Articles | Volume 25, issue 1
https://doi.org/10.5194/hess-25-375-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-375-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
At which timescale does the complementary principle perform best in evaporation estimation?
Liming Wang
Department of Hydraulic Engineering, State Key Laboratory of
Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
Songjun Han
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, China Institute of Water Resources and Hydropower Research,
Beijing 100038, China
Department of Hydraulic Engineering, State Key Laboratory of
Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
Related authors
No articles found.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2633–2654, https://doi.org/10.5194/hess-29-2633-2025, https://doi.org/10.5194/hess-29-2633-2025, 2025
Short summary
Short summary
We assessed the value of high-resolution data and parameter transferability across temporal scales based on seven catchments in northern China. We found that higher-resolution data do not always improve model performance, questioning the need for such data. Model parameters are transferable across different data resolutions but not across computational time steps. It is recommended to utilize a smaller computational time step when building hydrological models even without high-resolution data.
Zhen Cui and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2275–2291, https://doi.org/10.5194/hess-29-2275-2025, https://doi.org/10.5194/hess-29-2275-2025, 2025
Short summary
Short summary
This study investigates stormflow patterns in a forested watershed in north China, highlighting the fact that delayed stormflow is governed by soil water content (SWC) and groundwater level (GWL). When SWC exceeds its storage capacity, excess water infiltrates, recharging groundwater and gradually elevating GWL. Rising GWL enhances subsurface connectivity and lateral flow, synchronizing watershed responses and, in extreme cases, causing a delayed stormflow peak to merge with the direct stormflow peak.
Keer Zhang and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2025-1126, https://doi.org/10.5194/egusphere-2025-1126, 2025
Short summary
Short summary
Spotlighting on Drought-Flood Abrupt Alternation (DFAA) under climate change, this study investigates the mitigating role of reservoirs on DFAA in Lancang-Mekong River Basin. DFAA increase under SSP126 and SSP245, especially upstream Flood-to-Drought (FTD) and downstream Drought-To-Flood (DTF). Reservoirs markedly reduce wet season's FTD and year-round DTF, effectively shorten the monthly span of DFAA. FTD with poorer reservoir control is more challenging than DTF, though DTF is more probable.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025, https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Short summary
Common intuition holds that higher input data resolution leads to better results. To assess the benefits of high-resolution data, we conduct simulation experiments using data with various temporal resolutions across multiple catchments and find that higher-resolution data do not always improve model performance, challenging the necessity of pursuing such data. In catchments with small areas or significant flow variability, high-resolution data is more valuable.
Diego Avesani, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2025-664, https://doi.org/10.5194/egusphere-2025-664, 2025
Short summary
Short summary
Our study explores how different data sources (snow cover, glacier mass balance, and water isotopes) can improve hydrological modeling in large mountain basins. Using a Bayesian framework, we show that isotopes are particularly useful for reducing uncertainty in low-flow conditions, while snow and glacier data help during melt seasons. By addressing equifinality, our approach enhances model reliability, improving water management and streamflow predictions in mountainous regions.
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1033–1060, https://doi.org/10.5194/hess-29-1033-2025, https://doi.org/10.5194/hess-29-1033-2025, 2025
Short summary
Short summary
Owing to differences in the existing published results, we conducted a detailed analysis of the runoff components and future trends in the Yarlung Tsangpo River basin and found that the contributions of snowmelt and glacier melt runoff to streamflow (both ~5 %) are limited and much lower than previous results. The streamflow in this area will continuously increase in the future, but the overestimated contribution of glacier melt could lead to an underestimation of this increasing trend.
Ruidong Li, Jiapei Liu, Ting Sun, Shao Jian, Fuqiang Tian, and Guangheng Ni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3780, https://doi.org/10.5194/egusphere-2024-3780, 2025
Short summary
Short summary
This work presents a new approach to simulate sewer drainage effects for urban flooding with key missing information like flow directions and nodal depths estimated from incomplete information. Tested in Yinchuan, China, our approach exhibits high accuracy in reproducing flood depths and reliably outperforms existing methods in various rainfall scenarios. Our method offers a reliable tool for cities with limited sewer data to improve flood simulation performance.
