Articles | Volume 24, issue 11
https://doi.org/10.5194/hess-24-5453-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5453-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Predicting probabilities of streamflow intermittency across a temperate mesoscale catchment
Nils Hinrich Kaplan
CORRESPONDING AUTHOR
Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, 79098 Freiburg, Germany
Theresa Blume
Hydrology, Helmholtz Centre Potsdam, GFZ German Research Centre for
Geosciences, 14473 Potsdam, Germany
Markus Weiler
Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, 79098 Freiburg, Germany
Related authors
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Nils Hinrich Kaplan, Ernestine Sohrt, Theresa Blume, and Markus Weiler
Earth Syst. Sci. Data, 11, 1363–1374, https://doi.org/10.5194/essd-11-1363-2019, https://doi.org/10.5194/essd-11-1363-2019, 2019
Short summary
Short summary
Different sensing techniques including time-lapse imagery, electric conductivity and stage measurements were used to generate a combined dataset of the presence and absence of streamflow within a large number of nested sub-catchments in the Attert catchment, Luxembourg. The first sites of observation were established in 2013 and successively extended to a total number of 182 in 2016. The dataset can be used to improve understanding of the temporal and spatial dynamics of the stream network.
Heinke Paulsen and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3503, https://doi.org/10.5194/egusphere-2024-3503, 2024
Short summary
Short summary
This technical note describes the development of the weighing Forest Floor Grid-Lysimeter. The device is needed to investigate the dynamics of the water balance components of the organic layer in forests. Quantifying precipitation, drainage, evaporation and storage. We designed a setup that can be easily rebuild and is cost-effective, which allows for customized applications. Performance metrics from laboratory results and initial field data are presented.
Daniel Rasche, Theresa Blume, and Andreas Güntner
SOIL, 10, 655–677, https://doi.org/10.5194/soil-10-655-2024, https://doi.org/10.5194/soil-10-655-2024, 2024
Short summary
Short summary
Soil moisture measurements at the field scale are highly beneficial for numerous (soil) hydrological applications. Cosmic-ray neutron sensing (CRNS) allows for the non-invasive monitoring of field-scale soil moisture across several hectares but only for the first few tens of centimetres of the soil. In this study, we modify and test a simple modeling approach to extrapolate CRNS-derived surface soil moisture information down to 450 cm depth and compare calibrated and uncalibrated model results.
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024, https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Short summary
The new process-based hydrological toolbox model, RoGeR (https://roger.readthedocs.io/), can be used to estimate the components of the hydrological cycle and the related travel times of pollutants through parts of the hydrological cycle. These estimations may contribute to effective water resources management. This paper presents the toolbox concept and provides a simple example of providing estimations to water resources management.
Jonas Pyschik, Stefan Seeger, Barbara Herbstritt, and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2024-528, https://doi.org/10.5194/egusphere-2024-528, 2024
Short summary
Short summary
We developed a device which automates the analysis process of stable water isotopes. Stable water isotopes are a natural tracer which many researchers use to investigate water (re-)distribution processes in environmental systems. The device helps to analyse such environmental samples by automating a formerly tidious manual labor process, alowwing for a higher sample throughput. This enables larger sampling campaigns, since more samples can be processed before reaching their limited storage time.
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023, https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
Short summary
We present a method to collect water vapor samples into bags in the field without an in-field analyser, followed by isotope analysis in the lab. This new method resolves even fine-scaled natural isotope variations. It combines low-cost and lightweight components for maximum spatial and temporal flexibility regarding environmental setups. Hence, it allows for sampling even in terrains that are rather difficult to access, enabling future extended isotope datasets in soil sciences and ecohydrology.
Stefan Seeger and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023, https://doi.org/10.5194/hess-27-3393-2023, 2023
Short summary
Short summary
This study proposes a low-budget method to quantify the radial distribution of water transport velocities within trees at a high spatial resolution. We observed a wide spread of water transport velocities within a tree stem section, which were on average 3 times faster than the flux velocity. The distribution of transport velocities has implications for studies that use water isotopic signatures to study root water uptake and usually assume uniform or even implicitly infinite velocities.
Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli, Markus Morgner, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 27, 3059–3082, https://doi.org/10.5194/hess-27-3059-2023, https://doi.org/10.5194/hess-27-3059-2023, 2023
Short summary
Short summary
We introduce passive downhole cosmic-ray neutron sensing (d-CRNS) as an approach for the non-invasive estimation of soil moisture in deeper layers of the unsaturated zone which exceed the observational window of above-ground CRNS applications. Neutron transport simulations are used to derive mathematical descriptions and transfer functions, while experimental measurements in an existing groundwater observation well illustrate the feasibility and applicability of the approach.
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 5069–5084, https://doi.org/10.5194/hess-26-5069-2022, https://doi.org/10.5194/hess-26-5069-2022, 2022
Short summary
Short summary
Spatially explicit quantification of design storms is essential for flood risk assessment and planning. However, available datasets are mainly based on spatially interpolated station-based design storms. Since the spatial interpolation of the data inherits a large potential for uncertainty, we develop an approach to be able to derive spatially explicit design storms on the basis of weather radar data. We find that our approach leads to an improved spatial representation of design storms.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022, https://doi.org/10.5194/hess-26-4953-2022, 2022
Short summary
Short summary
Analyzing the impact of soil age and rainfall intensity on vertical subsurface flow paths in calcareous soils, with a special focus on preferential flow occurrence, shows how water flow paths are linked to the organization of evolving landscapes. The observed increase in preferential flow occurrence with increasing moraine age provides important but rare data for a proper representation of hydrological processes within the feedback cycle of the hydro-pedo-geomorphological system.
Achim Brauer, Ingo Heinrich, Markus J. Schwab, Birgit Plessen, Brian Brademann, Matthias Köppl, Sylvia Pinkerneil, Daniel Balanzategui, Gerhard Helle, and Theresa Blume
DEUQUA Spec. Pub., 4, 41–58, https://doi.org/10.5194/deuquasp-4-41-2022, https://doi.org/10.5194/deuquasp-4-41-2022, 2022
Lena Katharina Schmidt, Till Francke, Erwin Rottler, Theresa Blume, Johannes Schöber, and Axel Bronstert
Earth Surf. Dynam., 10, 653–669, https://doi.org/10.5194/esurf-10-653-2022, https://doi.org/10.5194/esurf-10-653-2022, 2022
Short summary
Short summary
Climate change fundamentally alters glaciated high-alpine areas, but it is unclear how this affects riverine sediment transport. As a first step, we aimed to identify the most important processes and source areas in three nested catchments in the Ötztal, Austria, in the past 15 years. We found that areas above 2500 m were crucial and that summer rainstorms were less influential than glacier melt. These findings provide a baseline for studies on future changes in high-alpine sediment dynamics.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Daniel Rasche, Markus Köhli, Martin Schrön, Theresa Blume, and Andreas Güntner
Hydrol. Earth Syst. Sci., 25, 6547–6566, https://doi.org/10.5194/hess-25-6547-2021, https://doi.org/10.5194/hess-25-6547-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing provides areal average soil moisture measurements. We investigated how distinct differences in spatial soil moisture patterns influence the soil moisture estimates and present two approaches to improve the estimate of soil moisture close to the instrument by reducing the influence of soil moisture further afield. Additionally, we show that the heterogeneity of soil moisture can be assessed based on the relationship of different neutron energies.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Benjamin Gralher, Barbara Herbstritt, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 5219–5235, https://doi.org/10.5194/hess-25-5219-2021, https://doi.org/10.5194/hess-25-5219-2021, 2021
Short summary
Short summary
We scrutinized the quickest currently available method for stable isotope analysis of matrix-bound water. Simulating common procedures, we demonstrated the limits of certain materials currently used and identified a reliable and cost-efficient alternative. Further, we calculated the optimum proportions of important protocol aspects critical for precise and accurate analyses. Our unifying protocol suggestions increase data quality and comparability as well as the method's general applicability.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Stefan Seeger and Markus Weiler
Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, https://doi.org/10.5194/bg-18-4603-2021, 2021
Short summary
Short summary
We developed a setup for fully automated in situ measurements of stable water isotopes in soil and the stems of fully grown trees. We used this setup in a 12-week field campaign to monitor the propagation of a labelling pulse from the soil up to a stem height of 8 m.
