Articles | Volume 24, issue 12
https://doi.org/10.5194/hess-24-5835-2020
https://doi.org/10.5194/hess-24-5835-2020
Research article
 | 
08 Dec 2020
Research article |  | 08 Dec 2020

Simultaneously determining global sensitivities of model parameters and model structure

Juliane Mai, James R. Craig, and Bryan A. Tolson

Related authors

How well do hydrological models learn from limited discharge data? A comparison of process- and data-driven models
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2025-1076,https://doi.org/10.5194/egusphere-2025-1076, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024,https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023,https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Advancement of a blended hydrologic model for robust model performance
Robert Chlumsky, Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-69,https://doi.org/10.5194/hess-2023-69, 2023
Revised manuscript not accepted
Short summary
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023,https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
Technical note: Quadratic Solution of the Approximate Reservoir Equation (QuaSoARe)
Julien Lerat
Hydrol. Earth Syst. Sci., 29, 2003–2021, https://doi.org/10.5194/hess-29-2003-2025,https://doi.org/10.5194/hess-29-2003-2025, 2025
Short summary
Technical Note: Streamflow Seasonality using Directional Statistics
Wouter R. Berghuijs, Kate Hale, and Harsh Beria
EGUsphere, https://doi.org/10.5194/egusphere-2024-4117,https://doi.org/10.5194/egusphere-2024-4117, 2025
Short summary
Processes and controls of regional floods over eastern China
Yixin Yang, Long Yang, Jinghan Zhang, and Qiang Wang
Hydrol. Earth Syst. Sci., 28, 4883–4902, https://doi.org/10.5194/hess-28-4883-2024,https://doi.org/10.5194/hess-28-4883-2024, 2024
Short summary
A national-scale hybrid model for enhanced streamflow estimation – consolidating a physically based hydrological model with long short-term memory (LSTM) networks
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, and Raphael J. M. Schneider
Hydrol. Earth Syst. Sci., 28, 2871–2893, https://doi.org/10.5194/hess-28-2871-2024,https://doi.org/10.5194/hess-28-2871-2024, 2024
Short summary
Understanding meteorological and physio-geographical controls of variability of flood event classes in China
Yongyong Zhang, Yongqiang Zhang, Xiaoyan Zhai, Jun Xia, Qiuhong Tang, Wei Wang, Jian Wu, Xiaoyu Niu, and Bing Han
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-126,https://doi.org/10.5194/hess-2024-126, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Abily, M., Bertrand, N., Delestre, O., Gourbesville, P., and Duluc, C.-M.: Spatial Global Sensitivity Analysis of High Resolution classified topographic data use in 2D urban flood modelling, Environ. Model. Softw., 77, 183–195, 2016. a
Bajracharya, A., Awoye, H., Stadnyk, T., and Asadzadeh, M.: Time Variant Sensitivity Analysis of Hydrological Model Parameters in a Cold Region Using Flow Signatures, Water, 12, 961, https://doi.org/10.3390/w12040961, 2020. a
Baroni, G. and Tarantola, S.: A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study, Environ. Model. Softw., 51, 26–34, 2014. a, b, c, d, e, f, g, h, i, j, k, l
Bergström, S.: The HBV model, in: Computer Models of Watershed Hydrology, edited by Singh, V., Water Resources Publications, Highlands Ranch, CO, USA, 443–476, 1995. a
Borgonovo, E., Lu, X., Plischke, E., Rakovec, O., and Hill, M. C.: Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box, Water Resour. Res., 53, 7933–7950, 2017. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Share