initial conditions.
All 18 hindcast-CIC simulations use the climatological ini-
tial conditions (CIC) calculated by averaging 1 May hydro-
logical states from 2000 to 2017 obtained from retrospective
simulations.

In additional to the hindcast simulations, the forecast sys-
tem is also running operationally, monthly, with the same
forecast workflow but driven by downscaled GEOS-S2S-V2
product instead of downscaled GEOS-S2S-V1 product. The
GEOS-S2S-V2 dataset also provides 9-month daily meteo-
rological forecasts about every 5 d, but with finer spatial res-
olution of 0.5° x 0.5°. Evaluation of the operational forecast
system is planned for the future, however, because GEOS-
S2S-V2 offers only a small ensemble prior to 2017, making
evaluation less reliable at this time. This paper focuses on the
evaluation of the hindcast simulations driven by downscaled
GEOS-S2S-V1 from 2000 to 2017.
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In the hydrological forecasting system, meteorological
forecast forcing data are sourced from all ensemble members
launched on a common GEOS-S2S forecast initialization
date, i.e., the one date per month that offers the 10-member
ensemble. It is possible to include other GEOS-S2S meteoro-
logical forecasts in the hydrological forecasting system, but
proper bias-correction methods are needed to correct incon-
sistent forecast skill or bias among GEOS-S2S meteorologi-
cal forecasts with different initialization dates. For example,
in the hindcast-RIC hydrological simulations initialized at 1
May, a combination of 26 April and 1 May GEOS-S2S-V1
meteorological forecasts can be used to enlarge the size of
the ensemble members. However, sub-monthly to monthly
GARD and CDF post-processing methods would need to be
applied to 26 April and 1 May forecasts separately.

2.5 Post-processing

In this study, the evaluation of the monitoring and forecast
systems is performed on monthly scales. All simulations are
first averaged from daily to a monthly timescale. The ensem-
ble mean of forecast simulations generally shows much less
variance than retrospective simulations due to averaging ef-
fects (Koster et al., 2004). To compare simulations from both
systems and other datasets, all simulation results and data
products are standardized before comparison.

Climatological monthly mean and standard deviations for
retrospective simulations are calculated for each month sep-
arately (January to December) with simulation results from
2000-2017. The retrospective simulation results are then
standardized in the form of the standardized anomaly with
the following equation,

valyyyymm — Valmm
SDimm

stdamlyyyvymm =

’

where stdamlyyyyymm is the standardized anomaly for year
“yyyy” and month “mm”, valyyyymm denotes the original val-
ues from simulations and analysis datasets for year “yyyy”
and month “mm?”, valyy, is the climatology mean for month
“mm”, and SDy, is the climatological standard deviation for
month “mm”. We note that GDAS is an operational anal-
ysis system chosen for its low latency. It is not a time-
consistent reanalysis product. This means that over the study
period GDAS underwent several significant changes in in-
put and data structure, including changes in spatial resolu-
tion. All GDAS data were regridded to a common resolu-
tion, and lapse rate and slope-aspect corrections were ap-
plied to downscale to topography. Nevertheless, the use of
this operational product does mean that anomalies calculated
against the long-term mean can contain some statistical ar-
tifacts. As the primary purpose of these anomalies is appli-
cation to drought monitoring, we accept this limitation with
the understanding that the system can be used to capture sig-
nificant drought events but that it is not optimized for trend
detection or for precise ranking of event intensities over time.
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The forecast simulation results are standardized similarly.
For simplicity, the results presented in the following sections
are only based on the standardized ensemble mean for fore-
cast simulation related analyses, for which the standardiza-
tion is applied after the calculation of ensemble mean.

3 Results and discussion

3.1 Retrospective simulations vs. hindcast-RIC
simulations

For purposes of agricultural drought prediction, we are most
concerned with our ability to predict soil moisture anomalies.
As large-scale networks of root zone soil moisture (RZSM)
observations are rare in South and Southeast Asia, we evalu-
ate the prediction skill of the forecast system of SAHFS-S2S
by comparing RZSM estimates in hindcast-RIC simulations
to RZSM in the retrospective simulations. The depth of root
zone soil moisture is defined as 1 m in this study. Since the
retrospective run and the hindcast-RIC simulations use the
same land surface model, these comparisons aim to evaluate
the impact of meteorological forcing on the prediction skill
of RZSM. The comparison is performed by calculating the
inter-annual correlation coefficients (R) of monthly RZSM
at different lead times, from May (1-month lead time) to Jan-
uary (9-month lead time). Figure 3 shows maps of these cor-
relation coefficients across forecast lead times. Higher cor-
relations indicate more skillful RZSM hindcasts. In May (1-
month lead time), the correlation between hindcast-RIC and
the retrospective simulations is positive in most of the region,
and the correlation is significant at 0.95 significant level ex-
cept for northeast India. As expected, correlations drop in
strength and significance as lead time increases. In June (2-
month lead time), the correlation remains positive and sig-
nificant in the Indochinese Peninsula and the west of the
research domain. The prediction skill of the RZSM drops
quickly and becomes insignificant in most of the regions ex-
cept for the northwestern regions of the domain 2 or 3 months
after the forecast initialization date. The high forecast skill
in the northwestern regions is drawn from the “real” initial
conditions (i.e., long hydrological memory) due to low pre-
cipitation. This phenomenon is further explained in detail at
the basin scale below and in Sect. 3.2.