We could observe trees shifting their main water uptake depths multiple times, depending on water availability.
The gained knowledge about the temporal dynamics can help to improve water uptake models and future study designs.
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-366, https://doi.org/10.5194/hess-2021-366, 2021
Manuscript not accepted for further review
Short summary
Short summary
Spatially explicit quantification on design storms are essential for flood risk assessment. However this information can be only achieved from substantially long records of rainfall measurements, usually only available for a few stations. Hence, design storms estimates from these few stations are then spatially interpolated leading to a major source of uncertainty. Therefore we defined a methodology to extend spatially explicit weather radar data to be used for the estimation of design storms.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-242, https://doi.org/10.5194/hess-2021-242, 2021
Manuscript not accepted for further review
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation and vegetation succession across ten millennia on calcareous parent material shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes. We provide important but rare data and observations for a proper handling of hydrologic processes and their role within the feedback cycle of the hydro-pedo-geomorphological system.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Geosci. Model Dev., 14, 2127–2142, https://doi.org/10.5194/gmd-14-2127-2021, https://doi.org/10.5194/gmd-14-2127-2021, 2021
Short summary
Short summary
This paper presents FluSM, an algorithm to derive the water balance from soil moisture and metrological measurements. This data-driven water balance framework uses soil moisture as an input and therefore is applicable for cases with unclear processes and lacking parameters. In a case study, we apply FluSM to derive the water balance of 15 different permeable pavements under field conditions. These findings are of special interest for urban hydrology.
Robin Schwemmle, Dominic Demand, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 2187–2198, https://doi.org/10.5194/hess-25-2187-2021, https://doi.org/10.5194/hess-25-2187-2021, 2021
Short summary
Short summary
A better understanding of the reasons why model performance is unsatisfying represents a crucial part for meaningful model evaluation. We propose the novel diagnostic efficiency (DE) measure and diagnostic polar plots. The proposed evaluation approach provides a diagnostic tool for model developers and model users and facilitates interpretation of model performance.
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences, 18, 1009–1027, https://doi.org/10.5194/bg-18-1009-2021, https://doi.org/10.5194/bg-18-1009-2021, 2021
Short summary
Short summary
We quantified the lateral and vertical subsurface flow (SSF) and P concentrations of three beech forest plots with contrasting soil properties during sprinkling experiments. Vertical SSF was 2 orders of magnitude larger than lateral SSF, and both consisted mainly of pre-event water. P concentrations in SSF were high during the first 1 to 2 h (nutrient flushing) but nearly constant thereafter. This suggests that P in the soil solution was replenished fast by mineral or organic sources.
Merle Koelbing, Tobias Schuetz, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-24, https://doi.org/10.5194/hess-2021-24, 2021
Revised manuscript not accepted
Short summary
Short summary
Based on a unique and comprehensive data set of urban micro-meteorological variables, which were observed with a mobile climate station, we developed a new method to transfer mesoscale reference potential evapotranspiration to the urban microscale in street canyons. Our findings can be transferred easily to existing urban hydrologic models to improve modelling results with a more precise estimate of potential evapotranspiration on street level.
Anne Hartmann, Markus Weiler, and Theresa Blume
Earth Syst. Sci. Data, 12, 3189–3204, https://doi.org/10.5194/essd-12-3189-2020, https://doi.org/10.5194/essd-12-3189-2020, 2020
Short summary
Short summary
Our analysis of soil physical and hydraulic properties across two soil chronosequences of 10 millennia in the Swiss Alps provides important observation of the evolution of soil hydraulic behavior. A strong co-evolution of soil physical and hydraulic properties was revealed by the observed change of fast-draining coarse-textured soils to slow-draining soils with a high water-holding capacity in correlation with a distinct change in structural properties and organic matter content.
Daniel Beiter, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 5713–5744, https://doi.org/10.5194/hess-24-5713-2020, https://doi.org/10.5194/hess-24-5713-2020, 2020
Short summary
Short summary
We investigated the interactions between streams and their adjacent hillslopes in terms of water flow. It could be revealed that soil structure has a strong influence on how hillslopes connect to the streams, while the groundwater table tells us a lot about when the two connect. This observation could be used to improve models that try to predict whether or not hillslopes are in a state where a rain event will be likely to produce a flood in the stream.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Conrad Jackisch, Samuel Knoblauch, Theresa Blume, Erwin Zehe, and Sibylle K. Hassler
Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, https://doi.org/10.5194/bg-17-5787-2020, 2020
Short summary
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Michael Stoelzle, Maria Staudinger, Kerstin Stahl, and Markus Weiler
Proc. IAHS, 383, 43–50, https://doi.org/10.5194/piahs-383-43-2020, https://doi.org/10.5194/piahs-383-43-2020, 2020
Short summary
Short summary
The role of recharge and catchment storage is crucial to understand streamflow drought sensitivity. Here we introduce a model experiment with recharge stress tests as complement to climate scenarios to quantify the streamflow drought sensitivities of catchments in Switzerland. We identified a pre-drought period of 12 months as maximum storage-memory for the study catchments. From stress testing, we found up to 200 days longer summer streamflow droughts and minimum flow reductions of 50 %–80 %.
Anne Hartmann, Ekaterina Semenova, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 3271–3288, https://doi.org/10.5194/hess-24-3271-2020, https://doi.org/10.5194/hess-24-3271-2020, 2020
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation, and vegetation succession across 10 millennia shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes.
The increase found in water storage and preferential flow paths with increasing soil age shows the effect of the complex interaction of vegetation and soil development on flow paths, water balance, and runoff formation during landscape evolution.
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020, https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
Short summary
We could show that distributed soil moisture time series bear a considerable amount of information about dynamic changes in soil moisture. We developed a new method to describe spatial patterns and analyze their persistency. By combining uncertainty propagation with information theory, we were able to calculate the information content of spatial similarity with respect to measurement uncertainty. This does help to understand when and why the soil is drying in an organized manner.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Earth Syst. Sci. Data, 12, 501–517, https://doi.org/10.5194/essd-12-501-2020, https://doi.org/10.5194/essd-12-501-2020, 2020
Short summary
Short summary
This paper contains detailed information about the instrumentation of permeable pavements with soil moisture sensors and the performance of infiltration experiments on these surfaces. The collected data are beneficial for studying urban water and energy cycles. They contain valuable information about the hydrological behavior of permeable pavements and urban subsurface heat anomalies. Due to the lack of similar data, we are convinced that the dataset is of great scientific value.
