Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2705-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-2705-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Causal effects of dams and land cover changes on flood changes in mainland China
Wencong Yang
Department of Hydraulic Engineering, Tsinghua University, Beijing,
100084, China
State Key Laboratory of Hydro-Science and Engineering, Tsinghua
University, Beijing, 100084, China
Department of Hydraulic Engineering, Tsinghua University, Beijing,
100084, China
State Key Laboratory of Hydro-Science and Engineering, Tsinghua
University, Beijing, 100084, China
Dawen Yang
Department of Hydraulic Engineering, Tsinghua University, Beijing,
100084, China
State Key Laboratory of Hydro-Science and Engineering, Tsinghua
University, Beijing, 100084, China
Aizhong Hou
Hydrological Forecast Center, Ministry of Water Resources of the
People's Republic of China, Beijing, 100053, China
Related authors
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Changming Li, Hanbo Yang, Wencong Yang, Ziwei Liu, Yao Jia, Sien Li, and Dawen Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-456, https://doi.org/10.5194/essd-2021-456, 2022
Revised manuscript not accepted
Short summary
Short summary
A long-term (1980–2020) global ET product is generated based on a collocation-based merging method. The produced Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data (CAMELE) performed well over different vegetation coverage against in-situ data. For global comparison, the spatial distribution of multi-year average and annual variation were in consistent with inputs.The CAMELE products is freely available at https://doi.org/10.5281/zenodo.6283239 (Li et al., 2021).
Wangyipu Li, Zhaoyuan Yao, Yifan Qu, Hanbo Yang, Yang Song, Lisheng Song, Lifeng Wu, and Yaokui Cui
Earth Syst. Sci. Data, 17, 3835–3855, https://doi.org/10.5194/essd-17-3835-2025, https://doi.org/10.5194/essd-17-3835-2025, 2025
Short summary
Short summary
Due to shortcomings such as extensive data gaps and limited observation durations in current ground-based latent heat flux (LE) datasets, we developed a novel gap-filling and prolongation framework for ground-based LE observations, establishing a benchmark dataset for global evapotranspiration (ET) estimation from 2000 to 2022 across 64 sites at various timescales. This comprehensive dataset can strongly support ET modeling, water–carbon cycle monitoring, and long-term climate change analysis.
Huilan Shen, Hanbo Yang, and Changming Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-2152, https://doi.org/10.5194/egusphere-2025-2152, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Climate change, rising CO2, and vegetation changes are reshaping global water cycle, but their impacts remain unclear. We improved the coupled carbon and water model to analyze China’s water yield (WY) change (1982–2017). Our results showed that climate change was the dominant driver nationally, vegetation/CO2 most affected in 400–1600 mm precipitation zones. Projections indicate CO2 may increase WY 1.3 % annually by 2100, surpassing other drivers. This work informs sustainable water management.
Yufen He, Changming Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-349, https://doi.org/10.5194/hess-2024-349, 2024
Preprint under review for HESS
Short summary
Short summary
Our research presents an improved method to enhance the understanding and prediction of water flows in rivers and streams, focusing on key runoff components: surface flow, baseflow, and total runoff. Using a streamlined model, the MPS model, we analyzed over 600 catchments in China and the U.S., demonstrating its accuracy in capturing the spatial and temporal variability of these components. This model offers a practical tool for water resource management.
