Articles | Volume 24, issue 12
https://doi.org/10.5194/hess-24-5835-2020
https://doi.org/10.5194/hess-24-5835-2020
Research article
 | 
08 Dec 2020
Research article |  | 08 Dec 2020

Simultaneously determining global sensitivities of model parameters and model structure

Juliane Mai, James R. Craig, and Bryan A. Tolson

Related authors

Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024,https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023,https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Advancement of a blended hydrologic model for robust model performance
Robert Chlumsky, Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-69,https://doi.org/10.5194/hess-2023-69, 2023
Revised manuscript not accepted
Short summary
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023,https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL)
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022,https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
Processes and controls of regional floods over eastern China
Yixin Yang, Long Yang, Jinghan Zhang, and Qiang Wang
Hydrol. Earth Syst. Sci., 28, 4883–4902, https://doi.org/10.5194/hess-28-4883-2024,https://doi.org/10.5194/hess-28-4883-2024, 2024
Short summary
A national-scale hybrid model for enhanced streamflow estimation – consolidating a physically based hydrological model with long short-term memory (LSTM) networks
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, and Raphael J. M. Schneider
Hydrol. Earth Syst. Sci., 28, 2871–2893, https://doi.org/10.5194/hess-28-2871-2024,https://doi.org/10.5194/hess-28-2871-2024, 2024
Short summary
Inferring heavy tails of flood distributions through hydrograph recession analysis
Hsing-Jui Wang, Ralf Merz, Soohyun Yang, and Stefano Basso
Hydrol. Earth Syst. Sci., 27, 4369–4384, https://doi.org/10.5194/hess-27-4369-2023,https://doi.org/10.5194/hess-27-4369-2023, 2023
Short summary
Landscape structures regulate the contrasting response of recession along rainfall amounts
Jun-Yi Lee, Ci-Jian Yang, Tsung-Ren Peng, Tsung-Yu Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 27, 4279–4294, https://doi.org/10.5194/hess-27-4279-2023,https://doi.org/10.5194/hess-27-4279-2023, 2023
Short summary
Hydrological objective functions and ensemble averaging with the Wasserstein distance
Jared C. Magyar and Malcolm Sambridge
Hydrol. Earth Syst. Sci., 27, 991–1010, https://doi.org/10.5194/hess-27-991-2023,https://doi.org/10.5194/hess-27-991-2023, 2023
Short summary

Cited articles

Abily, M., Bertrand, N., Delestre, O., Gourbesville, P., and Duluc, C.-M.: Spatial Global Sensitivity Analysis of High Resolution classified topographic data use in 2D urban flood modelling, Environ. Model. Softw., 77, 183–195, 2016. a
Bajracharya, A., Awoye, H., Stadnyk, T., and Asadzadeh, M.: Time Variant Sensitivity Analysis of Hydrological Model Parameters in a Cold Region Using Flow Signatures, Water, 12, 961, https://doi.org/10.3390/w12040961, 2020. a
Baroni, G. and Tarantola, S.: A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study, Environ. Model. Softw., 51, 26–34, 2014. a, b, c, d, e, f, g, h, i, j, k, l
Bergström, S.: The HBV model, in: Computer Models of Watershed Hydrology, edited by Singh, V., Water Resources Publications, Highlands Ranch, CO, USA, 443–476, 1995. a
Borgonovo, E., Lu, X., Plischke, E., Rakovec, O., and Hill, M. C.: Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box, Water Resour. Res., 53, 7933–7950, 2017. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.