Michael Stoelzle, Tobias Schuetz, Markus Weiler, Kerstin Stahl, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 849–867, https://doi.org/10.5194/hess-24-849-2020, https://doi.org/10.5194/hess-24-849-2020, 2020
Short summary
Short summary
During dry weather, different delayed sources of runoff (e.g. from groundwater, wetlands or snowmelt) modulate the magnitude and variability of streamflow. Hydrograph separation methods often do not distinguish these delayed contributions and mostly pool them into only two components (i.e. quickflow and baseflow). We propose a method that uncovers multiple components and demonstrates how they better reflect streamflow generation processes of different flow regimes.
Fabian Ries, Lara Kirn, and Markus Weiler
Earth Syst. Sci. Data, 12, 245–255, https://doi.org/10.5194/essd-12-245-2020, https://doi.org/10.5194/essd-12-245-2020, 2020
Short summary
Short summary
Pluvial or flash floods generated by heavy precipitation events cause large economic damage and loss of life worldwide. As discharge observations from such extreme occurrences are rare, data from artificial sprinkling experiments offer valuable information on runoff generation processes, overland and subsurface flow rates, and response times. A extensive data set from 132 large-scale sprinkling experiments in Germany is described and presented in this paper.
Dominic Demand, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 4869–4889, https://doi.org/10.5194/hess-23-4869-2019, https://doi.org/10.5194/hess-23-4869-2019, 2019
Short summary
Short summary
This study presents an analysis of 135 soil moisture profiles for identification of the spatial and temporal preferential flow occurrence in a complex landscape. Especially dry conditions and high rainfall intensities were found to increase preferential flow occurrence in soils. This results in a seasonal pattern of preferential flow with a higher occurrence in summer. During this time grasslands showed increased flow velocities, whereas forest sites exhibited a higher amount of bypass flow.
Nils Hinrich Kaplan, Ernestine Sohrt, Theresa Blume, and Markus Weiler
Earth Syst. Sci. Data, 11, 1363–1374, https://doi.org/10.5194/essd-11-1363-2019, https://doi.org/10.5194/essd-11-1363-2019, 2019
Short summary
Short summary
Different sensing techniques including time-lapse imagery, electric conductivity and stage measurements were used to generate a combined dataset of the presence and absence of streamflow within a large number of nested sub-catchments in the Attert catchment, Luxembourg. The first sites of observation were established in 2013 and successively extended to a total number of 182 in 2016. The dataset can be used to improve understanding of the temporal and spatial dynamics of the stream network.
Barbara Herbstritt, Benjamin Gralher, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 3007–3019, https://doi.org/10.5194/hess-23-3007-2019, https://doi.org/10.5194/hess-23-3007-2019, 2019
Short summary
Short summary
We describe a novel technique for the precise, quasi real-time observation of water-stable isotopes in gross precipitation and throughfall from tree canopies in parallel. Various processes (e.g. rainfall intensity, evapotranspiration, exchange with ambient vapour) thereby control throughfall intensity and isotopic composition. The achieved temporal resolution now competes with common meteorological measurements, thus enabling new ways to employ water-stable isotopes in forested catchments.
Anne J. Hoek van Dijke, Kaniska Mallick, Adriaan J. Teuling, Martin Schlerf, Miriam Machwitz, Sibylle K. Hassler, Theresa Blume, and Martin Herold
Hydrol. Earth Syst. Sci., 23, 2077–2091, https://doi.org/10.5194/hess-23-2077-2019, https://doi.org/10.5194/hess-23-2077-2019, 2019
Short summary
Short summary
Satellite images are often used to estimate land water fluxes over a larger area. In this study, we investigate the link between a well-known vegetation index derived from satellite data and sap velocity, in a temperate forest in Luxembourg. We show that the link between the vegetation index and transpiration is not constant. Therefore we suggest that the use of vegetation indices to predict transpiration should be limited to ecosystems and scales where the link has been confirmed.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Jobin Joseph, Christoph Külls, Matthias Arend, Marcus Schaub, Frank Hagedorn, Arthur Gessler, and Markus Weiler
SOIL, 5, 49–62, https://doi.org/10.5194/soil-5-49-2019, https://doi.org/10.5194/soil-5-49-2019, 2019
Short summary
Short summary
By coupling an OA-ICOS with hydrophobic but gas-permeable membranes placed at different depths in acidic and calcareous soils, we investigated the contribution of abiotic and biotic components to total soil CO2 release. In calcareous Gleysol, CO2 originating from carbonate dissolution contributed to total soil CO2 concentration at detectable degrees, probably due to CO2 evasion from groundwater. Inward diffusion of atmospheric CO2 was found to be pronounced in the topsoil layers at both sites.
Mirko Mälicke, Sibylle K. Hassler, Markus Weiler, Theresa Blume, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-396, https://doi.org/10.5194/hess-2018-396, 2018
Manuscript not accepted for further review
Short summary
Short summary
In this study we use time dependent variograms to identify periods of organized soil moisture during drying. We could identify emerging spatial patterns which imply periods of terrestrial control on soil moisture organization. The coupling of time dependent variograms with density based clustering is a new approach to detect similarity in spatial patterns. The presented method is useful to describe states of organization and improve kriging workflows by extending their prerequisites.
Jana von Freyberg, Scott T. Allen, Stefan Seeger, Markus Weiler, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, https://doi.org/10.5194/hess-22-3841-2018, 2018
Short summary
Short summary
We explored how the fraction of streamflow younger than ca. 3 months (Fyw) varies with landscape characteristics and climatic forcing, using an extensive isotope data set from 22 Swiss catchments. Overall, Fyw tends to be larger when catchments are wet and discharge is correspondingly higher, indicating an increase in the proportional contribution of faster flow paths at higher flows. We quantify this
discharge sensitivityof Fyw and relate it to the dominant streamflow-generating mechanisms.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Jakob Sohrt, Heike Puhlmann, and Markus Weiler
SOIL Discuss., https://doi.org/10.5194/soil-2018-13, https://doi.org/10.5194/soil-2018-13, 2018
Revised manuscript not accepted
Short summary
Short summary
We sampled concentrations of phosphorus (P) in laterally flowing water in the organic layer of three beech forest sites. Sampling frequency was in the range to minutes to ours with the intent of capturing short term variability of this parameter and the underlying mechanisms, which were analyzed with a modeling approach. While site affiliation was found to be a strong influence on P concentrations in lateral flow, some universal effects – like antecedent soil moisture – could also be determined.
Daphné Freudiger, David Mennekes, Jan Seibert, and Markus Weiler
Earth Syst. Sci. Data, 10, 805–814, https://doi.org/10.5194/essd-10-805-2018, https://doi.org/10.5194/essd-10-805-2018, 2018
Short summary
Short summary
To understand glacier changes in the Swiss Alps at the large scale, long-term datasets are needed. To fill the gap between the existing glacier inventories of the Swiss Alps between 1850 and 1973, we digitized glacier outlines from topographic historical maps of Switzerland for the time periods ca. 1900 and ca. 1935. We found that > 88 % of the digitized glacier area was plausible compared to four inventories. The presented dataset is therefore valuable information for long-term glacier studies.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211–2224, https://doi.org/10.5194/hess-22-2211-2018, https://doi.org/10.5194/hess-22-2211-2018, 2018
Short summary
Short summary
In many glacio-hydrological models glacier areas are assumed to be constant over time, which is a crucial limitation. Here we describe a novel approach to translate mass balances as simulated by the (glacio)hydrological model into glacier area changes. We combined the Δh approach of Huss et al. (2010) with the bucket-type model HBV and introduced a lookup table approach, which also allows periods with advancing glaciers to be represented, which is not possible with the original Huss method.