Ziwei Liu, Hanbo Yang, Changming Li, and Taihua Wang
Hydrol. Earth Syst. Sci., 28, 4349–4360, https://doi.org/10.5194/hess-28-4349-2024, https://doi.org/10.5194/hess-28-4349-2024, 2024
Short summary
Short summary
The determination of the coefficient α in the Priestley–Taylor equation is empirical. Based on an atmospheric boundary layer model, we derived a physically clear and parameter-free expression to investigate the behavior of α. We showed that the temperature dominates changes in α and emphasized that the variation of α with temperature should be considered for long-term hydrological predictions. Our works advance and promote the most classical models in the field.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Changming Li, Hanbo Yang, Wencong Yang, Ziwei Liu, Yao Jia, Sien Li, and Dawen Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-456, https://doi.org/10.5194/essd-2021-456, 2022
Revised manuscript not accepted
Short summary
Short summary
A long-term (1980–2020) global ET product is generated based on a collocation-based merging method. The produced Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data (CAMELE) performed well over different vegetation coverage against in-situ data. For global comparison, the spatial distribution of multi-year average and annual variation were in consistent with inputs.The CAMELE products is freely available at https://doi.org/10.5281/zenodo.6283239 (Li et al., 2021).
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Cited articles
Bai, P., Liu, X. M., Liang, K., and Liu, C. M.: Investigation of changes in
the annual maximum flood in the Yellow River basin, China, Quatern. Int., 392, 168–177, https://doi.org/10.1016/j.quaint.2015.04.053, 2016.
Bassiouni, M., Vogel, R. M., and Archfield, S. A.: Panel regressions to
estimate low-flow response to rainfall variability in ungaged basins, Water
Resour. Res., 52, 9470–9494, https://doi.org/10.1002/2016wr018718, 2016.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Koppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., van Dijk,
A. I. J. M., McVicar, T. R., and Adler, R. F.: MSWEP V2 Global 3-Hourly 0.1 degrees Precipitation: Methodology and Quantitative Assessment, B. Am.
Meteorol. Soc., 100, 473–502, https://doi.org/10.1175/Bams-D-17-0138.1, 2019.
Bertola, M., Viglione, A., and Bloschl, G.: Informed attribution of flood
changes to decadal variation of atmospheric, catchment and river drivers in
Upper Austria, J. Hydrol., 577, 123919, https://doi.org/10.1016/j.jhydrol.2019.123919,
2019.
Blöschl, G., Hall, J., Viglione, A., Perdigao, R. A. P., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A., Bohac, M., Bonacci, O., Borga, M., Canjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gul, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnova, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J. L., Sauquet, E., Sraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and Zivkovic, N.: Changing climate both increases and decreases European river floods, Nature, 573, 108–111, https://doi.org/10.1038/s41586-019-1495-6, 2019.
Blöschl, G., Gaal, L., Hall, J., Kiss, A., Komma, J., Nester, T., Parajka, J., Perdigao, R. A. P., Plavcova, L., Rogger, M., Salinas, J. L., and Viglione, A.: Increasing river floods: fiction or reality?, Wires Water, 2, 329–344, https://doi.org/10.1002/wat2.1079, 2015.
Blum, A. G., Ferraro, P. J., Archfield, S. A., and Ryberg, K. R.: Causal
Effect of Impervious Cover on Annual Flood Magnitude for the United States,
Geophys. Res. Lett., 47, e2019GL086480, https://doi.org/10.1029/2019GL086480, 2020.
Cheng, S. J., Guan, X. D., Huang, J. P., Ji, F., and Guo, R. X.: Long-term
trend and variability of soil moisture over East Asia, J. Geophys. Res.-Atmos., 120, 8658–8670, https://doi.org/10.1002/2015jd023206, 2015.
Davenport, F. V., Herrera-Estrada, J. E., Burke, M., and Diffenbaugh, N. S.:
Flood Size Increases Nonlinearly Across the Western United States in Response to Lower Snow-Precipitation Ratios, Water Resour. Res., 56, e2019WR025571, https://doi.org/10.1029/2019WR025571, 2020.
De Niel, J. and Willems, P.: Climate or land cover variations: what is driving observed changes in river peak flows? A data-based attribution
study, Hydrol. Earth Syst. Sci., 23, 871–882, https://doi.org/10.5194/hess-23-871-2019, 2019.