We repeat this analysis at the basin scale for the five major
river basins of the South and Southeast Asia area (highlighted
in Fig. 1). Figure 4 shows RZSM and precipitation compar-
ison in the Ganges basin, which receives considerable pre-
cipitation during the summer monsoon. Please note that the
time axis in Fig. 4 is rearranged, so that data of a specific
lead month are grouped. Figure 4a shows the monthly pre-
cipitation time series averaged for the Ganges basin. In each
month, the magnitudes of precipitation from retrospective
(i.e., CHIRPS) and hindcast simulations (i.e., downscaled
GEOSS5-S2S-V1) are similar to each other due to the ap-
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plication of CDF matching (see Sect. 2.4). The inter-annual
variation of the hindcast precipitation and retrospective pre-
cipitation both are higher in wet seasons than in dry seasons.
The inter-annual variation of hindcast precipitation, however,
is smaller than that of the retrospective precipitation, espe-
cially in months with large lead time. This difference in inter-
annual variability is the result of averaging a across large
forecast ensemble spread in later months.

Figure 4b shows the climatology RZSM (i.e., average
RZSM from the year 2000 to the year 2017) for May to
January from retrospective and hindcast-RIC simulations.
The climatologies of RZSM from retrospective and hindcast-
RIC simulations have similar magnitude and seasonality. The
magnitudes of inter-annual variability of each month, which
are represented by inter-annual standard deviation and are
shown as error bars in 4b, are smaller in hindcast-RIC sim-
ulations. The reason for this magnitude difference is, again,
the effect of averaging the large ensemble spread of hindcast-
RIC simulations. Climatologically, as the monsoon season
picks up in July, RZSM increases dramatically due to intense
precipitation. The RZSM climatology peaks in August, in-
dicating some delay between the precipitation peak and the
annual maximum in soil water storage.

Figure 4c shows the RZSM standardized anomaly and
rainfall inter-annual correlations between retrospective and
hindcast-RIC simulations for each month in the Ganges
basin. Precipitation has positive correlations during the rainy
seasons, but this prediction skill is never statistically signif-
icant. At the end of the monsoon (October), precipitation
skill drops dramatically to near zero. In contrast, the corre-
lation for RZSM (yellow line in Fig. 4b) fluctuates around
the significant line (dashed line in Fig. 4b, R = 0.484) as
lead time increases. This fluctuation of RZSM skill within
the monsoon season is closely driven by the performance
of the meteorological forecast of precipitation (green line in
Fig. 4b). Although the skill in precipitation drops rapidly af-
ter the monsoon season, the RZSM forecast skill maintains
around the significant line with a mild declining trend. This
difference indicates that the low precipitation amount after
monsoon seasons has little influence on the inter-annual vari-
ability of the RZSM. The high basin-scale RZSM correlation
during July to December (yellow line in Fig. 4b) is a contrast
to the relatively low pixel-scale RZSM in the Ganges basin
(Fig. 3c-h). This difference reflects the fact that small spa-
tial mismatch between retrospective and hindcast-RIC sim-
ulations, which is likely due to the same mismatch of mete-
orological forcings, especially precipitation (see blue line in
Figs. 4b and S6), can lead to disagreement at pixel scale that
averages out at basin scale.

Figure 4d shows the monthly RZSM standardized
anomaly (see section 2e) from retrospective and hindcast-
RIC simulations. The ensemble means of RZSM from
hindcast-RIC simulations are shown in red dots, and the er-
ror bars represent the standard deviation of the ensemble.
The spread of the ensemble members is relatively small in
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Figure 3. Inter-annual correlation of RZSM between retrospective simulations and hindcasting simulations which is computed using RZSM
data from year 2000 to 2017 in months May (1-month lead time) to January (9-month lead time) (a—i). The hatches denote the areas with

statistically significant correlation at 0.95 confidence level.

May, which represents high confidence in the prediction from
the forecast system. This confidence originates from the rela-
tively low uncertainty of meteorological forcing variables in
May. The spread increases quickly in June (i.e., 2-month lead
time) and later lead months.