Sibylle Kathrin Hassler, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 22, 13–30, https://doi.org/10.5194/hess-22-13-2018, https://doi.org/10.5194/hess-22-13-2018, 2018
Short summary
Short summary
We use sap velocity measurements from 61 trees on 132 days to gain knowledge about the controls of landscape-scale transpiration, distinguishing tree-, stand- and site-specific controls on sap velocity and sap flow patterns and examining their dynamics during the vegetation period. Our results show that these patterns are not exclusively determined by tree characteristics. Thus, including site characteristics such as geology and aspect could be beneficial for modelling or management purposes.
Willem J. van Verseveld, Holly R. Barnard, Chris B. Graham, Jeffrey J. McDonnell, J. Renée Brooks, and Markus Weiler
Hydrol. Earth Syst. Sci., 21, 5891–5910, https://doi.org/10.5194/hess-21-5891-2017, https://doi.org/10.5194/hess-21-5891-2017, 2017
Short summary
Short summary
How stream water responds immediately to a rainfall or snow event, while the average time it takes water to travel through the hillslope can be years or decades and is poorly understood. We assessed this difference by combining a 24-day sprinkler experiment (a tracer was applied at the start) with a process-based hydrologic model. Immobile soil water, deep groundwater contribution and soil depth variability explained this difference at our hillslope site.
Christina Tecklenburg and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 5043–5063, https://doi.org/10.5194/hess-21-5043-2017, https://doi.org/10.5194/hess-21-5043-2017, 2017
Short summary
Short summary
We characterized groundwater–lake exchange patterns and identified their controls based on extensive field measurements. Our measurement design bridges the gap between the detailed local characterisation and low resolution regional investigations. Results indicated strong spatial variability in groundwater inflow rates: large scale inflow patterns correlated with topography and the groundwater flow field and small scale patterns correlated with grainsize distributions of the lake sediment.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-416, https://doi.org/10.5194/hess-2017-416, 2017
Revised manuscript not accepted
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Short summary
This study investigates the temporal dynamics and response velocities of lateral preferential flow at the hillslope. The results are compared to catchment response behavior to infer the large-scale implications of the observed processes. A large portion of mobile water flows through preferential flow paths in the structured soils, causing an immediate discharge response. The study presents a methodological approach to cover the spatial and temporal domain of these highly heterogeneous processes.
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary
Short summary
Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. We present its in situ exploration through local measurements and irrigation experiments. Special emphasis is given to a coherent combination of hydrological and geophysical methods. The study highlights that form and function operate as conjugated pairs. Dynamic imaging through time-lapse GPR was key to observing both and to identifying hydrologically relevant structures.
Maik Renner, Sibylle K. Hassler, Theresa Blume, Markus Weiler, Anke Hildebrandt, Marcus Guderle, Stanislaus J. Schymanski, and Axel Kleidon
Hydrol. Earth Syst. Sci., 20, 2063–2083, https://doi.org/10.5194/hess-20-2063-2016, https://doi.org/10.5194/hess-20-2063-2016, 2016
Short summary
Short summary
We estimated forest transpiration (European beech) along a steep valley cross section. Atmospheric demand, obtained by the thermodynamic limit of maximum power, is the dominant control of transpiration at all sites.
To our surprise we find that transpiration is rather similar across sites with different aspect (north vs. south) and different stand structure due to systematically varying sap velocities. Such a compensation effect is highly relevant for modeling and upscaling of transpiration.
Katharina F. Gimbel, Heike Puhlmann, and Markus Weiler
Hydrol. Earth Syst. Sci., 20, 1301–1317, https://doi.org/10.5194/hess-20-1301-2016, https://doi.org/10.5194/hess-20-1301-2016, 2016
Short summary
Short summary
It is usually assumed that soil properties are not affected by drought events. We used dye tracer experiments to test this assumption on six forest soils, which were forced into drought conditions. The results of this study show clear evidence for changes in infiltration pathways. In addition, most soils developed soil water repellency. Overall, the results suggest that the past climatic conditions are more important than the actual soil moisture status regarding hydrophobicity and infiltration.
Ingo Heidbüchel, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 20, 1269–1288, https://doi.org/10.5194/hess-20-1269-2016, https://doi.org/10.5194/hess-20-1269-2016, 2016
Short summary
Short summary
Cosmic-ray neutron sensors bridge the gap between point-scale measurements of soil moisture and remote sensing applications. We tested four distinct methods to calibrate the sensor in a temperate forest environment using different soil moisture weighting approaches. While the variable leaf biomass of the deciduous trees had no significant influence on the calibration, it proved necessary to modify the standard calibration method to achieve the best sensor performance.
Tobias Schuetz, Chantal Gascuel-Odoux, Patrick Durand, and Markus Weiler
Hydrol. Earth Syst. Sci., 20, 843–857, https://doi.org/10.5194/hess-20-843-2016, https://doi.org/10.5194/hess-20-843-2016, 2016
Short summary
Short summary
We quantify the spatio-temporal impact of distinct nitrate sinks and sources on stream network nitrate dynamics in an agricultural headwater. By applying a data-driven modelling approach, we are able to fully distinguish between mixing and dilution processes, and biogeochemical in-stream removal processes along the stream network. In-stream nitrate removal is estimated by applying a novel transfer coefficient based on energy availability.
A. Hartmann, J. Kobler, M. Kralik, T. Dirnböck, F. Humer, and M. Weiler
Biogeosciences, 13, 159–174, https://doi.org/10.5194/bg-13-159-2016, https://doi.org/10.5194/bg-13-159-2016, 2016
Short summary
Short summary
We consider the time period before and after a wind disturbance in an Austrian karst system. Using a process-based flow and solute transport simulation model we estimate impacts on DIN and DOC. We show that DIN increases for several years, while DOC remains within its pre-disturbance variability. Simulated transit times indicate that impact passes through the hydrological system within some months but with a small fraction exceeding transit times of even a year.
M. Sprenger, T. H. M. Volkmann, T. Blume, and M. Weiler
Hydrol. Earth Syst. Sci., 19, 2617–2635, https://doi.org/10.5194/hess-19-2617-2015, https://doi.org/10.5194/hess-19-2617-2015, 2015
Short summary
Short summary
We present a novel approach that includes information about the pore water stable isotopic composition in inverse model approaches to estimate soil hydraulic parameters. Different approaches are presented and their adequacy regarding the model efficiency, realism and parameter identifiability are discussed. The advantages of the new approach are shown by an application of the inverse estimated parameters to infer the water balance and the transit time for three different study sites.
M. Staudinger, M. Weiler, and J. Seibert
Hydrol. Earth Syst. Sci., 19, 1371–1384, https://doi.org/10.5194/hess-19-1371-2015, https://doi.org/10.5194/hess-19-1371-2015, 2015
K. F. Gimbel, K. Felsmann, M. Baudis, H. Puhlmann, A. Gessler, H. Bruelheide, Z. Kayler, R. H. Ellerbrock, A. Ulrich, E. Welk, and M. Weiler
Biogeosciences, 12, 961–975, https://doi.org/10.5194/bg-12-961-2015, https://doi.org/10.5194/bg-12-961-2015, 2015
Short summary
Short summary
This paper introduces a novel rainfall reduction experiment to investigate drought effects on soil-forest-understory-ecosystems. An annual drought with a return period of 40 years was imposed, while other ecosystem variables (humidity, air & soil temperature) remained unaffected. The first year of drought showed considerable changes in soil moisture dynamics, which affected leaf stomatal conductance of understory species as well as evapotranspiration rates of the forest understory ecosystem.
