Articles | Volume 24, issue 11
https://doi.org/10.5194/hess-24-5453-2020
https://doi.org/10.5194/hess-24-5453-2020
Research article
 | 
20 Nov 2020
Research article |  | 20 Nov 2020

Predicting probabilities of streamflow intermittency across a temperate mesoscale catchment

Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler

Related authors

Event controls on intermittent streamflow in a temperate climate
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022,https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Monitoring ephemeral, intermittent and perennial streamflow: a dataset from 182 sites in the Attert catchment, Luxembourg
Nils Hinrich Kaplan, Ernestine Sohrt, Theresa Blume, and Markus Weiler
Earth Syst. Sci. Data, 11, 1363–1374, https://doi.org/10.5194/essd-11-1363-2019,https://doi.org/10.5194/essd-11-1363-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Adaptation of root zone storage capacity to climate change and its effects on future streamflow in Alpine catchments: towards non-stationary model parameters
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 3545–3568, https://doi.org/10.5194/hess-29-3545-2025,https://doi.org/10.5194/hess-29-3545-2025, 2025
Short summary
Finding process-behavioural parameterisations of a hydrological model using a multi-step process-based calibration and evaluation scheme
Moritz M. Heuer, Hadysa Mohajerani, and Markus C. Casper
Hydrol. Earth Syst. Sci., 29, 3503–3525, https://doi.org/10.5194/hess-29-3503-2025,https://doi.org/10.5194/hess-29-3503-2025, 2025
Short summary
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025,https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary
Hydrological regime index for non-perennial rivers
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci., 29, 2901–2923, https://doi.org/10.5194/hess-29-2901-2025,https://doi.org/10.5194/hess-29-2901-2025, 2025
Short summary
Assessing the adequacy of traditional hydrological models for climate change impact studies: a case for long short-term memory (LSTM) neural networks
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025,https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary

Cited articles

Akbar, S., Kathuria, A., and Maheshwari, B.: Combining imaging techniques with nonparametric modelling to predict seepage hotspots in irrigation channels, Irrig. Sci., 37, 11–23, https://doi.org/10.1007/s00271-018-0596-6, 2019. 
Ali, G. A. and Roy, A. G.: Shopping for hydrologically representatice connectivity metrics in a humid temperate forested catchment, Water Resour. Res., 46, W12544, https://doi.org/10.1029/2010WR009442, 2010. 
Backhaus, K., Erichson, B., Plinke, W., and Weiber, R.: Multivariate Analysemethoden – Eine anwendungsorientierte Einführung, 11th Edn., Springer, Heidelberg, 2006. 
Beven, K. and Kirkby, M.: A physically based, variable contributing area model of basin hydrology, Hydrolog. Sci. Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. 
Bhamjee, R., Lindsay, J. B., and Cockburn, J.: Monitoring ephemeral headwater streams: a paired-sensor approach, Hydrol. Process., 30, 888–898, https://doi.org/10.1002/hyp.10677, 2016. 
Short summary
In recent decades the demand for detailed information of spatial and temporal dynamics of the stream network has grown in the fields of eco-hydrology and extreme flow prediction. We use temporal streamflow intermittency data obtained at various sites using innovative sensing technology as well as spatial predictors to predict and map probabilities of streamflow intermittency. This approach has the potential to provide intermittency maps for hydrological modelling and management practices.
Share