Khosro Morovati, Keer Zhang, Lidi Shi, Yadu Pokhrel, Maozhou Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 5133–5147, https://doi.org/10.5194/hess-28-5133-2024, https://doi.org/10.5194/hess-28-5133-2024, 2024
Short summary
Short summary
This study examines large daily river flow fluctuations in the dammed Mekong River, developing integrated 3D hydrodynamic and response time models alongside a hydrological model with an embedded reservoir module. This approach allows estimation of travel times between hydrological stations and contributions of subbasins and upstream regions. Findings show a power correlation between upstream discharge and travel time, and significant fluctuations occurred even before dam construction.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024, https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Short summary
We investigated the response characteristics and occurrence conditions of bimodal hydrographs using 10 years of hydrometric and isotope data in a semi-humid forested watershed in north China. Our findings indicate that bimodal hydrographs occur when the combined total of the event rainfall and antecedent soil moisture index exceeds 200 mm. Additionally, we determined that delayed stormflow is primarily contributed to by shallow groundwater.
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024, https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary
Short summary
This paper utilized a tracer-aided model validated by multiple datasets in a large mountainous basin on the Tibetan Plateau to analyze hydrological sensitivity to climate change. The spatial pattern of the local hydrological sensitivities and the influence factors were analyzed in particular. The main finding of this paper is that the local hydrological sensitivity in mountainous basins is determined by the relationship between the glacier area ratio and the mean annual precipitation.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
Geosci. Model Dev., 16, 751–778, https://doi.org/10.5194/gmd-16-751-2023, https://doi.org/10.5194/gmd-16-751-2023, 2023
Short summary
Short summary
We developed SHAFTS (Simultaneous building Height And FootprinT extraction from Sentinel imagery), a multi-task deep-learning-based Python package, to estimate average building height and footprint from Sentinel imagery. Evaluation in 46 cities worldwide shows that SHAFTS achieves significant improvement over existing machine-learning-based methods.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022, https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Short summary
Tracer-aided hydrological models are useful tool to reduce uncertainty of hydrological modeling in cold basins, but there is little guidance on the sampling strategy for isotope analysis, which is important for large mountainous basins. This study evaluated the reliance of the tracer-aided modeling performance on the availability of isotope data in the Yarlung Tsangpo river basin, and provides implications for collecting water isotope data for running tracer-aided hydrological models.
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022, https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
Short summary
There is increasing tension among the riparian countries of transboundary rivers. This article proposes a socio-hydrological framework that incorporates the slow and less visible societal processes into existing hydro-economic models, revealing the slow and hidden feedbacks between societal and hydrological processes. This framework will contribute to process-based understanding of the complex mechanism that drives conflict and cooperation in transboundary river management.
Liying Guo, Jing Wei, Keer Zhang, Jiale Wang, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 1165–1185, https://doi.org/10.5194/hess-26-1165-2022, https://doi.org/10.5194/hess-26-1165-2022, 2022
Short summary
Short summary
Data support is crucial for the research of conflict and cooperation on transboundary rivers. Conventional, manual constructions of datasets cannot meet the requirements for fast updates in the big data era. This study brings up a revised methodological framework, based on the conventional method, and a toolkit for the news media dataset tracking of conflict and cooperation dynamics on transboundary rivers. A dataset with good tradeoffs between data relevance and coverage is generated.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 25, 6151–6172, https://doi.org/10.5194/hess-25-6151-2021, https://doi.org/10.5194/hess-25-6151-2021, 2021
Short summary
Short summary
Hydrological modeling has large problems of uncertainty in cold regions. Tracer-aided hydrological models are increasingly used to reduce uncertainty and refine the parameterizations of hydrological processes, with limited application in large basins due to the unavailability of spatially distributed precipitation isotopes. This study explored the utility of isotopic general circulation models in driving a tracer-aided hydrological model in a large basin on the Tibetan Plateau.
Kunbiao Li, Fuqiang Tian, Mohd Yawar Ali Khan, Ran Xu, Zhihua He, Long Yang, Hui Lu, and Yingzhao Ma
Earth Syst. Sci. Data, 13, 5455–5467, https://doi.org/10.5194/essd-13-5455-2021, https://doi.org/10.5194/essd-13-5455-2021, 2021
Short summary
Short summary
Due to complex climate and topography, there is still a lack of a high-quality rainfall dataset for hydrological modeling over the Tibetan Plateau. This study aims to establish a high-accuracy daily rainfall product over the southern Tibetan Plateau through merging satellite rainfall estimates based on a high-density rainfall gauge network. Statistical and hydrological evaluation indicated that the new dataset outperforms the raw satellite estimates and several other products of similar types.