S. Seeger and M. Weiler
Hydrol. Earth Syst. Sci., 18, 4751–4771, https://doi.org/10.5194/hess-18-4751-2014, https://doi.org/10.5194/hess-18-4751-2014, 2014
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
J. Schwerdtfeger, M. S. Johnson, E. G. Couto, R. S. S. Amorim, L. Sanches, J. H. Campelo Jr., and M. Weiler
Hydrol. Earth Syst. Sci., 18, 4407–4422, https://doi.org/10.5194/hess-18-4407-2014, https://doi.org/10.5194/hess-18-4407-2014, 2014
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
D. Freudiger, I. Kohn, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 18, 2695–2709, https://doi.org/10.5194/hess-18-2695-2014, https://doi.org/10.5194/hess-18-2695-2014, 2014
H. M. Holländer, H. Bormann, T. Blume, W. Buytaert, G. B. Chirico, J.-F. Exbrayat, D. Gustafsson, H. Hölzel, T. Krauße, P. Kraft, S. Stoll, G. Blöschl, and H. Flühler
Hydrol. Earth Syst. Sci., 18, 2065–2085, https://doi.org/10.5194/hess-18-2065-2014, https://doi.org/10.5194/hess-18-2065-2014, 2014
R. S. Smith, R. D. Moore, M. Weiler, and G. Jost
Hydrol. Earth Syst. Sci., 18, 1835–1856, https://doi.org/10.5194/hess-18-1835-2014, https://doi.org/10.5194/hess-18-1835-2014, 2014
T. H. M. Volkmann and M. Weiler
Hydrol. Earth Syst. Sci., 18, 1819–1833, https://doi.org/10.5194/hess-18-1819-2014, https://doi.org/10.5194/hess-18-1819-2014, 2014
M. Gassmann, C. Stamm, O. Olsson, J. Lange, K. Kümmerer, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 5213–5228, https://doi.org/10.5194/hess-17-5213-2013, https://doi.org/10.5194/hess-17-5213-2013, 2013
E. Zehe, U. Ehret, T. Blume, A. Kleidon, U. Scherer, and M. Westhoff
Hydrol. Earth Syst. Sci., 17, 4297–4322, https://doi.org/10.5194/hess-17-4297-2013, https://doi.org/10.5194/hess-17-4297-2013, 2013
A. Hartmann, M. Weiler, T. Wagener, J. Lange, M. Kralik, F. Humer, N. Mizyed, A. Rimmer, J. A. Barberá, B. Andreo, C. Butscher, and P. Huggenberger
Hydrol. Earth Syst. Sci., 17, 3305–3321, https://doi.org/10.5194/hess-17-3305-2013, https://doi.org/10.5194/hess-17-3305-2013, 2013
N. Dietermann and M. Weiler
Hydrol. Earth Syst. Sci., 17, 2657–2668, https://doi.org/10.5194/hess-17-2657-2013, https://doi.org/10.5194/hess-17-2657-2013, 2013
J. Garvelmann, S. Pohl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 1415–1429, https://doi.org/10.5194/hess-17-1415-2013, https://doi.org/10.5194/hess-17-1415-2013, 2013
M. Stoelzle, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 817–828, https://doi.org/10.5194/hess-17-817-2013, https://doi.org/10.5194/hess-17-817-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Learning landscape features from streamflow with autoencoders
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Heavy-tailed flood peak distributions: What is the effect of the spatial variability of rainfall and runoff generation?
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
State updating in the Xin'anjiang Model: Joint assimilating streamflow and multi-source soil moisture data via Asynchronous Ensemble Kalman Filter with enhanced Error Models
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Lack of robustness of hydrological models: A large-sample diagnosis and an attempt to identify the hydrological and climatic drivers
The Significance of the Leaf-Area-Index on the Evapotranspiration Estimation in SWAT-T for Characteristic Land Cover Types of Western Africa
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
A network approach for multiscale catchment classification using traits
Multi-model approach in a variable spatial framework for streamflow simulation
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Toward interpretable LSTM-based modeling of hydrological systems
Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model
What controls the tail behaviour of flood series: rainfall or runoff generation?
Seasonal prediction of end-of-dry-season watershed behavior in a highly interconnected alluvial watershed in northern California
Glaciers determine the sensitivity of hydrological processes to perturbed climate in a large mountainous basin on the Tibetan Plateau
Leveraging gauge networks and strategic discharge measurements to aid the development of continuous streamflow records
On the need for physical constraints in deep learning rainfall–runoff projections under climate change: a sensitivity analysis to warming and shifts in potential evapotranspiration
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-181, https://doi.org/10.5194/hess-2024-181, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small compared to large catchments, and that spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show an effect. The results can improve estimations of occurrence probabilities of extreme floods.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-211, https://doi.org/10.5194/hess-2024-211, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping better prepare for and respond to floods.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024, https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary
Short summary
Mountain snowpack has been declining and more precipitation falls as rain than snow. Using stable isotopes, we found flows and flow duration in Yosemite Creek are most sensitive to climate warming due to strong evaporation of waterfalls, potentially lengthening the dry-up period of waterfalls in summer and negatively affecting tourism. Groundwater recharge in Yosemite Valley is primarily from the upper snow–rain transition (2000–2500 m) and very vulnerable to a reduction in the snow–rain ratio.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-80, https://doi.org/10.5194/hess-2024-80, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This work aims at investigating how hydrological models can be transferred to a period in which climatic conditions are different to the ones of the period in which it was set up. The RAT method, built to detect dependencies between model error and climatic drivers, was applied to 3 different hydrological models on 352 catchments in Denmark, France and Sweden. Potential issues are detected for a significant number of catchments for the 3 models even though these catchments differ for each model.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-131, https://doi.org/10.5194/hess-2024-131, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
ET is computed from vegetation (plant transpiration) and soil (soil evaporation). In Western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented with the leaf-area-index (LAI). In this study, we evaluate the importance of LAI for the ET calculation. We take a close look at the LAI-ET interaction and show the relevance to consider both, LAI and ET. Our work contributes to the understanding of the processes of the terrestrial water cycle.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024, https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
Short summary
Input data, model and calibration strategy can affect the accuracy of flood event simulation and prediction. Satellite-based precipitation with different spatiotemporal resolutions is an important input source. Data-driven models are sometimes proven to be more accurate than hydrological models. Event-based calibration and conventional strategy are two options adopted for flood simulation. This study targets the three concerns for accurate flood event simulation and prediction.
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024, https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Short summary
We present a new method based on network science for unsupervised classification of large datasets and apply it to classify 9067 US catchments and 274 biophysical traits at multiple scales. We find that our trait-based approach produces catchment classes with distinct streamflow behavior and that spatial patterns emerge amongst pristine and human-impacted catchments. This method can be widely used beyond hydrology to identify patterns, reduce trait redundancy, and select representative sites.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024, https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary
Short summary
Hydrologists strive to “Be right for the right reasons” when modeling the hydrologic cycle; however, the datasets available to validate hydrological models are sparse, and in many cases, they comprise streamflow observations at the outlets of large catchments. In this work, we show that matching streamflow observations at the outlet of a large basin is not a reliable indicator of a correct description of the small-scale runoff processes.
