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Abstract. Quantifying the effects of human activities on
floods is challenging because of limited knowledge and ob-
servations. Many previous methods fail to isolate different
effects and reduce the uncertainty caused by small samples.
We use panel regressions to derive the sensitivity of annual
maximum discharges (Q) to the changing values of three hu-
man factors: urban areas, cropland areas, and reservoir in-
dexes for large and medium dams. We also test whether the
effects increase or decrease with increasing initial values of
human factors. This method is applied in 757 non-nested
catchments in China. Results show that a 1 % point increase
in urban areas causes around a 3.9 % increase in Q with a
confidence interval CI= [1.9 %, 5.7 %]. Cropland areas have
no significant effect on Q. Reservoir index has a decreasing
effect: a 1 unit increase in reservoir index causes a decrease
inQ from 21.4 % (with CI= [11.4 %, 29.9 %]) to 6.2 % (with
CI= [3.2 %, 9.1 %]) for catchments with initial reservoir in-
dexes from 0 to 3. Among 61 catchments with significant
increases in observed Q in 1992–2017, increasing urban ar-
eas cause more than 10 % increases in Q in only five (8.2 %
of 61) catchments. Among 234 catchments with at least one
dam and significant decreases in observed Q in 1960–2017,
increasing reservoir indexes cause more than 10 % decreases
inQ in 138 (59.8 % of 234) catchments. Among 1249 catch-
ments with limited impacts from urban areas and reservoir
indexes, 403 (32.3 %) catchments have significant decreases
in Q during 1960–2017, and 46.7 % of the 403 catchments
are located in the middle and downstream of the Yellow River
Basin and the upper streams of the Hai He River Basin. This
study extends the panel regression method in hydrology and

sheds light on the attribution of flood changes on a national
scale.

1 Introduction

River flooding is one of the most severe disasters in the
world. China has experienced tremendous damage from
floods in the past decades with expanding urban areas, a
booming economy, and increasing populations (Du et al.,
2019; Kundzewicz et al., 2019). Sharply changing flood char-
acteristics make flood risk management more difficult. Ac-
cording to a national investigation of flood peak changes in
China conducted by Yang et al. (2019), abrupt changes due to
human activities are the predominant mode of flood changes.
Understanding how floods change in a changing environment
will help flood risk management in the future. Therefore, a
quantitative attribution of flood changes is urgent on a na-
tional scale for policy decisions.

To detect flood changes and pinpoint the underlying rea-
sons, scientists need to answer the following questions:
(1) does a factor affect floods and (2) if the effect is present,
how strong is the effect? The drivers of flood changes can be
classified into three categories: atmospheric factors, catch-
ment factors, and river factors (Merz et al., 2012; Blöschl
et al., 2015). Atmospheric factors refer to the meteorological
forcing of water fluxes such as natural climate variability and
anthropogenic climate change; catchment factors refer to the
alternating physiographic characteristics of catchments, such
as land cover changes; and river factors refer to hydraulic
infrastructure that changes river morphology and flood rout-
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ing, such as dams and channelization (Merz et al., 2012;
Blöschl et al., 2015). Catchment and river factors are mainly
attributed to human activities, which attract increasing atten-
tion in hydrological systems in the era of “socio-hydrology”
(Di Baldassarre et al., 2019; Müller and Levy, 2019). How-
ever, quantifying human impacts on floods is challenging for
the following reasons. Firstly, due to the highly unpredictable
human behavior, we have limited knowledge to reproduce
the process of how human activities affect floods (Pande and
Sivapalan, 2017). For example, the expansion of cropland
and urban areas not only casts deterministic effects on floods
through changing soil physics and surface roughness but also
brings uncertain effects through irrigation and water diver-
sions. We consider these effects “uncertain” because they are
related to unknown human decisions. Secondly, the observa-
tions of human activities are limited (Pande and Sivapalan,
2017). In the example above, many regions lack long-term
and large-scale data on soil physics, roughness, irrigation,
and water diversions, which are highly dependent on a high-
cost network of in-site measurements.

Previous studies have used three methods to quantify hu-
man impacts on floods. The first method is a physical model
simulation. This method regards the impacts of human ac-
tivities as either the difference between actual observations
and the model simulations of floods (Viglione et al., 2016;
Lu et al., 2018) or flood changes with time-varying model
parameters (Peña et al., 2016; Umer et al., 2019). However,
this method suffers from limited model accuracy. The second
method is a paired-catchment experiment. This method either
compares the floods before and after human impacts in one
catchment or compares floods in two groups of catchments
with and without human impacts (Prosdocimi et al., 2015;
Hodgkins et al., 2019). However, the comparisons above can-
not rigorously isolate multiple impacts on floods since we
cannot actually control everything except one targeted hu-
man factor (Runge et al., 2019). The third method is em-
pirical variable dependence, i.e., using regressions or non-
stationary probability distributions to link human factors to
flood characteristics (FitzHugh and Vogel, 2011; Prosdocimi
et al., 2015; Bertola et al., 2019; De Niel and Willems, 2019).
The third method is cost-efficient for large-scale studies, but
it has two problems. Firstly, to derive the causal effects of hu-
man factors, all confounders – which correlate with human
factors and floods at the same time – should be explicitly ac-
counted for in the empirical relationships. However, defining
numerous variables to represent confounders may be an end-
less task. For example, climatic confounders are ambiguous
because floods are caused by different climatic factors (e.g.,
long rainfall, short rainfall, snowmelt, and rain on snow) in
different regions (Stein et al., 2020; W. C. Yang et al., 2020;
Merz et al., 2020). Therefore, in a large-sample study, we
do not have a unified regression form to control all possi-
ble variables for all catchments. Secondly, empirical methods
require sufficient data for robust statistical inference, while
flood samples are rare for each catchment.