Di Baldassarre, G., Sivapalan, M., Rusca, M., Cudennec, C., Garcia, M., Kreibich, H., Konar, M., Mondino, E., Mard, J., Pande, S., Sanderson, M. R.,
Tian, F. Q., Viglione, A., Wei, J., Wei, Y. P., Yu, D. J., Srinivasan, V.,
and Bloschl, G.: Sociohydrology: Scientific Challenges in Addressing the
Sustainable Development Goals, Water Resour. Res., 55, 6327–6355,
https://doi.org/10.1029/2018wr023901, 2019.
Du, S. Q., He, C. Y., Huang, Q. X., and Shi, P. J.: How did the urban land
in floodplains distribute and expand in China from 1992–2015?, Environ. Res.
Let t., 13, 034018, https://doi.org/10.1088/1748-9326/aaac07, 2018.
Du, S. Q., Cheng, X. T., Huang, Q. X., Chen, R. S., Ward, P. J., and Aerts,
J. C. J. H.: Brief communication: Rethinking the 1998 China floods to prepare for a nonstationary future, Nat. Hazards Earth Syst. Sci., 19, 715–719,
https://doi.org/10.5194/nhess-19-715-2019, 2019.
ESA: http://maps.elie.ucl.ac.be/CCI/viewer/download.php, last access: 6 October 2020.
Ferreira, S. and Ghimire, R.: Forest cover, socioeconomics, and reported flood frequency in developing countries, Water Resour. Res., 48, W08529,
https://doi.org/10.1029/2011wr011701, 2012.
FitzHugh, T. W. and Vogel, R. M.: The impact of dams on flood flows in the
United States, River Res. Appl., 27, 1192–1215, https://doi.org/10.1002/rra.1417, 2011.
Gaure, S.: lfe: Linear group fixed effects, R package version 2.8-5.1, available at:
https://cran.r-project.org/web/packages/lfe/index.html (last access: 13 October 2020), 2019.
GDW: http://globaldamwatch.org, last access: 26 February 2019.
GloH2O: High-resolution, bias-corrected weather data for the past, present, and future, available at: http://www.gloh2o.org/, last access: 18 March 2020.
Hodgkins, G. A., Dudley, R. W., Archfield, S. A., and Renard, B.: Effects of
climate, regulation, and urbanization on historical flood trends in the United States, J. Hydrol., 573, 697–709, https://doi.org/10.1016/j.jhydrol.2019.03.102, 2019.
Jehn, F. U., Bestian, K., Breuer, L., Kraft, P., and Houska, T.: Using
hydrological and climatic catchment clusters to explore drivers of catchment
behavior, Hydrol. Earth Syst. Sci., 24, 1081–1100, https://doi.org/10.5194/hess-24-1081-2020, 2020.
Kundzewicz, Z. W., Su, B. D., Wang, Y. J., Xia, J., Huang, J. L., and Jiang,
T.: Flood risk and its reduction in China, Adv. Water Resour., 130, 37–45,
https://doi.org/10.1016/j.advwatres.2019.05.020, 2019.
Lehner, B., Liermann, C. R., Revenga, C., Vorosmarty, C., Fekete, B., Crouzet, P., Doll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C.,
Robertson, J. C., Rodel, R., Sindorf, N., and Wisser, D.: High-resolution
mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502, https://doi.org/10.1890/100125, 2011.
Levy, M. C., Lopes, A. V., Cohn, A., Larsen, L. G., and Thompson, S. E.:
Land Use Change Increases Streamflow Across the Arc of Deforestation in Brazil, Geophys. Res. Lett., 45, 3520–3530, https://doi.org/10.1002/2017gl076526, 2018.
Lu, W. W., Lei, H. M., Yang, D. W., Tang, L. H., and Miao, Q. H.: Quantifying the impacts of small dam construction on hydrological alterations in the Jiulong River basin of Southeast China, J. Hydrol., 567, 382–392, https://doi.org/10.1016/j.jhydrol.2018.10.034, 2018.
Mann, H. B.: Nonparametric Tests Against Trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.