The timing of the Indus basin rainy season is similar to
the Ganges, but the magnitude of precipitation is far smaller
(Fig. 5). As a result, the average RZSM from all years is
much lower in the Indus (Figs. 4b and 5b). Precipitation
amount increases from May to June, but high evapotran-
spiration (ET) in June causes a deficit in the water budget
that causes a decrease in RZSM in June (Fig. S7). Though
climatology of precipitation is low from November to Jan-
uary, monthly RZSM climatology still increases during this
period due to low ET. Hindcast-RIC simulations underes-
timated climatological RZSM in every month, and the un-
derestimation grows in later dry months. This underestima-
tion is, in part, due to the high bias of ET in the hindcast-
RIC simulations, which is an issue of ongoing study. The
precipitation correlations between hindcast-RIC and retro-
spective simulations are low and statistically insignificant
for all months, as the maximum correlation is 0.22 in May
(red line in Fig. 5c). Though hindcast-RIC simulations show
lower prediction skill in precipitation in the Indus than in the
Ganges basin, the RZSM correlations in the Indus are still
significant in the first 3 months (orange line in Fig. 5c). This
relatively strong RZSM prediction skill is again a result of a
drier climate. The relatively low amount of precipitation in
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the Indus basin allows the skill derived from initial condi-
tions to persist longer.

In the Helmand basin, the magnitude of precipitation is
smaller than in either the Ganges or Indus basin. More im-
portantly, the seasonal precipitation cycle is different as well
(Fig. 6a). The Ganges and Indus basins experience peak
precipitation during the summertime South Asian monsoon,
such that our May forecast initialization captures the onset of
the rainy season. The Helmand basin receives precipitation in
winter—spring, with the dry season setting in May, just as our
forecasts initialize (Fig. 6a). This allows us to see the behav-
ior of a forecast that is nearly pure persistence: there is some
precipitation in May, for which hindcasts show skill, but for
the following 5-6 forecast months, there is effectively no pre-
cipitation, and soil moisture shows a steady decline (Fig. 6b).
This allows skill present in the initial conditions to persist,
as seen in the high RZSM correlation between hindcast-RIC
and retrospective simulations through November (Fig. 6c).
This high correlation starts to drop from November but re-
mains significant until December, even though precipitation
has low prediction skills in November and December. While
this result might not be indicative of seasonal forecast skill
in the Helmand basin in general, since forecasts initialized
for the rainy season might be of broader relevance, the result
does provide a useful example of how our forecast system
behaves in basins initialized during the dry season.

Hydrol. Earth Syst. Sci., 25, 41-61, 2021
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Figure 4. Comparison between retrospective simulations and hindcast simulations in the Ganges basin of (a) monthly time series of pre-
cipitation, (b) monthly climatology of root zone soil moisture (RZSM), (c) inter-annual correlations of basin-averaged RZSM standardized
anomaly and precipitation, and (d) monthly standardized anomaly of RZSM (the red error bars represent for the standard deviation of sepa-
rate hindcast ensemble members). Please note that the time axis for monthly time series are rearranged so that the data for the same month

are grouped.

3.2 Impact of initial conditions

The RZSM forecast skill is a product of the accuracy of both
the forecast meteorological forcing variables and initial hy-
drological states. In this section, we examine the impact of
initial conditions on prediction skills by comparing hindcast-
RIC simulations to our hindcast-CIC simulations (see sec-
tion 2d for details). We focus on RZSM correlations with the
retrospective simulation as our performance metric, since we
are most concerned with the ability of quality forecast initial-
ization to improve the simulation of inter-annual RZSM vari-
ability. Figure 7 shows the contribution of initial conditions
as the difference in correlation with retrospective RZSM be-
tween hindcast-RIC and hindcast-CIC simulations. In these
maps, shades of red indicate areas and times where hindcast-
RIC have improved skills relative to hindcast-CIC simula-
tions. For lead-one forecasts (May), we see a positive contri-
bution of initial conditions to RZSM forecast skills primar-
ily in India. For lead-two forecasts (June), the area with the
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largest correlation difference moves to the west of the do-
main, and the area with a significant correlation difference
in southern India also shrinks. In later months, from July
to December, the areas with significant differences of cor-
relations continue to shrink because precipitation, along with
other meteorological forcing variables, gradually reduces or
even eliminates the impact of initial conditions. In portions
of the west of the domain (Helmand basin), where the pre-
cipitation is low from May to November, the difference in
correlations remains significant until December.