Panel regression (Steinschneider et al., 2013; Wooldridge,
2016) solves the problems of the empirical method in two
ways. Firstly, panel regression adds virtual variables to the
regression to represent a fixed individual or regional effect
(Steinschneider et al., 2013). In such a way, the regression
can account for the effects of ambiguous confounders that
are constant in time or region. Secondly, panel regression
pools all samples into one model and trades space for time
(Steinschneider et al., 2013). Therefore, the regression re-
sult is more reliable even with short flood records for each
catchment. Although panel regression is a tool in economics,
it has been introduced in hydrology to estimate the effects
of forests on floods (Ferreira and Ghimire, 2012), urbaniza-
tion on runoff coefficients (Steinschneider et al., 2013), dams
on streamflow (McManamay, 2014), rainfall on streamflow
(Bassiouni et al., 2016), deforestation on streamflow (Levy
et al., 2018), urbanization on floods (Blum et al., 2020), and
rain/snow fraction on floods (Davenport et al., 2020). How-
ever, these studies only focused on one factor at one time.
Considering more human factors can provide a more compre-
hensive picture of the human impacts on floods. In addition,
only Blum et al. (2020) and Davenport et al. (2020) tested the
nonlinear effects of factors. Previous studies rarely examined
whether the effects increase or decrease with increasing ini-
tial values of human factors.

In this study, supported by a large dataset of Chinese floods
from 757 streamflow gauge stations, we quantify the national
average sensitivities of annual flood peaks to changing ur-
ban areas, cropland areas, and reservoir indexes for large and
medium dams using panel regression. We also test whether
effects increase or decrease for catchments with increasing
initial values of the targeted factor. The causal effects of fac-
tors distinguish the flood changes explained and unexplained
by the three human factors in recent decades. This study is or-
ganized as follows. Section 2 introduces methods. Section 3
describes the data. Section 4 presents the results. Section 5
discusses the methods and the insights gained by this study.
Section 6 gives conclusions.

2 Methods

2.1 Causal map of flooding

Causal maps depict the dependency relationship between
variables, and they help discover confounders and focus on
the causal effects of different factors when fitting a regres-
sion model (Pearl and Mackenzie, 2020). A confounder is
a variable that influences both human factors and floods. A
causal effect is defined as the sensitivity of floods to a factor
when all possible confounding variables are controlled. Sim-
ilar to Blum et al. (2020), we draw a causal map of flood-
ing in Fig. 1. This study estimates the causal effects of the
changes in dams, urban areas, and cropland areas on floods,
as the three dashed lines show in the figure. Variables ly-
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Figure 1. Causal map illustrating the relationships between human
factors and floods.

ing above the dashed lines are unknown or unobserved me-
diators. Urban areas and cropland areas are interrelated be-
cause they may change into each other during the process of
land cover change. We consider two major confounders. The
first confounder is the time-varying confounder, which can
be unique for a catchment or spatially constant in a region.
For example, increasing event precipitation during floods,
which varies by individual catchments, may promote dam
constructions; decreasing annual precipitation, which hap-
pens at a regional scale, exacerbates water shortage and may
therefore promote the reservoir constructions or the imple-
mentation of the Grain for Green project. We delineate re-
gions by climate since the climate is the first-order driver of
catchment similarity (Jehn et al., 2020). In this way, we can
control the effect of many omitted variables that have spatial
homogeneity. The second confounder is the individual time-
invariant confounder. This confounder is mainly represented
by the characteristics of catchment landscapes, e.g., topog-
raphy, soil types, and geology. For example, urban areas are
likely built on flat and plain catchments.

2.2 Design of panel regression

Panel regression is a statistical technique for panel data
(Steinschneider et al., 2013; Wooldridge, 2016). Panel data
are observations on several subjects in different periods.
Panel regression controls the constant effects of each subject
or each period to mitigate regression bias due to omitted vari-
ables. Panel regressions in this study are extended from the
equation in Blum et al. (2020) and are presented in Eq. (1) as
follows:

log
(
Qi,t

)
= αi + g1

(
Urbani,t

)
+ g2

(
Cropi,t

)
+ g3

(
RIi,t

)
+πr,tDrDt +Dr

(
ϕrP

(3)
i,t + λrP

(30)
i,t

)
+ εi,t . (1)

Qi,t is the annual flood peak of catchment i in
year t (m3 s−1). Urbani,t is the urban percentage of catch-
ment i in year t (%). Cropi,t is the cropland percentage of
catchment i in year t (%). RIi,t =