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024, https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Short summary
This study examines the relationship between air and river temperatures in Washington's Snoqualmie and Wenatchee basins. We used classification and regression approaches to show that the sensitivity of river temperature to air temperature is variable across basins and controlled largely by geology and snowmelt. Findings can be used to inform strategies for river basin restoration and conservation, such as identifying climate-insensitive areas of the basin that should be preserved and protected.
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024, https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
Short summary
To determine if deep learning models are in general a viable alternative to traditional hydrologic modelling techniques in Australian catchments, a comparison of river–runoff predictions is made between traditional conceptual models and deep learning models in almost 500 catchments spread over the continent. It is found that the deep learning models match or outperform the traditional models in over two-thirds of the river catchments, indicating feasibility in a wide variety of conditions.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-57, https://doi.org/10.5194/hess-2024-57, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. In this work we investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analysis indicate that adding two vegetation is enough to improve the representation of evaporation, and the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024, https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Short summary
Calibrating hydrological models with multi-objective functions enhances model robustness. By using spatially distributed snow information in the calibration, the model performance can be enhanced without compromising the outputs. In this study the HYDROTEL model was calibrated in seven different experiments, incorporating the SPAEF (spatial efficiency) metric alongside Nash–Sutcliffe efficiency (NSE) and root-mean-square error (RMSE), with the aim of identifying the optimal calibration strategy.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024, https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Claire Kouba and Thomas Harter
Hydrol. Earth Syst. Sci., 28, 691–718, https://doi.org/10.5194/hess-28-691-2024, https://doi.org/10.5194/hess-28-691-2024, 2024
Short summary
Short summary
In some watersheds, the severity of the dry season has a large impact on aquatic ecosystems. In this study, we design a way to predict, 5–6 months in advance, how severe the dry season will be in a rural watershed in northern California. This early warning can support seasonal adaptive management. To predict these two values, we assess data about snow, rain, groundwater, and river flows. We find that maximum snowpack and total wet season rainfall best predict dry season severity.
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024, https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary
Short summary
This paper utilized a tracer-aided model validated by multiple datasets in a large mountainous basin on the Tibetan Plateau to analyze hydrological sensitivity to climate change. The spatial pattern of the local hydrological sensitivities and the influence factors were analyzed in particular. The main finding of this paper is that the local hydrological sensitivity in mountainous basins is determined by the relationship between the glacier area ratio and the mean annual precipitation.
Michael J. Vlah, Matthew R. V. Ross, Spencer Rhea, and Emily S. Bernhardt
Hydrol. Earth Syst. Sci., 28, 545–573, https://doi.org/10.5194/hess-28-545-2024, https://doi.org/10.5194/hess-28-545-2024, 2024
Short summary
Short summary
Virtual stream gauging enables continuous streamflow estimation where a gauge might be difficult or impractical to install. We reconstructed flow at 27 gauges of the National Ecological Observatory Network (NEON), informing ~199 site-months of missing data in the official record and improving that accuracy of official estimates at 11 sites. This study shows that machine learning, but also routine regression methods, can be used to supplement existing gauge networks and reduce monitoring costs.
Sungwook Wi and Scott Steinschneider
Hydrol. Earth Syst. Sci., 28, 479–503, https://doi.org/10.5194/hess-28-479-2024, https://doi.org/10.5194/hess-28-479-2024, 2024
Short summary
Short summary
We investigate whether deep learning (DL) models can produce physically plausible streamflow projections under climate change. We address this question by focusing on modeled responses to increases in temperature and potential evapotranspiration and by employing three DL and three process-based hydrological models. The results suggest that physical constraints regarding model architecture and input are necessary to promote the physical realism of DL hydrological projections under climate change.
Cited articles
Akbar, S., Kathuria, A., and Maheshwari, B.: Combining imaging techniques with nonparametric modelling to predict seepage hotspots in irrigation channels, Irrig. Sci., 37, 11–23, https://doi.org/10.1007/s00271-018-0596-6, 2019.
Ali, G. A. and Roy, A. G.: Shopping for hydrologically representatice
connectivity metrics in a humid temperate forested catchment, Water Resour. Res., 46, W12544, https://doi.org/10.1029/2010WR009442, 2010.
Backhaus, K., Erichson, B., Plinke, W., and Weiber, R.: Multivariate
Analysemethoden – Eine anwendungsorientierte Einführung, 11th Edn.,
Springer, Heidelberg, 2006.
Beven, K. and Kirkby, M.: A physically based, variable contributing area model of basin hydrology, Hydrolog. Sci. Bull., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979.
Bhamjee, R., Lindsay, J. B., and Cockburn, J.: Monitoring ephemeral headwater
streams: a paired-sensor approach, Hydrol. Process., 30, 888–898, https://doi.org/10.1002/hyp.10677, 2016.
Boulton, A. J., Rolls, R. J., Jaeger, K. L., and Datry, T.: Hydrological
Connectivity in Intermittent Rivers and Ephemeral Streams, 79–108,
https://doi.org/10.1016/B978-0-12-803835-2.00004-8, in: Intermittent Rivers and Ephemeral Streams, edited by: Datry, T., Bonada, N., and Boulton, A., Ecol. Manage., https://doi.org/10.1016/B978-0-12-803835-2.00004, 2017.
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., and Roy, A. G.: Concepts of hydrological connectivity: Research approaches, pathways and future agendas, Earth-Sci. Rev., 119, 17–34, 2013.
Buttle, J. M., Boon, S., Peters, D. L., Spence, C., van Meerveld, H. J., and
Whitfield, P. H.: An Overview of Temporary Stream Hydrology in Canada, Can. Water Resour. J., 37, 279–310, https://doi.org/10.4296/cwrj2011-903, 2012.
Cammeraat, L. H., Sevink, J., Hissler, C., Juilleret, J., Jansen, B., Kooijman, A. M., Pfister, L., and Verstraten, J. M.: Soils of the Luxembourg Lias Cuesta Landscape, in: The Luxembourg Gutland Landscape, edited by: Kooijman, A. M., Seijmonsbergen, A. C., and Cammeraat, L. H., Springer, Cham,, 107–130, https://doi.org/10.1007/978-3-319-65543-7_6, 2018.
Clausen, B. and Person, C. P.: Regional frequency analysis of annual maximum streamflow drought, J. Hydrol., 173, 111–130, 1995.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L.,
Wehberg, J., Wichmann, V., and Boehner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev., 8, 1991–2007,
https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Costigan, K. H., Jaeger, K. L., Goss, C. W., Fritz, K. M., and Goebel, P. C.:
Understanding controls on flow permanence in intermittent rivers aid ecological research: integrating meteorology geology and land cover, Ecohydrology, 9, 7, https://doi.org/10.1002/eco.1712, 2016.
Datry, D., Larned, S. T., and Tockner, K.: Intermittent Rivers: A Challenge for Freshwater Ecology, BioScience, 64, 229–235, https://doi.org/10.1093/biosci/bit027, 2014.
Datry, T., Bondana, N., and Boulton, A. J.: Chapter 1 – General introduction, in: Intermittent Rivers and Ephemeral Streams – Ecology and Management, edited by: Datry, T., Bondana, N., and Boulton, A. J., Academic Press, London, https://doi.org/10.1016/B978-0-12-803835-2.00001-2, 2017.
ESRI: Understanding curvature rasters, available at:
https://www.esri.com/arcgis-blog/products/product/imagery/understanding-curvature-rasters/, last access: 16 February 2020.