Figure 8 shows the number of lead months before the dif-
ference in RZSM forecast skill — measured as correlation
with the retrospective simulation — from the two sets of hind-
cast simulations (hindcast-RIC and hindcast-CIC) drops to
a negligible value (in this case, 0.01). Given that the only
difference in the two sets of hindcast simulations is the ini-
tial conditions, Fig. 8 indicates the duration of the impact of
the initial conditions on the performance of hindcast simula-
tions. A blueish color in this figure indicates areas with short
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Figure 5. Same as Fig. 4, but for the Indus basin.

memories of the initial condition. We note that our hydro-
logical hindcasts are based on “offline” simulations in which
surface conditions like soil moisture do not affect meteoro-
logical forcings. The influence of the initial conditions, then,
is limited to direct impacts of water storage on the water
balance and does not include any potential land—atmosphere
feedbacks. Short memories generally present in areas receiv-
ing considerable summer monsoon precipitation, such as the
west coast and northeast parts of India, the southern slopes
of the Himalayas, the west coast, and the southeast of the
Indochinese peninsula (Figs. 8, S8). The soil in these wet ar-
eas becomes saturated during the monsoon seasons due to in-
tense precipitation. The memories of the initial conditions are
thus weakened or eliminated. In contrast, having less precip-
itation, the yellow areas have longer memories of the initial
conditions. This result is specific to our initialization month
and will differ with respect to the timing of the rainy season.

At basin scale, we see significant variability in the role that
initial conditions play in RZSM forecasts. For the Ganges
basin, the correlation of RZSM between the retrospective
simulations and the hindcast-CIC simulation is —0.04 in
May (Fig. 4c green line) due to low precipitation corre-
lation and inconsistent initial condition between the retro-
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spective and hindcast-CIC simulations. A significant dif-
ference between hindcast-RIC RZSM (Fig. 4c orange line)
and hindcast-CIC RZSM (Fig. 4c green line) in terms of
correlation with retrospective RZSM in May suggests that
an accurate initial condition is crucial to have meaningful
RZSM prediction. This difference, however, decreases in
June and July. The RZSM predictions from hindcast-RIC and
hindcast-CIC simulations become almost identical after July
as the memory of the initial condition is eliminated by the ac-
cumulating effects of meteorological forcing variables. The
elimination of the initial condition is also observed rather
quickly in June in the Mekong basin (Fig. S9)

In the drier Indus basin, the difference in RZSM prediction
skills between the hindcast-RIC and hindcast-CIC (Fig. 5c
yellow and green lines) reduces over the first 3 months. This
difference, however, is never eliminated. The difference be-
tween these two correlations becomes roughly constant from
August to January. In January, 9 months after initialization,
the RZSM from hindcast-RIC simulations still shows skillful
prediction while the RZSM correlation between the hindcast-
CIC and retrospective simulations becomes negative. This re-
sult indicates that in a drier basin, the impact of the initial
conditions is reduced but can still positively contribute to the

Hydrol. Earth Syst. Sci., 25, 41-61, 2021



52 Y. Zhou et al.: Seasonal forecasting system for South and Southeast Asian river basins

N
=)

s — )
(a) - Hindcast Precipitation (GEOS-525) =
Il Retrospective Precipitation (CHIRPS) - 15 £
c
1.0.2
=
©
=
t05 '3
o
€ = 0.0&
g —$— Hindcast-RIC climatology
g 0.231 —$— Retrospective climatology
v}
e
2 0.224
0
o
€ 021
3
(©) L0
=
tos 5§
=
0.0 @
=
L_058
O.SU
—4— RZSM (CIC) —8— Precipitation RZSM (RIC) --- Significance line ~1.0
(d) ® Retrospective
® Hindcast-RIC ensemble mean
2
]
- | F :
© s = .
£ : . L] )
2 N .
s * : % . L ~
] 3 °
T 1.: g ®s g e s s M T 5 E
N ’ »
5 Uoet | e 3N 1%,
.
= * [ [ [} -
S 3 i . [} L} 8 2
4 d
z L I L B : It ]
-11& e ~ S -
. . ] [ . *
[
-24{ May Jun Jul Aug Sep Oct Nov Dec n
By By BIunEy DUty BEIsuRy DIUINNY UiuIssy wiusy wuuuusy

Figure 6. Same as Fig. 4, but for the Helmand basin.

prediction skills of RZSM even 9 months after the initializa-
tion date. In the Brahmaputra basin, the impact of the initial
condition also lasts for the entire 9-month prediction period
(Fig. S10).

In the Helmand basin (see the location of Helmand basin
in Fig. 1), both hindcast-RIC and hindcast-CIC simulations
have significant correlations with RZSM in retrospective
simulations at the lead-one month (May) due to high agree-
ment between hindcast and retrospective precipitation prod-
ucts, but the hindcast-RIC simulation is still significantly bet-
ter than hindcast-CIC in this month. The predictability of
RZSM in hindcast-CIC simulations brought by skillful pre-
cipitation prediction in May is quickly lost in June and drops
to negative values from July to January, while the hindcast-
RIC simulation has skillful RZSM predictions through De-
cember on account of the long memory of initial conditions
through the protracted Helmand basin dry season.