McManamay, R. A.: Quantifying and generalizing hydrologic responses to dam
regulation using a statistical modeling approach, J. Hydrol., 519, 1278–1296, https://doi.org/10.1016/j.jhydrol.2014.08.053, 2014.
Merz, B., Vorogushyn, S., Uhlemann, S., Delgado, J., and Hundecha, Y.: HESS
Opinions “More efforts and scientific rigour are needed to attribute trends
in flood time series”, Hydrol. Earth Syst. Sci., 16, 1379–1387,
https://doi.org/10.5194/hess-16-1379-2012, 2012.
Merz, R., Tarasova, L., and Basso, S.: The flood cooking book: ingredients
and regional flavors of floods across Germany, Environ. Res. Lett., 15, 114024, https://doi.org/10.1088/1748-9326/abb9dd, 2020.
Mogollón, B., Frimpong, E. A., Hoegh, A. B., and Angermeier, P. L.: Recent Changes in Stream Flashiness and Flooding, and Effects of Flood Management in North Carolina and Virginia, J. Am. Water Resour. Assoc., 52, 561–577, https://doi.org/10.1111/1752-1688.12408, 2016.
Müller, M. F. and Levy, M. C.: Complementary Vantage Points: Integrating
Hydrology and Economics for Sociohydrologic Knowledge Generation, Water Resour. Res., 55, 2549–2571, https://doi.org/10.1029/2019wr024786, 2019.
MWR: http://www.mwr.gov.cn/english/, last access: 7 May 2020.
Pande, S. and Sivapalan, M.: Progress in socio-hydrology: a meta-analysis of challenges and opportunities, Wires Water, 4, e1193, https://doi.org/10.1002/wat2.1193, 2017.
Pearl, J. and Mackenzie, D.: The book of why: the new science of cause and
effect, Basic Books, New York, 2020.
Peña, L. E., Barrios, M., and Frances, F.: Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale, J. Hydrol., 541, 1258–1272, https://doi.org/10.1016/j.jhydrol.2016.08.031, 2016.
Pettitt, A. N.: A Non-Parametric Approach to the Change-Point Problem,
Appl. Stat., 28, 126–135, https://doi.org/10.2307/2346729, 1979.
Prosdocimi, I., Kjeldsen, T. R., and Miller, J. D.: Detection and attribution of urbanization effect on flood extremes using nonstationary flood-frequency models, Water Resour. Res., 51, 4244–4262, https://doi.org/10.1002/2015wr017065, 2015.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, available at:
http://www.R-project.org (last access: 13 October 2020), 2019.
Reynolds, A. P., Richards, G., de la Iglesia, B., and Rayward-Smith, V. J.:
Clustering Rules: A Comparison of Partitioning and Hierarchical Clustering
Algorithms, J. Math. Model. Algorit., 5, 475–504, https://doi.org/10.1007/s10852-005-9022-1, 2006.
Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J. C., Bodner, G., Borga, M., Chaplot, V., Gallart, F., Glatzel, G., Hall, J., Holden, J., Holko, L.,
Horn, R., Kiss, A., Kohnova, S., Leitinger, G., Lennartz, B., Parajka, J.,
Perdigao, R., Peth, S., Plavcova, L., Quinton, J. N., Robinson, M., Salinas,
J. L., Santoro, A., Szolgay, J., Tron, S., van den Akker, J. J. H., Viglione, A., and Bloschl, G.: Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research, Water Resour. Res., 53, 5209–5219, https://doi.org/10.1002/2017wr020723, 2017.
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E.,
Glymour, C., Kretschmer, M., Mahecha, M. D., Munoz-Mari, J., van Nes, E. H.,
Peters, J., Quax, R., Reichstein, M., Scheffer, M., Scholkopf, B., Spirtes,
P., Sugihara, G., Sun, J., Zhang, K., and Zscheischler, J.: Inferring causation from time series in Earth system sciences, Nat. Commun., 10, 2553, https://doi.org/10.1038/s41467-019-10105-3, 2019.