Yi Nan, Lide Tian, Zhihua He, Fuqiang Tian, and Lili Shao
Hydrol. Earth Syst. Sci., 25, 3653–3673, https://doi.org/10.5194/hess-25-3653-2021, https://doi.org/10.5194/hess-25-3653-2021, 2021
Short summary
Short summary
This study integrated a water isotope module into the hydrological model THREW. The isotope-aided model was subsequently applied for process understanding in the glacierized watershed of Karuxung river on the Tibetan Plateau. The model was used to quantify the contribution of runoff component and estimate the water travel time in the catchment. Model uncertainties were significantly constrained by using additional isotopic data, improving the process understanding in the catchment.
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Short summary
The upstream countries in the transboundary Lancang–Mekong basin build dams for hydropower, while downstream ones gain irrigation and fishery benefits. Dam operation changes the seasonality of runoff downstream, resulting in their concerns. Upstream countries may cooperate and change their regulations of dams to gain indirect political benefits. The socio-hydrological model couples hydrology, reservoir, economy, and cooperation and reproduces the phenomena, providing a useful model framework.
Jing Wei, Yongping Wei, Fuqiang Tian, Natalie Nott, Claire de Wit, Liying Guo, and You Lu
Hydrol. Earth Syst. Sci., 25, 1603–1615, https://doi.org/10.5194/hess-25-1603-2021, https://doi.org/10.5194/hess-25-1603-2021, 2021
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration:
Guidelines for computing crop water requirements, FAO irrigation and
drainage paper No. 56, Food and Agricultural Organization of the UN, Rome,
Italy, 1998.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K., Pilegaard, K., Schmid, H., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of
ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B.
Am. Meteorol. Soc., 82, 2415–2434,
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Bouchet, R. J.: Evapotranspiration réelle et potentielle, signification
climatique, Int. Assoc. Hydrolog. Sci. Publ., 62, 134–142, 1963.
Brubaker, K. L. and Entekhabi, D.: Analysis of feedback mechanisms in
land-atmosphere interaction, Water Resour. Res., 32, 1343–1357,
https://doi.org/10.1029/96wr00005, 1996.
Brutsaert, W.: A generalized complementary principle with physical
constraints for land-surface evaporation, Water Resour. Res., 51,
8087–8093, https://doi.org/10.1002/2015wr017720, 2015.
Brutsaert, W. and Parlange, M. B.: Hydrologic cycle explains the evaporation
paradox, Nature, 396, p. 30, https://doi.org/10.1038/23845, 1998.
Brutsaert, W. and Stricker, H.: Advection-Aridity approach to estimate actual
regional evapotranspiration, Water Resour. Res., 15, 443–450,
https://doi.org/10.1029/WR015i002p00443, 1979.
Brutsaert, W., Li, W., Takahashi, A., Hiyama, T., Zhang, L., and Liu, W. Z.:
Nonlinear advection-aridity method for landscape evaporation and its
application during the growing season in the southern Loess Plateau of the
Yellow River basin, Water Resour. Res., 53, 270–282, https://doi.org/10.1002/2016wr019472, 2017.
Brutsaert, W., Cheng, L., and Zhang, L.: Spatial distribution of global
landscape evaporation in the early twenty first century by means of a
generalized complementary approach, J. Hydrometeorol., 21, 287–298,
https://doi.org/10.1175/JHM-D-19-0208.1, 2020.
Budyko, M. I.: Climate and Life, Academic Press, San Diego, CA, USA, 1974.
Crago, R. and Crowley, R.: Complementary relationships for
near-instantaneous evaporation, J. Hydrol., 300, 199–211,
https://doi.org/10.1016/j.jhydrol.2004.06.002, 2005.
Crago, R. D. and Qualls, R. J.: Evaluation of the generalized and rescaled
complementary evaporation relationships, Water Resour. Res., 54,
8086–8102, https://doi.org/10.1029/2018wr023401, 2018.
Ershadi, A., McCabe, M. F., Evans, J. P., Chaney, N. W., and Wood, E. F.:
Multi-site evaluation of terrestrial evaporation models using FLUXNET data,
Agric. Forest Meteorol., 187, 46–61, https://doi.org/10.1016/j.agrformet.2013.11.008, 2014.