The impact of initial conditions has also been studied us-
ing ensemble streamflow prediction (ESP) and reverse-ESP
methods (Yuan et al., 2016; Shukla and Lettenmaier, 2011;
Luo et al., 2008; Ma et al., 2018). These studies have yielded
similar conclusions regarding the fact that the initial condi-
tion has a longer impact when the forecast is initialized in a
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dry season and a shorter impact when the forecast is initial-
ized in a wet season.

3.3 Comparison with satellite estimates

The top-10 cm surface soil moisture (SSM) from retrospec-
tive and hindcast-RIC simulations is also evaluated against
the ESA-CCI SM products (see section 2b for details).
SSM values extracted from the ESA-CCI SM product, retro-
spective simulations, and hindcast-RIC simulations are pre-
processed to a monthly timescale before comparison. The
monthly ESA-CCI SM data are calculated by averaging all
available daily data for that month. To make a fair compar-
ison, we calculate retrospective and hindcast-RIC monthly
SSM data by first upscaling daily data to the same resolu-
tion as ESA-CCI SM (0.25° x 0.25°) and then averaging to
monthly timescale using only data from days when ESA-CCI
SM daily data are also available.

Figure 9 shows the inter-annual correlation map between
retrospective monthly SSM and ESA-CCI SM (left) and
the inter-annual correlations between hindcast-RIC monthly
SSM and ESA-CCI SM (right) using data in May, July,
and September between 2000-2017. The retrospective SSM
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Figure 7. Inter-annual correlation difference of root zone soil moisture (1 m) between hindcast simulations using real initial condition (RIC)
and climatological initial condition (CIC) against the retrospective simulations. The difference is computed as the correlation of RZSM
between hindcast simulations and retrospective simulations minus the correlation between hindcast simulations and retrospective simulations.
The hatched areas denote the statistically significant correlation difference at 0.95 confidence level.
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Figure 8. The smallest lead month when the forecast skills of root zone soil moisture (1 m) between hindcast simulations using real initial
condition and climatological initial condition (CIC) against retrospective simulations is less than 0.01.

in May has a high agreement with ESA-CCI SM in ar- Hindcast-RIC SSM generally has a lower correlation with
eas in south India, the Indochinese Peninsula, and northern ESA-CCI SM than retrospective SSM. In May, hindcast-RIC
Afghanistan. In July and September, the retrospective simu- SSM has a significant positive correlation with ESA-CCI SM

lation captures more spatial patterns of ESA-CCI SM than in in the Indochinese Peninsula and northern Afghanistan. In
May in Pakistan and India, but less in Afghanistan and the July and September, the forecast skill of SSM dramatically
Indochinese Peninsula.
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the statistically significant correlation at 0.95 confidence level.

drops. Areas with significant SSM only appear sporadically
in India, Nepal and the Indochinese Peninsula.

Figure 10 shows basin-scale comparisons with ESA-
CCI SM, with precipitation seasonality included for con-
text (Fig. 10a). At this scale we see high correlations be-
tween the retrospective simulation and ESA-CCI SM in most
basins in most months: correlations are significant in the In-
dus basin in all months; in the Helmand basin in all months
but September; in the Brahmaputra basin in all months ex-
cept for November; in the Ganges basins in all months except
for November and December; and in the Mekong basin in all
months except for August and September.

As expected, correlations are lower for the hindcast-RIC
simulations. In May, there are significant skills in all basins
but the Ganges basin, where the hindcast-RIC had also
shown low skill relative to retrospective simulations (see
Fig. 4). In June, skill drops off surprisingly quickly in the
Indus and Helmand basins, both of which showed extended
RZSM forecast skill when evaluated against the retrospective
simulation (see Figs. 5 and 6). This occurs despite the fact
that ESA-CCI SM and the retrospective run have a relatively
high correlation in these months. One reason that skill rela-
tive to ESA-CCI SM might drop off so quickly in these drier
basins is that the memory of SSM, as opposed to RZSM, is
short, especially in dry areas, and SSM can be highly sen-
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sitive to modest rainfall. This could make the ESA-CCI SM
evaluation more sensitive to errors in forecast precipitation
(see precipitation correlation in Figs. 5c, 6¢) than the RZSM
evaluation was, leading to a rapid loss of skill due to im-
perfect precipitation forecasts in the first few months of the
simulations. From July onward the basin-scale hindcast-RIC
evaluations relative to ESA-CCI SM are noisy; all basins
drop to non-significant correlations in July and August, but
there is a rebound to skillful prediction in the Mekong and
Helmand in September due to the rebound of the precipita-
tion forecast skill (see precipitation correlation in Figs. 6¢
and S9c). We also note that in the Helmand basin, the SSM
correlation in October shows the opposite tendency from the
precipitation correlation (Fig. 6¢). The difference could be
due to errors in ESA-CCI SM or CHIRPS, the influence of
missing data in ESA-CCI SM, or noise in the forecasts. By
November, the correlation between ESA-CCI and hindcast-
RIC SSM drops to insignificant levels for all basins. It is
worth noting that although on the basin scale we see signifi-
cant SSM correlation in the Brahmaputra basin in Septem-
ber, spatial SSM correlations suggest lower forecast skills
(Fig. 9). This difference in correlation suggests a spatial mis-
match in the SSM predictions. A similar difference in corre-
lation of spatial precipitation and basin-scale precipitation is
also found in the Brahmaputra basin (Figs. Sc and S6).