∑
j

(A
(j)
i /Ai) ·DOR(j)i is

the reservoir index of catchment i in year t ; DOR(j)i is the
degree of regulation of reservoir j in catchment i, which is
the ratio between the storage capacity and total annual flow
of the reservoir; A(j)i is the upstream area of reservoir j ;
Ai is the area of catchment i. Dr is a regional dummy which
equals 1 or 0.Dt is a year dummy which equals 1 or 0. P (3)i,t is
the 3 d total precipitation before the flood peak in year t of
catchment i, which accounts for the rainfall that causes the
flood; P (30)

i,t is the 30-day total precipitation before the flood
peak in year t of catchment i, which accounts for the soil
moisture and snowmelt that cause the flood. The coefficients
of P (3)i,t and P (30)

i,t , namely ϕr and λr, are assumed to be con-
stant within a climatic region r; αi is the time-invariant con-
stant effects of catchment i; πr,t is the constant effects of
region r in year t ; εi,t is the model residuals. The response
functions g1(·), g2(·), and g3(·) represent various response
types of Q to different factors.

A region consists of a group of spatially coherent catch-
ments with a similar climate. Unlike Blum et al. (2020)
who used predefined physiographic regions, we delineated
regions by using the partitioning around medoids (PAMs) al-
gorithm (Reynolds et al., 2006) based on the distance matrix
of all catchments defined as follow:

dist(i,j)= distKG(i,j)+ distcen(i,j), (2)

distKG(i,j)=
1
2

30∑
l=1
|k
(l)
i − k

(l)
j |, (3)

distcen(i,j)=

(
earthdist(i,j)

max{earthdist(i,j)|∀i,j}

)1/2

, (4)

where distKG(i,j) is the distance of Köppen–Geiger class
(Beck et al., 2018) ratios between catchment i and j ; k(l)i is
the area percentage of Köppen–Geiger class l in catchment i;
distcen(i,j) is the standardized distance between the geomet-
ric centers of catchment i and j ; and earthdist(i,j ) is the
spherical distance on the earth between the geometric cen-
ters of catchment i and j .

The effect of a factor X on Q, i.e., the percentage change
in Q given a fixed change in X, is expressed as follows:

1Q(%)=1Q/Q= exp(g(X+1X)− g(X))− 1. (5)

We considered three types of response functions g(·):
g(Xi,t )= βXi,t indicated a stable effect in which the per-
centage change inQ only depended on1X; g(Xi,t )= γX2

i,t

indicated an increasing effect in which the percentage change
inQ increased with increasing Xi,t ; and g(Xi,t )= θX

1/2
i,t in-

dicated a decreasing effect in which the percentage change
in Q decreased with increasing Xi,t . To determine the spe-
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cific effect type, we fitted regressions with 27 possible com-
binations of (g1(·), g2(·), g3(·)) types and selected the one
with the lowest Akaike information criterion (AIC) value. We
used bootstrapping to test the significance and derive the con-
fidence intervals of coefficients β, γ , and θ so that the model
residuals were allowed to be non-Gaussian and the sampling
uncertainty could be accounted for.

The mathematical assumptions of the panel regressions in
this study are as follows: (1) there are no other time-varying
subregional variables that correlate with both human factors
and floods; and (2) there are no interactions between human
factors and regional or individual characteristics that pro-
duce significant spatially heterogeneous effects. The regres-
sions and statistical tests were performed in R (R Core Team,
2019) using package lfe (Gaure, 2019).

2.3 Flood change quantification

To examine whether the changes in observed floods can be
explained by the changes in human factors, we first detected
catchments with significant changes in Q using the Mann–
Kendall test (Mann, 1945) and Pettitt’s test (Pettitt, 1979) and
then derived the accumulated flood changes attributed to the
change in factor X for catchment i from year t1 to t2.

1Q(%)= exp
(
g
(
Xi,t2

)
− g

(
Xi,t1

))
− 1 (6)

To examine how floods changed in catchments that were free
from the impacts of urban areas, cropland areas, and dams,
we selected catchments with less than 10 % changes in flood
peaks due to those factors, respectively. Specifically, for a
factor X, we selected catchments with |exp(g(Xi,t2)− 0)−
1|< 10 %, where t2 was the most recent year of the data.
Then, we applied the Mann–Kendall test (Mann, 1945) and
Pettitt’s test (Pettitt, 1979) in those catchments to detect the
ones with significant changes in Q.

3 Data

3.1 Streamflow and precipitation data

Annual maximum instantaneous discharge data
in 2739 streamflow gauge stations were obtained
from the Ministry of Water Resources in China
(http://www.mwr.gov.cn/english/, last access: 7 May 2020).
Figure 2 shows the outlet locations of all stations. The
catchment areas are from 1 to 1 705 383 km2 with a median
of 1660 km2. Catchment boundaries were extracted using
MERIT Hydro hydrography data (Yamazaki et al., 2019).
Differences between extracted catchment areas and reported
areas were less than 20 % for all catchments. We only used
data from 1960 to 2019 because less than 1000 stations
had available data before 1960. Notice that a few stations
in the northeast lie outside mainland China. They were not
excluded from this study because all other data were glob-
ally available. The 1 km resolution data of Köppen–Geiger

climate classes were obtained from Beck et al. (2018). A
3-hourly and 0.1◦ precipitation dataset in 1979–2017, the
multi-source weighted-ensemble precipitation version 2.2
(MSWEP V2.2; Beck et al., 2019), was used.