Fu, B. P.: On the calculation of the evaporation from land surface, Sci. Atmos. Sin., 5, 23–31, 1981 (in
Chinese).
Han, S. and Tian, F.: A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions, Hydrol. Earth Syst. Sci., 24, 2269–2285, https://doi.org/10.5194/hess-24-2269-2020, 2020.
Han, S. J., Hu, H. P., and Tian, F. Q.: Evaluating the Advection-Aridity model of
evaporation using data from field-sized surfaces of HEIFE, IAHS Publ.,
322, 9–14, 2008.
Han, S. J., Hu, H. P., Yang, D. W., and Tian, F. Q.: A complementary
relationship evaporation model referring to the Granger model and the
advection-aridity model, Hydrol. Process., 25, 2094–2101,
https://doi.org/10.1002/hyp.7960, 2011.
Han, S. J., Hu, H. P., and Tian, F. Q.: A nonlinear function approach for the
normalized complementary relationship evaporation model, Hydrol. Process.,
26, 3973–3981, https://doi.org/10.1002/hyp.8414, 2012.
Han, S. J. and Tian, F. Q.: Derivation of a sigmoid generalized complementary
function for evaporation with physical constraints, Water Resour. Res.,
54, 5050–5068, https://doi.org/10.1029/2017wr021755, 2018.
Han, S. and Tian, F.: A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions, Hydrol. Earth Syst. Sci., 24, 2269–2285, https://doi.org/10.5194/hess-24-2269-2020, 2020.
Hobbins, M. T. and Ramirez, J. A.: Trends in pan evaporation and actual
evapotranspiration across the conterminous US: Paradoxical or
complementary?, Geophys. Res. Lett. 31, 405–407,
https://doi.org/10.1029/2004GL019846, 2004.
Hobbins, M. T., Ramirez, J. A., and Brown, T. C.: The complementary relationship
in estimation of regional evapotranspiration: An enhanced Advection-Aridity
model, Water Resour. Res., 37, 1389–1403,
https://doi.org/10.1029/2000wr900359, 2001.
Hu, Z. Y., Wang, G. X., Sun, X. Y., Zhu, M. Z., Song, C. L., Huang, K. W., and Chen, X. P.: Spatial-temporal patterns of evapotranspiration along an
elevation gradient on Mount Gongga, Southwest China, Water Resour. Res.,
54, 4180–4192, https://doi.org/10.1029/2018wr022645, 2018.
Kahler, D. M. and Brutsaert, W.: Complementary relationship between daily
evaporation in the environment and pan evaporation, Water Resour. Res.,
42, W05413, https://doi.org/10.1029/2005WR004541, 2006.
Legates, D. R. and Mccabe, G. J.: Evaluating the use of “goodness-of-fit”
Measures in hydrologic and hydroclimatic model validation, Water Resour.
Res., 35, 233–241, https://doi.org/10.1029/1998wr900018, 1999.
Liu, X. M., Liu, C. M., and Brutsaert, W.: Regional evaporation estimates in the
eastern monsoon region of China: Assessment of a nonlinear formulation of
the complementary principle, Water Resour. Res., 52, 9511–9521,
https://doi.org/10.1002/2016wr019340, 2016.
Ma, N., Zhang, Y. S., Szilagyi, J., Guo, Y. H., Zhai, J. Q., and Gao, H. F.:
Evaluating the complementary relationship of evapotranspiration in the
alpine steppe of the Tibetan Plateau, Water Resour. Res., 51,
1069–1083, https://doi.org/10.1002/2014wr015493, 2015a.
Ma, N., Zhang, Y. S., Xu, C. Y., and Szilagyi, J.: Modeling actual
evapotranspiration with routine meteorological variables in the data-scarce
region of the Tibetan Plateau: Comparisons and implications, J. Geophys.
Res.-Biogeo., 120, 1638–1657, https://doi.org/10.1002/2015jg003006,
2015b.
Ma, N., Szilagyi, J., Zhang, Y., and Liu, W.: Complementary relationship-based
modeling of terrestrial evapotranspiration across China during 1982–2012:
Validations and spatiotemporal analyses, J. Geophys. Res.-Atmos., 124,
4326–4351, https://doi.org/10.1029/2018JD029850, 2019.
Monin, A. and Obukhov, A.: Basic laws of turbulent mixing in the surface layer
of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 151, e187, https://gibbs.science/efd/handouts/monin_obukhov_1954.pdf (last access: 12 July 2020),
1954.