https://doi.org/10.5194/hess-25-41-2021



Y. Zhou et al.: Seasonal forecasting system for South and Southeast Asian river basins 55

-
o
=)

™
wn

N
v

Precipitation (mm/d)
o
o

o
o

Nov Dec Jan Feb Mar Apr

Iy
o

o
5

Correlation

0.0

May Jun Jul Aug Sep Oct

Nov Dec Jan Feb Mar Apr

Correlation

—— Helmand
—— Brahmaputra
—— Ganges
—— Indus
Mekong
s+ Precipitation
e Significant correlation

May Jun Jul Aug Sep Oct

Nov Dec Jan » Insignificant correlation

Figure 10. Comparison of (a) monthly retrospective precipitation climatology, (b) inter-annual correlation between monthly ESA-CCI SM
product and monthly retrospective surface soil moisture (top 10 cm) and (c) inter-annual correlation between monthly ESA-CCI SM product
and monthly forecasting SSM in five major river basins in South and Southeast Asia. Please note that the SSM data for a basin in a year are
flagged as missing data if more than 50 % of data points in a basin are missing in ESA-CCI SM monthly data. The criterion of significance

of correlation are then different due to different sample sizes.

3.4 Case study of the 2015 South and Southeast Asia
drought

The 2015 El Nifio event caused widespread drought in South
to Southeast Asia. This drought had significant impacts on
health, food security, and fire risks in more than nine coun-
tries in south—southeast Asia (Van Der Schrier et al., 2016;
Qian et al., 2019). Figure 11 shows the performance of our
system in monitoring and forecasting the development of the
2015-2016 drought in the Ganges and Mekong basins. This
hindcast is initialized on 1 May 2015.

In the Ganges basin, the precipitation (Fig. 11a) and
RZSM (Fig. 11e) values from the hindcast generally match
the magnitudes of the retrospective simulations. There is
some month-to-month discrepancy in precipitation hindcast
relative to the CHIRPS record used in the retrospective sim-
ulation, but over the course of the monsoon season, these dif-
ferences nearly average out — the hindcast only slightly over-
estimates precipitation (and thus underestimates the sever-
ity of the drought). This results in an RZSM forecast that is
generally consistent with the observations, albeit somewhat
less dry overall and noisier month-to-month, up until the final
month of the forecast.

In the Mekong basin, in contrast, the forecast underesti-
mates monsoon season precipitation (overestimates drought
severity) (Fig. 11b, d). This results in a hindcast in which
drought is both more severe and more persistent than ob-
served (Fig. 11f, h). Thus, the direction of the drought is
captured in this basin, but in application the hindcast might
overestimate the predicted impacts of this 2015 drought.
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The forecast of the RZSM standardized anomaly also cap-
tures the spatial pattern in the first 2 months in both the
Ganges basin and the Mekong basin (Figs. S11, S12).

3.5 Application of drought indicator

Applying a hydrological monitoring and forecast system to
drought applications requires that the ensemble simulation
output be converted to meaningful and interpretable drought
indicators. Here we use the Mekong and the Helmand basins
as examples to illustrate one method for doing so. This pro-
cess starts with the monthly RZSM values from both retro-
spective and hindcast-RIC simulations. In each month, the
percentile of the monthly RZSM values is calculated on a
gridded basis, based on a normal distribution fitted from the
18-year data record at each grid cell. The severity of drought
at each grid cell is then categorized based on the same
drought categories used in the United States Drought Moni-
tor (Svoboda et al., 2002): the severity is classified as excep-
tional drought (D4), extreme drought (D3), severe drought
(D2), moderate drought (D1), or abnormally dry (DO) using
RZSM percentile thresholds of 2%, 5 %, 10 %, 20 %, and
30 %, respectively.