3.2 Land cover and dam data

Land cover maps were obtained from the Climate Change
Initiative Land Cover (CCI-LC) product produced by the Eu-
ropean Space Agency (ESA) Climate Change Initiative. This
product provides global, yearly, 300 m resolution land cover
data in 1992–2015 in version 2.0.7 and 2016–2018 in ver-
sion 2.1.1 (http://maps.elie.ucl.ac.be/CCI/viewer/download.
php, last access: 6 October 2020). Urban areas of catchments
can be extracted from the maps directly. Cropland areas con-
sist of rain-fed cropland, irrigated or post-flooding cropland,
and mosaic cropland.

Dam data were available in the Global Reservoir and
Dam (GRanD) v1.3 database (Lehner et al., 2011). GRanD
collected information about 7320 global dams in 1948–
2017 and recorded 923 dams with storage capacities larger
than 10 million m3 in China. These 923 dams were cate-
gorized as large and medium dams, according to the Bul-
letin of the first National Water Conservancy Survey (http:
//www.chinawater.com.cn/ztgz/xwzt/2013slpczt/1/, last ac-
cess: 29 September 2020). The total storage capacity of all
4694 large and medium dams is 861 961 million m3 in China,
according to the bulletin. The total storage capacity of all the
923 GRanD dams in China is 670 158 million m3, approxi-
mately 78 % of that recorded in the bulletin. It suggests that
the GRanD database is reliable for quantifying the effects of
large and medium dams on floods, whereas it is unsuitable
for considering small dams. For simplicity, we use “dams”
to represent large and medium dams in the rest of the paper.
We obtained the locations, upstream areas, storage capaci-
ties, and total annual flows of each dam from the database.
The reservoir index can be calculated with the information
above.

3.3 Catchment selection for regression setup

We selected catchments with at least 20 years of annual max-
imum discharges (Q) to fit Eq. (1) in the common period of
CCI-LC and GRanD data, i.e., 1992–2017. To avoid inaccu-
rate statistical inference on the regression coefficients due to
the correlated model residuals caused by nested catchments,
we selected the most upstream catchments with large or
medium dams (if possible) among overlapping catchments.
We got 757 independent (non-nested) catchments, among
which 207 catchments had as least one dam. The statistics
of catchment characteristics in those 757 catchments are pre-
sented in Table 1, and the spatial distribution of catchments
is presented in Fig. 3. Catchments with changes in Urban,
Crop, and reservoir index (RI) have large impacts on estimat-
ing regression coefficients. The number of catchments with
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Figure 2. National 2739 streamflow stations and the number of stations with available annual maximum discharges each year. The Köppen–
Geiger climate classes are obtained from Beck et al. (2018). The boundary lines delineate nine major river basins of China: 1. the Pearl River
Basin, 2. the Southeast Basin, 3. the Yangtze River Basin, 4. the Southwest Basin, 5. the Huai He River Basin, 6. the Yellow River Basin,
7. the Hai He River Basin, 8. the Songliao River Basin, and 9. the Continental Basin.

Figure 3. Spatial distribution of catchment characteristics in 757 independent catchments. (a) Urban percentages (Urban), (b) cropland
percentages (Crop), and (c) reservoir indexes (RIs) in their last years with available flood data. The changes in (d) urban areas (1Urban),
(e) cropland areas (1Crop), and (f) reservoir indexes (1RI) in 1992–2017.
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1Urban> 0, 1Crop> 0, and 1RI> 0 is 656, 351, and 64,
respectively. The number of catchment groups k in Sect. 2.2
had no optimal value. In light of the number of selected
catchments in the regression models, we set k to be 10, 20,
30, 40, 50, 60, 70, and 80 to test the robustness of the models.

4 Results

4.1 The sensitivity of floods to human factors

Table 2 shows the optimal regression forms according to AIC
and the corresponding coefficient estimations of factor Ur-
ban, Crop, and RI in Eq. (1). For Urban and RI, the effect
types are consistent for varying values of k. Urban exhibits a
positive and stable effect (g(Xi,t )= βXi,t and β > 0), which
means a fixed percentage point increase in Urban brings a
fixed percentage increase in Q no matter how large the ini-
tial Urban is. RI exhibits a negative and decreasing effect
(g(Xi,t )= θX

1/2
i,t and θ < 0), which means a fixed increase

in RI brings a lower percentage decrease in Q with a larger
value of initial RI. Crop exhibits no significant effect. The
maps of catchment groups for all k values can be seen in
Fig. A1.

Figure 4 shows the percentage change in Q caused by a
1 % point increase in urban area according to Eq. (5). The
values of 1Q (%) are relatively consistent with varying val-
ues of k. Crop has no significant effect on Q; therefore, we
do not calculate the corresponding sensitivity. Figure 5 shows
the percentage change in Q caused by a 1 unit increase in RI
according to Eq. (5). The relationship between 1Q and RI
has little change when k ≥ 20. In summary, the method is
robust to k, and thus, we regard the model with k = 50
as the main model in the remaining part of the study. The
sensitivity of Q to Urban is 1Q= 3.9 % with the 95 %
confidence interval CI= 1.9 %, 5.7 %] when1Urban= 1 %.
The absolute values of 1Q decrease with increasing ini-
tial values of RI. For initial RI= 0, 1Q=−21.2 % with
CI= [−29.9 %, −11.4 %] when RI increases by 1; for initial
RI= 3, 1Q=−6.2 % with CI= [−9.1 %, −3.2 %] when
RI increases by 1.