Stein, L., Pianosi, F., and Woods, R.: Event-based classification for global
study of river flood generating processes, Hydrol. Process., 34, 1514–1529,
https://doi.org/10.1002/hyp.13678, 2020.
Steinschneider, S., Yang, Y. C. E., and Brown, C.: Panel regression techniques for identifying impacts of anthropogenic landscape change on
hydrologic response, Water Resour. Res., 49, 7874–7886, https://doi.org/10.1002/2013wr013818, 2013.
Umer, Y. M., Jetten, V. G., and Ettema, J.: Sensitivity of flood dynamics to
different soil information sources in urbanized areas, J. Hydrol., 577, 123945, https://doi.org/10.1016/j.jhydrol.2019.123945, 2019.
Viglione, A., Merz, B., Dung, N. V., Parajka, J., Nester, T., and Bloschl, G.: Attribution of regional flood changes based on scaling fingerprints,
Water Resour. Res., 52, 5322–5340, https://doi.org/10.1002/2016wr019036, 2016.
Villarini, G. and Slater, L.: Climatology of Flooding in the United States,
Oxford Research Encyclopedia of Natural Hazard Science, Oxford, 2017.
Wang, W., Li, H. Y., Leung, L. R., Yigzaw, W., Zhao, J. S., Lu, H., Deng, Z.
Q., Demisie, Y., and Bloschl, G.: Nonlinear Filtering Effects of Reservoirs
on Flood Frequency Curves at the Regional Scale, Water Resour. Res., 53,
8277–8292, https://doi.org/10.1002/2017wr020871, 2017.
Wooldridge, J. M.: Introductory econometrics a modern approach, 6th Edn., Cengage Learning, Boston, USA, 2016.
Wu, Y. J., Wu, S. Y., Wen, J. H., Xu, M., and Tan, J. G.: Changing characteristics of precipitation in China during 1960–2012, Int. J. Climatol., 36, 1387–1402, https://doi.org/10.1002/joc.4432, 2016.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based
on Latest Topography Dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019wr024873, 2019.
Yang, L., Villarini, G., Smith, J. A., Tian, F. Q., and Hu, H. P.: Changes in seasonal maximum daily precipitation in China over the period 1961–2006,
Int. J. Climatol., 33, 1646–1657, https://doi.org/10.1002/joc.3539, 2013.
Yang, L., Wang, L. C., Li, X., and Gao, J.: On the flood peak distributions
over China, Hydrol. Earth Syst. Sci., 23, 5133–5149, https://doi.org/10.5194/hess-23-5133-2019, 2019.
Yang, W. C., Yang, H. B., and Yang, D. W.: Classifying floods by quantifying
driver contributions in the Eastern Monsoon Region of China, J. Hydrol., 585,
124767, https://doi.org/10.1016/j.jhydrol.2020.124767, 2020.
Yang, X. N., Sun, W. Y., Mu, X. M., Gao, P., and Zhao, G. J.: Run-off affected by climate and anthropogenic changes in a large semi-arid river basin, Hydrol. Process., 34, 1906–1919, https://doi.org/10.1002/hyp.13702, 2020.
Zhao, G., Bates, P., and Neal, J.: The Impact of Dams on Design Floods in the Conterminous US, Water Resour. Res., 56, e2019WR025380, https://doi.org/10.1029/2019WR025380, 2020.
Short summary
This study quantified the causal effects of land cover changes and dams on the changes in annual maximum discharges (Q) in 757 catchments of China using panel regressions. We found that a 1 % point increase in urban areas causes a 3.9 % increase in Q, and a 1 unit increase in reservoir index causes a 21.4 % decrease in Q for catchments with no dam before. This study takes the first step to explain the human-caused flood changes on a national scale in China.
This study quantified the causal effects of land cover changes and dams on the changes in annual...