Figures 12 and 13 show the fractional area of each drought
category for the retrospective simulation and the hindcast-
RIC simulations, for all lead times, in the Mekong and the
Helmand basins, respectively. In the Mekong basin, the hind-
cast simulations capture the major drought events reasonably
well in May (1-month lead time), though they overestimate
the drought areas in 2005 and underestimate them in 2010
(Fig. 12a). From June to August (2-month lead time to 4-

Hydrol. Earth Syst. Sci., 25, 41-61, 2021



56 Y. Zhou et al.: Seasonal forecasting system for South and Southeast Asian river basins

Ganges

Mekong

1001 (a)
7.5
5.0
25

Precipitation (mm/d)

0.0

10.0

(c)

Precipitation (SA)

)

(e)

RZSM

0.3251 (f)
0.3004
0.2754

0.2501

(9)
0.0

-0.5

RZSM (SA)

-1.0

0.01
—~0.51
-1.04

-1.51

WY

—2.01

2015/05 06 07 08 09 10 11
Year/Month

—e— Retrospective

12 2016/01

2015/05 06 07 08 09 10 11
Year/Month

12 2016/01

—e— Hindcast ensemble mean

Figure 11. Comparison of monitoring and forecasting system on 2015-2016 drought event in Ganges basin (left panels) and Mekong basin
(right panels) in terms of precipitation (a, b), precipitation standardized anomaly (c, d), root zone soil moisture (RZSM) (e, f); and RZSM

standardized anomaly (g, h).

month lead time), the hindcast simulations predict signifi-
cantly larger drought areas in 2005 and 2016 compared to
retrospective simulations, while hindcast-RIC and retrospec-
tive simulations estimate relatively similar drought areas in
other drought years (Fig. 12b—d). After August, the drought
areas become poorly estimated in hindcast-RIC simulations
compared to the retrospective simulations (Fig. 12e—i) due
to unskillful hindcast-RIC RZSM estimates in the Mekong
basin (Fig. S2c). If we focus on the 2015 drought event,
the hindcast-RIC and retrospective simulations agree well
in the first 3 months (Fig. 12a—c). Starting from August, the
hindcast-RIC simulations estimate larger drought areas than
the retrospective simulations, especially in the “exceptional
drought” category (Fig. 12d—i). This overestimation of the
drought area is consistent with the lower prediction of the
RZSM standardized anomaly in Fig. 11, and this overestima-
tion is mainly attributed to the lower precipitation forecast
from the downscaled GEOS-S2S-1 (Fig. S9). The progress
of a specific drought event can also be tracked by comparing
drought categories across different months (see red rectangle
in Figs. 12 and S5 for 2015 drought). The SAHFS-S2S shows
similar skills forecasting drought categories in the Ganges
(Fig. S13), Brahmaputra (Fig. S14), and the Indus (Fig. S15)
basins.

Consistent with a high correlation of RZSM between ret-
rospective and hindcast simulations (Fig. 6b), the fractional
drought area in the Helmand basin agrees well for the first
7 months (Fig. 13a—g). From the year 2000 to 2004, the
Helmand basin experienced severe drought conditions. In
2005, above-average rainfall ended this prolonged period of
drought conditions. In 2016, the drought condition was rel-
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atively stable from May to October and then became more
severe in November and December according to retrospec-
tive and hindcast-RIC simulations. In January, however, ret-
rospective simulations report a less severe drought than De-
cember, while hindcast-RIC simulations report a more severe
drought. It is worth noting that an intensification of drought
from one month to the next does not necessarily mean that the
soil moisture is drier than the previous month. Each month’s
drought indices are calculated relative to the distribution of
historical soil moisture conditions in that month.

4 Conclusions

In this study, we present a high-resolution soil moisture
monitoring system and sub-seasonal to seasonal forecast-
ing system for a South and Southeast Asia region, SAHFS-
S2S. SAHFS-S2S consists of a physically based land sur-
face model, analysis and observation-based meteorological
forcing datasets, and downscaled dynamically based mete-
orological forecasts. We compare 18 hindcast-RIC simula-
tions, each of which is initialized on 1 May in a year from
2000 to 2017, with corresponding retrospective simulations.
The comparisons show that the RZSM in hindcast-RIC sim-
ulations have considerable skill for the first 2 months, espe-
cially in the western part of the study domain, the Indochi-
nese Peninsula, and southern India. The hindcast-RIC simu-
lations continue to have high skills in the western part of the
research domain — which are the driest areas in the domain
— for another 5 months while showing generally low skill
in other regions. Results presented here only capture system
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skill for forecasts initialized in May, but diverse seasonality
across the study domain allows us to examine forecast per-
formance for both wet and dry season initialization dates.
To study the impact of the hydrological initial conditions
on forecast skill, we designed a set of control hindcast sim-
ulations, which are initialized with climatological hydrolog-
ical conditions (hindcast-CIC). In May (1-month lead time),
the hindcast-RIC simulations outperform hindcast-CIC sim-
ulations in most parts of the domain except for the Indochi-
nese Peninsula, where heavy precipitation quickly eliminates
the memory of the initial conditions. The difference between
the hindcast-RIC and hindcast-CIC simulations decreases as
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lead month increases, and the accumulated influence of me-
teorological forcing gradually overwhelms the impact of the
initial condition. In the Indochinese Peninsula, India, and
surrounding areas, where precipitation is relatively intense
in summer seasons, the influence of initial condition on the
forecast skill is eliminated after 2 to 3 months. The correla-
tion of precipitation dominates the prediction skills of RZSM
when such a considerable precipitation influence emerges.
When precipitation is low, however, the prediction skill of
RZSM depends on the RZSM prediction in the previous
month, with relatively less influence from other meteorolog-
ical forcing variables. This pattern becomes particularly im-
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portant in regions where the initialization dates (i.e., 1 May)
of hindcast-RIC simulations are around the beginning of dry
seasons. For example, in the Helmand basin, where the pre-
cipitation is mainly from mountain precipitation during the
winter and early spring months (see Sect. 2.1), the accurate
initial conditions help the prediction skills remain statisti-
cally significant for 8 months.