4.2 National flood changes and attributions

Figure 6 shows the changes inQ due to the changes in Urban
for 1625 catchments with at least 20 years of data in 1992–
2017, according to Eq. (6). To avoid sample heterogeneity
between these 1625 catchments and the 757 catchments used
for regression, we compared the frequency distribution of
Urban and 1Urban for catchments with 1Urban> 0 in the
two samples of catchments in Fig. A2. Since there is no sub-
stantial difference between the two distributions in Fig. A2,
the sensitivity of Q to Urban, which is derived from the
757 catchments, can be used to infer the changes in Q due
to 1Urban in those 1625 catchments. According to Fig. 6,
increasing Urban causes increases in Q of more than 10 %

Figure 4. Percentage change in annual maximum discharge (Q)
caused by a 1 % point increase in urban area (Urban) based on dif-
ferent numbers of catchment groups (k). The error bars are 95 %
confidence intervals.

in 184 (11.3 % of 1625) catchments, which are mainly lo-
cated in the North China Plain, especially in the Huai He
River Basin and the middle and downstream of the Hai He
River Basin. Among these 184 catchments, increasing Ur-
ban causes increases in Q of more than 25 % in 71 (4.4 %
of 1625) catchments. In 61 catchments with significant in-
creases in observed Q, increasing Urban causes increases
inQ of more than 10 % in only five catchments, which means
urbanization is not a predominant driver of flood changes
in 1992–2017 in China. The changes inQ due to the changes
in Crop cannot be effectively quantified because Crop has no
statistically significant effects on Q according to the results
in Sect. 4.1.

Figure 7 shows the changes in Q due to the changes in RI
for 536 catchments with at least one dam and at least 30 years
of data in 1960–2017, according to Eq. (6). Similar to Fig. 6,
to avoid sample heterogeneity between these 536 catchments
and the 757 catchments used for regression, we compared
the frequency distribution of RI and 1RI for catchments
with 1RI> 0 in the two samples of catchments in Fig. A3.
Since there is no substantial difference between the two dis-
tributions in Fig. A3, the sensitivity of Q to RI, which is
derived from the 757 catchments, can be used to infer the
changes in Q due to1RI in those 536 catchments. Accord-
ing to Fig. 7, in 196 (36.6 % of 536) catchments, increas-
ing RI leads to more than 10 % decreases in Q. It indicates
that flood peaks are likely to decrease severely if dams are
built in the catchment. Among these 196 catchments, increas-
ing RI leads to more than 25 % decreases in Q in 28 (5.2 %
of 536) catchments. Spatially, the impacts of dams on floods
are larger in northern basins (the Huai He River Basin, the
Hai He River Basin, the Yellow River Basin, and the Songhua
and Liao river basins) than those in the southern basins (the
Yangtze River Basin, the Southeast River Basin, the South-
west River Basin, and the Pearl River Basin). In the northern
basins, increasing RI leads to more than 10 % and 25 % de-
creases in Q in 47.8 % and 10.0 % catchments, respectively.
By comparison, in southern basins, increasing RI leads to
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Table 1. Summary of catchment characteristics for 757 independent catchments. For each catchment, among its all years with available flood
data in 1992–2017, we choose the last year to calculate Urban, Crop, and RI and choose the first and last years to calculate 1Urban, 1Crop,
and 1RI. The summaries of RI and 1RI are calculated based on 207 catchments with at least one large and medium dam.

Variables Min. 1st quartile Median Mean 3rd quartile Max.

Area (km2) 29 499 1096 3341 2763 142 372
Urban (%) 0 0.06 0.30 1.52 1.10 65.07
1Urban (%) 0 0.05 0.23 1.14 0.85 24.66
Crop (%) 0 10.63 24.71 32.75 48.99 99.58
1Crop (%) −21.58 −0.81 −0.02 0.38 0.87 32.04
RI 0.01 0.09 0.21 0.51 0.61 7.45
1RI 0 0 0 0.17 0.07 7.44

Table 2. Optimal regression forms (with the lowest AIC) and the corresponding coefficient estimations of factor urban percentage (Urban),
cropland percentage (Crop), and reservoir index (RI) in Eq. (1). The ∗ denotes that the coefficient does not equal 0 at a 0.05 significance level
using bootstrapping inference; k is the preset number of catchment groups.