Famiglietti, J. S., Rudnicki, J. W., and Rodell, M.: Variability in surface
moisture content along a hillslope transect: Rattlesnake Hill, Texas, J. Hydrol., 210, 259–281, 1998.
Friedrich, K.: Digitale Reliefgliederungsverfahren zur Ableitung bodenkundlich relevanter Flaecheneinheiten, Frankfurter Geowissenschaftliche Arbeiten D 21, Frankfurt am Main, 1996.
Friedrich, K.: Multivariate distance methods for geomorphographic relief classification, in: Land Inforamtion Systems – Developments for planning the sustainable use of land resources, European Soil Bureau, Research Report 4, EUR 17729 EN, edited by: Heinecke, H., Eckelmann, W., Thomasson, A., Jones, J., Montanarella, L., and Buckley, B., Office for oficial publications of the European Communities, Ispra, 259–266, 1998.
Godsey, S. E. and Kirchner, J. W.: Dynamic, discontinuous stream networks:
hydrologically driven variations in active drainage density, flowing channels and stream order, Hydrol. Process., 28, 5791–5803, https://doi.org/10.1002/hyp.10310, 2014.
Goodrich, D. C., Kepner, W. G., Levick, L. R., and Wigington Jr., P. J.: Southwestern intermittent and ephemeral stream connectivity, J. Am. Water Resour. Assoc., 54, 400–422, https://doi.org/10.1111/1752-1688.12636, 2018.
Goulsbra, C. S., Lindsay, J. B., and Evans, M. G.: A new approach to the
application of electrical resistance sensors to measuring the onset of
ephemeral streamflow in wetland environments, Water Resour. Res., 45,
W09501, https://doi.org/10.1029/2009WR007789, 2009.
Guisan, A., Weiss, S. B., and Weiss, A. D.: GLM versus CCA spatial modelling of plant species distribution, Plant Ecol., 143, 107–122, 1999.
Habtezion, N., Nasab, M. T., and Chu, X.: How does DEM resolution affect
microtopographic characteristics, hydrologic connectivity, and modelling of
hydrologic processes?, Hydrol. Process., 30, 4870–4892, https://doi.org/10.1002/hyp.10967, 2016.
Hallema, D. W., Moussa, R., Sun, G., and McNulty, S.: Surface storm flow
prediction on hillslopes based on topography and hydrologic connectivity,
Ecol. Process., 5, 1–13, https://doi.org/10.1186/s13717-016-0057-1, 2016.
Hansen, W. F.: Identifying stream types and management implications, Forest
Ecol. Manage., 143, 39–46, 2001.
Hedman, E. R. and Osterkamp, W. R.: Streamflow Characteristics Related to
Channel Geometry of Streams in Western United States, USGS Water-Supply
Paper 2193, US Geological Survey, Washington, 1982.
Hellebrand, H., van den Bos, R., Hoffmann, L., Juilleret, J., and Pfister, L.: The potential of winter stormflow coefficients for hydrological regionalization purposes in poorly gauged basins of the middle Rhine region, Hydrolog. Sci. J., 53, 773–788, https://doi.org/10.1623/hysj.53.4.773, 2008.
Hewlett, J. D.: Principles of Forest Hydrology, University of Georgia Press, Athens, GA, USA, p. 192, ISBN9780820323800, 1982.
Jaeger, K. L. and Olden, J. D.: Electrical Resistance Sensor Arrays as a Means to Quantify Longitudinal Connectivity of Rivers, River Res. Appl., 28, 1843–1852, https://doi.org/10.1002/rra.1554, 2012.
Jaeger, K. L., Sutfin, N. A., Tooth, S., Mechaelides, K., and Singer, M.: Chapter 2.1 – Geomorphology and Sediment Regimes of Intermittent Rivers and
Ephemeral Streams, in: Intermittent Rivers and Ephemeral Streams – Ecology and Management, edited by: Datry, T., Bondana, N., and Boulton, A. J., Academic Press, London, https://doi.org/10.1016/B978-0-12-803835-2.00002-4, 2017.
Jaeger, K. L., Sando, R., McShane, R. R., Dunham, J. B., Hockman-Wert, D. P., Kaiser, K. E., Hafen, K., Risley, J. C., and Blasch, K. W.: Probability of Streamflow Permanence Model (PROSPER): A spatially continuous model of annual
streamflow permanence throughout the Pacific Northwest, J. Hydrol., 2, 100005, https://doi.org/10.1016/j.hydroa.2018.100005, 2019.
Jencso, K. G. and McGlynn, B. L.: Hierarchical controls on runoff generation:
Topographically driven hydrologic connectivity, geology, and vegetation, Water Resour. Res., 47, W11527, https://doi.org/10.1029/2011WR010666, 2011.
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Bencala, K. E., and Wondzell, S. M.: Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources, Water Resour. Res., 46, W10524, https://doi.org/10.1029/2009WR008818, 2010.
Jensen, C. K., McGuire, K. J., and Prince, P. S.: Headwater stream length dynamics across four physiographic provinces of the Appalachian Highlands,
Hydrol. Process., 31, 3350–3363, https://doi.org/10.1002/hyp.11259, 2017.
Jensen, C. K., McGuire, K. J., Shao, Y., and Dolloff, C. A.: Modeling wet headwater stream networks across multiole flow conditions in the Appalachian
Highlands, Earth Surf. Proc. Land., 43, 2762–2778, https://doi.org/10.1002/esp.4431, 2018.
Jensen, C. K., McGuire, K. J., McLaughlin, D. L., and Scott, D. T.: Quantifying spatiotemporal variation in headwater stream length using flow intermittency sensors, Environ. Monit. Assess., 191, 226, https://doi.org/10.1007/s10661-019-7373-8, 2019.
Kalyanapu, A. J., Burian, S. J., and McPherson, T. N.: Effect of land use-based surface roughness on hydrologic model output, J. Spat. Hydrol., 9, 51–71, 2009.
Kaplan, N. H., Sohrt, E., Blume, T., and Weiler, M.: Monitoring ephemeral,
intermittent and perennial streamflow: a dataset from 182 sites in the Attert catchment, Luxembourg, Earth Syst. Sci. Data, 11, 1363–1374, https://doi.org/10.5194/essd-11-1363-2019, 2019a.
Kaplan, N. H., Sohrt, E., Blume, T., and Weiler, M.: Time series of streamflow occurrence from 182 sites in ephemeral, intermittent and perennial streams in the Attert catchment, Luxembourg, GFZ Data Services, https://doi.org/10.5880/FIDGEO.2019.010, 2019b.
Keesstra, S., Nunes, J. P., Saco, P., Parsons, T., Poeppl, R., Masselink, R., and Cerdà, A.: The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics?, Sci. Total Environ., 644, 1557–1572, https://doi.org/10.1016/j.scitotenv.2018.06.342, 2018.
Lane, S. N., Reaney, S. M., and Heathwaite, A. L.: Representation of landscape hydrological connectivity using a topographically driven surface flow index, Water Resour. Res., 45, W08423, https://doi.org/10.1029/2008WR007336, 2009.
Le Gouvernement du Grand-Duché de Luxembourg – Administration du cadastre et de la topographie: Carte Topographique régionale touristique, R4 Steinfort, Redange, Luxembourg, 2009.
Le Gouvernement du Grand-Duché de Luxembourg: Layer: Umwelt, Biologie und Geologie; Gewässerschutz; Kläranlagen, available at:
http://map.geoportail.lu, last access: 10 December 2018.