We also compared the surface soil moisture (SSM) from
retrospective simulations and hindcast-RIC simulations with
the ESA-CCI SM data product in the five major river basins
in the study domain. The comparison shows that the retro-
spective simulations capture inter-annual variability in most
of the months within the five basins. The SSM hindcasts in
four out of five major basins (all but the Ganges) generally
have a high correlation with ESA-CCI SM data in the first 1
or 2 months. The correlation then decreases for another 1 or
2 months, then increases again and reaches a second maxi-
mum after the peak monsoon rains (for which precipitation
forecast skill is limited) before decreasing for the rest of the
forecast period.

The prediction skill of the forecasting system of SAHFS-
S2S depends on the land surface model, initial conditions,
and meteorological forecasts. In this study, an accurate ini-
tial condition has been shown to have a positive contribution
for prediction skills over much of the simulation domain, and
particularly in dry areas and seasons. Future effort should be
made to improve the accuracy of initial conditions estimated
by the land surface model. This could include (1) assimilat-
ing ground or satellite-based observations into the land sur-
face model (Getirana et al., 2020a, c; Wanders et al., 2014)
and (2) better representation of anthropogenic influences, for
example, irrigation (Nie et al., 2019) and reservoirs (Wan-
ders and Wada, 2015; Getirana et al., 2020b), in the land
surface model or hydrological model. Errors in the mete-
orological forecast are also a clear limitation on the fore-
cast skill. Improved dynamically based S2S meteorological
forecast systems (Pegion et al., 2019), advanced statistical-
dynamical forecast methods (Madadgar et al., 2016; Shukla
et al., 2014), and improved bias correction and downscaling
methods (Rodrigues et al., 2018) are all areas of significant
research effort. The results presented here show that current
capabilities offer meaningful skill over shorter time horizons
for much of the domain, and also that performance can be im-
proved as each component of the forecast system improves.

Due to the difficulty of acquiring reliable, long-term
streamflow observations, it is difficult to evaluate the stream-
flow monitoring and forecasting in this study domain. How-
ever, Yang et al. (2011) evaluated Noah-MP forced by the
Global Land Data Assimilation System (GLDAS) in the
Mekong and Ganges basins in this study domain and found
that Noah-MP captured the seasonality of the streamflow
in both basins and magnitude in the Mekong basin but un-
derestimated the magnitude in the Ganges basin. Ghatak et
al. (2018) found that the Noah LSM forced by GDAS and
CHIRPS captured the timing of a 1-year flood event in the
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Indus basin but underestimated the magnitude and captured
both seasonal cycles and magnitude of streamflow in the
Kosi basin within the Ganges basin. The streamflow from
the SAHFS-S2S monitoring system has been found to have
similar results to those in Ghatak et al. (2018).

The SAHFS-S2S has been operationally implemented at
the International Centre for Integrated Mountain Develop-
ment (ICIMOD). The monitoring system updates about ev-
ery 10 days and the forecast system launches a 9-month hy-
drological forecast at the beginning of each month. The out-
puts of SAHFS-S2S have been integrated to ICIMOD’s Re-
gional Drought Monitoring and Outlook System (RDMOS),
which focuses on crop and drought conditions mainly within
countries in the Hindu Kush and Himalaya regions. This in-
tegrated system is designed to support local decision-makers
and government agencies concerned with food security and
drought preparation.

Data availability. Operational SAHFS-S2S data are available
through ICIMOD data portals (http:/tethys.icimod.org/apps/
regionaldrought/current/, ICIMOD, 2020). The retrospective and
hindcast simulations soil moisture outputs used in this evaluation
study are available through the Johns Hopkins University Data
Archive (https://doi.org/10.7281/T1/JYAHTN, Zhou et al., 2020).
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