k Optimal g(·) 2.5 % quartile Mean 97.5 % quartile

Urban effect

10 βUrban∗
i,t

1.20× 10−2 2.72× 10−2 4.21× 10−2

20 βUrban∗
i,t

2.31× 10−2 3.89× 10−2 5.59× 10−2

30 βUrban∗
i,t

9.35× 10−3 2.65× 10−2 4.40× 10−2

40 βUrban∗
i,t

1.59× 10−2 3.64× 10−2 5.68× 10−2

50 βUrban∗
i,t

1.88× 10−2 3.71× 10−2 5.57× 10−2

60 βUrban∗
i,t

1.08× 10−2 3.10× 10−2 5.03× 10−2

70 βUrban∗
i,t

1.32× 10−2 3.18× 10−2 5.05× 10−2

80 βUrban∗
i,t

1.22× 10−2 3.23× 10−2 5.27× 10−2

Crop effect

10 θCrop1/2
i,t

−6.14× 10−2 1.43× 10−2 8.87× 10−2

20 θCrop1/2
i,t

−4.59× 10−2 2.95× 10−2 1.01× 10−1

30 γCrop2
i,t

−1.41× 10−4
−5.36× 10−5 3.42× 10−5

40 γCrop2
i,t

−1.36× 10−4
−3.81× 10−5 5.61× 10−5

50 θCrop1/2
i,t

−5.21× 10−2 2.49× 10−2 1.09× 10−1

60 γCrop2
i,t

−1.66× 10−4
−7.54× 10−5 2.77× 10−5

70 γCrop2
i,t

−1.62× 10−4
−6.71× 10−5 2.85× 10−5

80 γCrop2
i,t

−1.71× 10−4
−7.21× 10−5 2.74× 10−5

RI effect

10 θRI1/2,∗
i,t

−2.90× 10−1
−1.74× 10−1

−5.84× 10−2

20 θRI1/2,∗
i,t

−3.43× 10−1
−2.11× 10−1

−1.01× 10−1

30 θRI1/2,∗
i,t

−3.48× 10−1
−2.20× 10−1

−1.08× 10−1

40 θRI1/2,∗
i,t

−3.64× 10−1
−2.45× 10−1

−1.25× 10−1

50 θRI1/2,∗
i,t

−3.55× 10−1
−2.39× 10−1

−1.21× 10−1

60 θRI1/2,∗
i,t

−3.85× 10−1
−2.55× 10−1

−1.30× 10−1

70 θRI1/2,∗
i,t

−3.80× 10−1
−2.38× 10−1

−1.14× 10−1

80 θRI1/2,∗
i,t

−3.88× 10−1
−2.36× 10−1

−9.03× 10−2

more than 10 % and 25 % decreases in Q in only 26.3 % and
0.7 % catchments, respectively. In 234 catchments with sig-
nificant decreases in observedQ, increasing RI leads to more
than 10 % decreases inQ in 138 (59.0 % of 234) catchments,
which means dam construction is a predominant driver of

the decreases in flood magnitudes for catchments with dams
in 1960–2017.

Figure 8 shows the change directions of Q during 1960–
2017 in 1249 catchments with at least 30 years of data,
Urban< 2.6 %, and RI< 0.19. These catchments were se-
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Figure 5. (a) Percentage change in annual maximum discharge (Q) caused by a 1 unit increase in reservoir index (RI) from different initial
RI values based on different numbers of catchment groups (k). (b) The same as (a) but with the 95 % confidence intervals shown by shaded
areas.

Figure 6. Accumulated increases in annual maximum discharges (Q) due to the increases in urban areas (Urban) for 1625 catchments with
at least 20 years of flood data in 1992–2017, according to Eq. (6). Large dots represent catchments with significant increases in observed Q
if p < 0.05 for either one of the Mann–Kendall test and the Pettitt’s test. The boundary lines delineate nine major river basins of China.

lected based on the thresholds that ensure each factor leads
to no more than 10 % changes in Q, as stated in Sect. 2.3. In
these catchments, the changes inQ are free from the impacts
of Urban, Crop, and RI. Significant increases in Q occur in
85 (6.9 % of 1249) catchments. Significant decreases in Q
occur in 403 (32.3 % of 1249) catchments, among which
188 (46.7 % of 403) are located in the Yellow River Basin
(mainly in the middle and downstream) and the Hai He River
Basin (mainly in the upper streams). Such regional coherence
of similar trends cannot be found in other regions.

5 Discussion

5.1 Strengths and limitations of panel regressions

We use panel regressions to derive the causal effects of ur-
ban areas, cropland areas, and dams on annual maximum
discharges across mainland China. In this study, the panel
regressions exhibit the following strengths. (1) We obtain
a nationally generalizable sensitivity of floods to each hu-
man factor. This sensitivity helps us understand the overall
added risks of specific human activity on floods on a na-
tional scale. In addition, with quantitative sensitivity, scien-
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Figure 7. Accumulated decreases in annual maximum discharges (Q) due to the increases in reservoir index (RI) for 536 catchments with
at least 30 years of flood data and at least one dam in 1960–2017, according to Eq. (6). Large dots represent catchments with significant
decreases in observed Q if p < 0.05 for either one of the Mann–Kendall test and the Pettitt’s test. The boundary lines delineate nine major
river basins of China.