Monteith, J. L.: Evaporation and environment, in: Symposium of the Society
of Experimental Biology, Cambridge, UK, 1 January 1965,
PMID: 5321565, 19, 205–234, 1965.
Morton, F. I.:
Operational estimates of areal evapo-transpiration and their significance to
the science and practice of hydrology, J. Hydrol., 66, 1–76,
https://doi.org/10.1016/0022-1694(83)90177-4, 1983.
Neelin, J. D., Held, I. M., and Cook, K. H.: Evaporation-wind feedback and
low-frequency variability in the tropical atmosphere, J. Atmos. Sci.,
44, 2341–2348, https://doi.org/10.1175/1520-0469(1987)044<2341:Ewfalf>2.0.Co;2, 1987.
Parlange, M. B. and Katul, G. G.: An advection-aridity evaporation model, Water
Resour. Res., 28, 127–132, https://doi.org/10.1029/91WR02482, 1992.
Penman, H. L.: Natural evaporation from open water, bare soil and grass,
Proc. R. Soc. Lond. A., 193, 120–145,
https://doi.org/10.1098/rspa.1948.0037, 1948.
Penman, H. L.: The dependence of transpiration on weather and soil
conditions, J. Soil Sci., 1, 74–89,
https://doi.org/10.1111/j.1365-2389.1950.tb00720.x, 1950.
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat-flux
and evaporation using large-scale parameters, Mon. Weather Rev., 100,
81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:Otaosh>2.3.Co;2, 1972.
Qualls, R. J. and Gultekin, H.: Influence of components of the
advection-aridity approach on evapotranspiration estimation, J. Hydrol.,
199, 3–12, https://doi.org/10.1016/S0022-1694(96)03314-8, 1997.
Shukla, J. and Mintz, Y.: Influence of land-surface evapo-transpiration on the
earths climate, Science, 215, 1498–1501,
https://doi.org/10.1126/science.215.4539.1498, 1982.
Sugita, M., Usui, J., Tamagawa, I., and Kaihotsu, I.: Complementary
relationship with a convective boundary layer model to estimate regional
evaporation, Water Resour. Res., 37, 353–365,
https://doi.org/10.1029/2000wr900299, 2001.
Szilagyi, J.: On the inherent asymmetric nature of the complementary
relationship of evaporation, Geophys. Res. Lett., 34, L02405,
https://doi.org/10.1029/2006gl028708, 2007.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P., Meyers,
T. P., and Wesely, M. L.: Correcting eddy-covariance flux underestimates over a
grassland, Agr. Forest Meteorol., 103, 279–300,
https://doi.org/10.1016/S0168-1923(00)00123-4, 2000.
U.S. Department of Energy: FLUXNET2015, http://fluxnet.fluxdata.org, 15 Fenriaru 2020.
Wang, K. C. and Dickinson, R. E.: A review of global terrestrial
evapotranspiration: observation, modeling, climatology, and climatic
variability, Rev. Geophys., 50, 2011RG000373, https://doi.org/10.1029/2011rg000373, 2012.
Wang, L. M., Tian, F. Q., Han, S. J., and Wei, Z. W.: Determinants of the
asymmetric parameter in the generalized complementary principle of
evaporation, Water Resour. Res, 56, e2019WR026570,
https://doi.org/10.1029/2019WR026570, 2020.
Zhang, L., Cheng, L., and Brutsaert, W.: Estimation of land surface evaporation
using a generalized nonlinear complementary relationship, J. Geophys. Res.-Atmos., 122, 1475–1487, https://doi.org/10.1002/2016jd025936, 2017.
Zhou, H., Han, S., and Liu, W.: Evaluation of two generalized complementary
functions for annual evaporation estimation on the loess plateau, China, J.
Hydrol., 587, 124980, https://doi.org/10.1016/j.jhydrol.2020.124980, 2020.
Short summary
It remains unclear at which timescale the complementary principle performs best in estimating evaporation. In this study, evaporation estimation was assessed over 88 eddy covariance monitoring sites at multiple timescales. The results indicate that the generalized complementary functions perform best in estimating evaporation at the monthly scale. This study provides a reference for choosing a suitable time step for evaporation estimations in relevant studies.
It remains unclear at which timescale the complementary principle performs best in estimating...