Figure 8. Change directions of annual maximum discharges (Q) during 1960–2017 for 1249 catchments with at least 30 years of flood
data, Urban< 26 %, and RI< 019. These catchments are considered to be free from the impacts of urbanization and dam constructions. The
change is significant if p < 0.05 for either one of the Mann–Kendall test and Pettitt’s test. The boundary lines delineate nine major river
basins of China.
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tists are able to select catchments with limited impacts of
dams and land cover changes for studying the effects of cli-
mate change (e.g., Blöschl et al., 2019). (2) Compared with
previous studies using panel regressions in hydrology (Fer-
reira and Ghimire, 2012; Steinschneider et al., 2013; Mc-
Manamay, 2014; Bassiouni et al., 2016; Levy et al., 2018;
Blum et al., 2020; Davenport et al., 2020), we take it a step
further by considering multiple types of human impacts si-
multaneously and distinguishing their increasing or decreas-
ing effects. Blum et al. (2020) and Davenport et al. (2020)
considered nonlinear forms of response functions for the tar-
geted factors, but they did not distinguish increasing and de-
creasing effects. These improvements provide a more com-
prehensive understanding of human impacts on floods.

The limitations are as follows. (1) The assumptions in the
regressions are difficult to test. As stated in Sect. 2, we as-
sume (i) no more important time-varying subregional con-
founders and (ii) no interaction terms between human factors
and regional or individual characteristics that produce signifi-
cant spatially heterogeneous effects. These assumptions may
be violated in some cases. For example, the effect of urban-
ization on floods may be larger in regions with higher soil
permeability, which means spatially heterogeneous effects
may be non-negligible. Testing these assumptions requires
detailed information about catchment characteristics such as
topography and geology. Moreover, adding too many vari-
ables into the regressions will decrease model interpretabil-
ity. (2) The method cannot distinguish the heterogeneous
effects of human factors on different floods. As stated in
Sect. 2.3, the method derives a common percentage change in
all flood peaks given changing human factors, which means
no changes in coefficients of variation. However, practically,
the variability in floods may change through human activi-
ties. For example, reservoirs tend to regulate extreme floods
but omit small floods. (3) This study does not comprehen-
sively assess the effects of total human impacts on floods.
We omit many other human factors due to the lack of data.
For example, the data about water diversion, irrigation, chan-
nelization, and afforestation on a national scale are currently
not available to the public.

5.2 Consistency with knowledge and other
large-sample studies

We detect a stable positive effect of urban areas on floods.
In theory, expanding urban areas magnify floods in two ma-
jor ways. Firstly, natural soil grounds are replaced by im-
pervious surfaces, which lead to more rainfall water appear-
ing on the surface rather than infiltrating into the soil (Vil-
larini and Slater, 2017). Second, urban areas have smooth
surfaces, where floods propagate faster and become more
flashy (Mogollón et al., 2016). This study finds a 3.9 % (with
CI= [1.9 %, 5.7 %]) increase in annual maximum discharges
given a 1 % point increase in urban areas. This finding is in
accordance with the results from a national investigation in

the United States (Blum et al., 2020), which reported a 3.3 %
(with CI= [1.9 %, 4.7 %]) increase in annual maximum dis-
charges based on panel regressions.

The cropland areas impose no significant impacts on
floods according to our results. Theoretically, expanding
cropland areas affects floods in many ways. For exam-
ple, during agricultural practices, soil depths may decrease
due to erosion, while they may increase due to soil com-
paction (Rogger et al., 2017). Cropland may also bring arti-
ficial drainages that lower groundwater tables (Rogger et al.,
2017). Some effects may be offset by others, which masks the
relationship between cropland areas and floods. Similar to
our result, Bertola et al. (2019) found that agricultural land-
use intensification rarely caused flood changes in 95 catch-
ments of Austria using covariate-based non-stationary flood
probability distributions. To our knowledge, large-sample
studies are limited on the relationship between cropland and
floods. Therefore, more detailed in-site investigations are re-
quired to uncover the causal chain from cropland changes to
flood changes.

This study suggests that dams have a negative decreasing
effect on floods. Generally, dams buffer water during floods
and thus decrease flood peaks. More dams may not nec-
essarily decrease floods at a constant rate because existing
dams with sufficient storage capacities are already capable
of controlling floods. This effect was confirmed by Wang et
al. (2017), who used detailed conceptual models of reservoir
regulation and found that the mean annual floods had a slow-
ing decrease with increasing reservoirs. In a large-sample
study on 4859 catchments in the United States (FitzHugh
and Vogel, 2011), median annual 1 d maximum flows were
estimated to decrease by more than 20 % when the storage
ratios, i.e., the total storage capacity of upstream dams di-
vided by average annual runoff, were larger than 1. If a dam
with storage capacity equaling the annual runoff is estab-
lished at the outlet of the catchment without any dam before,
both the reservoir index defined in this study and the storage
ratio defined by FitzHugh and Vogel (2011) increase from 0
to 1. In this special case, the annual maximum discharges
change by −21.2 % (with CI= [−29.9 %, −11.4 % ]) in this
study, comparable to the 20% decrease from FitzHugh and
Vogel (2011). It is noteworthy that this study only focuses
on the effects of human factors on annual maximum dis-
charges. Generally, the effects are larger for less frequent
floods. Zhao et al. (2020) investigated floods in 1403 catch-
ments in the United States and found a decrease in 100-year
floods by more than 60 % in 47 % of catchments with a dam
upstream.

5.3 Insights toward a national investigation of flood
changes

This study takes the first step to explain flood changes quan-
titatively on a national scale in China. In this study, urbaniza-
tion and dam constructions significantly change annual maxi-
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mum discharges in the middle and downstream of the Yellow
River Basin and the Hai He River Basin, where step changes
were detected by Yang et al. (2019). As a major human resi-
dence with a high population density, the North China Plain
has experienced fast urbanization in recent years (Du et al.,
2018), which brings larger flood risks to lives and properties.
In addition, the degree of dam regulation is larger in north-
ern China because the annual runoff is much smaller than
that in wet southern China. In this study, after removing the
catchments with non-negligible impacts of urbanization and
dams, unexplained decreasing annual maximum discharges
show spatial coherence in the middle and downstream of the
Yellow River Basin and the upper streams of the Hai He
River Basin, where decreasing trends were also derived by
Yang et al. (2019). Yang et al. (2019) interpreted these trends
as the results of soil conservation practices (Bai et al., 2016)
and decreasing extreme rainfall (Yang et al., 2013; Wu et al.,
2016). Besides, other reasons include decreasing soil mois-
ture (Cheng et al., 2015; W. C. Yang et al., 2020) and the
impacts of small, soil-retaining cascading dams (X. N. Yang
et al., 2020). It indicates that the impact factors of floods are
complex in this region and further studies are required.

Caution is required in interpreting the flood changes at-
tributed to urbanization and dam constructions on a national
scale because the sensitivity of floods to these factors is de-
rived from a subset of catchments. Although the catchments
used for sensitivity calculation and the ones used for flood
change attribution have similar frequency distributions of ur-
ban areas and reservoir indexes in Figs. A2 and A3, these
different sets of catchments may not be completely homo-
geneous in terms of all characteristics (topography, climate,
etc.). Moreover, one should also be cautious when applying
the sensitivity results to other regions such as catchments in
other countries.

6 Conclusions

We conducted a data-based analysis on the causal effects
of human impacts on floods using a panel regression on a
national scale, based on annual maximum discharges (Q)
from 757 non-nested catchments in China, CCI-LC data, and
GRanD dam data. Specifically, we derived nationally gener-
alizable information about the sensitivity ofQ to human fac-
tors, namely the changes in urban areas, cropland areas, and
reservoir indexes for large and medium dams. Furthermore,
using a dataset of 2739 streamflow stations, we determined
the explained and unexplained changes in floods by the hu-
man factors on a national scale based on the sensitivity of Q
to human factors. The major findings are as follows.

Floods are sensitive to the changes in urban areas and
dams. Urban areas have a positive and stable effect on floods,
i.e., a 1 % point increase in urban areas causes a 3.9 % in-
crease in annual maximum discharges with a confidence in-
terval CI= [1.9 %, 5.7 %]. Cropland areas have no significant
effect on Q. Reservoir index has a negative and decreasing
effect onQ, i.e., the decrease inQ caused by a 1 unit increase
in reservoir indexes ranges from 21.4 % (with CI= [11.4 %,
29.9 %]) to 6.2 % (with CI= [3.2 %, 9.1 %]), corresponding
to initial reservoir indexes from 0 to 3.

Urbanization is not a predominant driver of the increases
in flood magnitudes on a national scale. In 1992–2017, in-
creasing urban areas cause increases in Q of more than 10 %
in 184 (11.3 %) of 1625 catchments. These catchments are
mainly located in the North China Plain, especially in the
Huai He River Basin and the middle and downstream of the
Hai He River Basin. However, among these 184 catchments,
only 5 of them have significant increases in observed Q.

Dam construction is a predominant driver of the de-
creases in flood magnitudes on a national scale. Among the
536 catchments with at least one dam in 1960–2017, increas-
ing reservoir indexes cause decreases inQ of more than 10 %
in 196 (36.6 %) catchments. Spatially, the impacts of dams
on floods are larger in northern basins, including the Huai He
River Basin, the Hai He River Basin, the Yellow River Basin,
and the Songhua and Liao river basins. There are 138 of those
196 catchments having significant decreases in observed Q,
accounting for 59.0 % of the total 234 catchments with sig-
nificant decreases in observed Q.

Unexplained decreases in flood magnitudes show spa-
tial coherence in the middle and downstream of the Yel-
low River Basin and the upper streams of the Hai He River
Basin. Among 1249 catchments with less than 10 % changes
in Q caused by urban areas or dams, 403 (32.3 %) catch-
ments have significant decreases in Q during 1960–2017,
and 46.7 % of the 403 catchments are located in the Yellow
River Basin and the Hai He River Basin.

This study extends the panel regression method to quantify
the effects of multiple human factors on floods, which helps
us understand the causes of flood changes on a national scale
in China. Future studies may collect more data to consider
more human factors and quantify the effects on different re-
turn periods of floods.
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Appendix A

Figure A1. Catchment groups for all k values in Eq. (1). The points are the geometric centers of catchments.

Figure A2. Frequency distribution of Urban and 1Urban in catchments with 1Urban> 0 from two catchment sets: the one used for the
regression in Fig. 3d (green) and the one used for the flood change attribution in Fig. 6 (red).
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Figure A3. Frequency distribution of RI and 1RI in catchments with 1RI> 0 from two catchment sets: the one used for the regression in
Fig. 3f (green) and the one used for the flood change attribution in Fig. 7 (red).
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