Leigh, C., Boulton, A. J., Courtwright, J. L., Fritz, K., May, C. L., Walker, R. H., and Datry, T.: Ecological research and management of intermittent rivers: an historical review and future directions, Freshwater Biol., 61,
1181–1199, https://doi.org/10.1111/fwb.12646, 2015.
Lexartza-Artza, I. and Wainwright, J.: Hydrological connectivity: Linking
concepts with practical implications, Catena, 79, 146–152, https://doi.org/10.1016/j.catena.2009.07.001, 2009.
Martínez-Carreras, N., Krein, A., Gallart, F., Iffly, J.-F., Hissler, C.,
Pfister, L., Hoffmann, L., and Owens, P. N.: The Influence of Sediment Sources and Hydrologic Events on the Nutrient and Metal Content of Fine-Grained Sediments (Attert River Basin, Luxembourg), Water Air Soil Pollut., 223, 5685–5705, https://doi.org/10.1007/s11270-012-1307-1, 2012.
Matthews, W. J.: North American prairie streams as systems for ecological study, J. N. Am. Benthol. Soc., 7, 387–409, 1988.
Müller, B., Bernhardt, M., Jackisch, C., and Schulz, K.: Estimating spatially distributed soil texture using time series of thermal remote sensing – a case study in central Europe, Hydrol. Earth Syst. Sci., 20, 3765–3775, https://doi.org/10.5194/hess-20-3765-2016, 2016.
Nadeau, T.-L. and Rains, M. C.: Hydrological Connectivity Between Headwater
Streams and Downstream Waters: How Sience Can Inform Policy, J. Am. Water Resour. Assoc., 43, 118–133, 2007.
Olson, S. A. and Brouillette, M. C.: A logistic regression equation for
estimating the probability of a stream in Vermont having intermittent flow,
US Geological Survey Scientific Investigations Report 2006-5217, US Geological Survey, p. 15, available at: https://pubs.usgs.gov/sir/2006/5217/ (last acess: 16 November 2020),
2006.
Open Street Map Wiki: Key:Highway, available at:
https://wiki.openstreetmap.org/wiki/Key:highway, last access: 10 April 2020.
Ossa-Moreno, J., Keir, G., McIntyre, N., Cameletti, M., and Rivera, D.: Comparison of approaches to interpolating climate observations in steep terrain with low-density gauging networks, Hydrol. Earth Syst. Sci., 23, 4763–4781, https://doi.org/10.5194/hess-23-4763-2019, 2019.
Pfister, L., Wagner, C., Vansuypeene, E., Drogue, G., and Hoffmann, L.: Atlas climatique du grand-duché de Luxembourg, edited by: Ries, C., Musée National d'Histoire Naturelle, Société des naturalistes luxembourgeois, Centre de Recherche Public – Gabriel Lippmann, Administration des Services Techniques de l'Agriculture, Luxembourg, 2005.
Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E., Stewart, M. K., and McDonnell, J. J.: Bedrock geology controls on catchment storage, mixing, and release: A comparative analysis of 16 nested
catchments, Hydrol. Process., 31, 1828–1845, https://doi.org/10.1002/hyp.11134, 2017.
Pfister, L., Hissler, C., Iffly, J. F., Coenders, M., Teuling, R., Arens, A., and Cammeraat, L. H.: Contrasting Hydrologic Response in the Cuesta Landscapes of Luxembourg, in: The Luxembourg Gutland Landscape, edited by: Kooijman, A. M., Cammeraat, L. H., and Seijmonsbergen, A. C., Springer, Cham, 73–87, https://doi.org/10.1007/978-3-319-65543-7, 2018.
Philips, J. V. and Tadayon, S.: Selection of Mannings's Roughness Coefficient
for Natural and Constructed Vegetated and Non-Vegetated Channels, and
Vegetation Maintenance Plan Guidelines for Vegetated Channels in Central
Arizona, US Geological Survey Scientific Investigations Report 2006-5108,
US Geological Survey, p. 41, https://doi.org/10.3133/sir20065108, 2006.
Prancevic, J. P. and Kirchner, J. W.: Topographic Controls on the Extension and Retraction of Flowing Streams, Geophys. Res. Lett., 46, 2084–2092,
https://doi.org/10.1029/2018GL081799, 2019.
Riley, S. J., Degloria, S. D., and Elliot, R.: A Terrain Ruggedness Index that Quantifies Topographic Heterogeneity, Intermount. J. Sci., 5, 23–27, 1999.
Schaich, H., Karier, J., and Konold, W.: Rivers, Regulation and Restoration:
Land Use History of Floodplains in a Peri-Urban Landscape in Luxembourg,
1777–2000, Europ. Countrys, 4, 241–264, https://doi.org/10.2478/v10091-012-0007-6,
2011.
Service géologique de l'Etat: Carte géologique du Luxembourg,
Echelle 1:25 000/1:50 0000, Ancienne édition, 2018.
Shanafield, M. and Cook, P. G.: Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review
of applied methods, J. Hydrol., 511, 518–529, https://doi.org/10.1016/j.jhydrol.2014.01.068, 2014.
Skoulikidis, N. T., Sabater, S., Datry, T., Morais, M. M., Buffagni, A., Dörflinger, G., and Tockner, K.: Non-perennial Mediterranean rivers in Europe: status, pressures, and challenges for research and management, Sci. Total Environ., 577, 1–18, https://doi.org/10.1016/j.scitotenv.2016.10.147, 2017.
Sophocleous, M.: Interaction between groundwater and surface water: the state
of the science, Hydrogeol. J., 10, 52–67, https://doi.org/10.1007/s10040-001-0170-8, 2002.
Strahler, A. N.: Hypsometric (area-altitude) Analysis of Erosional Topography, Bull. Geol. Soc. Am., 63, 1117–1141, 1952.
Stromberg, J. C. and Merrit, D. M.: Riparian plant guilds of ephemeral,
intermittent and perennial rivers, Freshwater Biol., 61, 1259–1275,
https://doi.org/10.1111/fwb.12686, 2015.
Stubbington, R., England, J., Wood, P. J., and Sefton, C. E. M.: Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems, WIREs Water, 4, 4, https://doi.org/10.1002/wat2.1223, 2017.
Svec, J. R., Kolka, R. K., and Stringer, J. W.: Defining perennial, intermittent, and ephemeral channels in Eastern Kentucky: Application to forestry best management practices, Forest Ecol. Manage., 214, 170–182,
https://doi.org/10.1016/j.foreco.2005.04.008, 2005.
Texas Forest Service: The Texas Water Source – updating Cass and Marion Co. Forest Landowners on Forestry and Water Issues, March 2009, available at: https://tfsdev.tamu.edu/uploadedFiles/TFSMain/Manage_Forest_and_Land/Water_Resources_and_BMPs/Stewardship(1)/TexasWaterSource-Mar2009-color-forwebsite.pdf (last access: 16 November 2020), 2009.
Van der Ploeg, T., Austin, P. C., and Steyerberg, E. W.: Modern modelling
techniques are data hungry: a simulation study for predicting dichotomous
endpoints, BMC Med. Res. Methodol., 14, 137, https://doi.org/10.1186/1471-2288-14-137, 2014.
Van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Weiler, M. and McDonnell, J. J.: Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes, Water Resour. Res., 43, W03403, https://doi.org/10.1029/2006WR004867, 2007.
Wösten, J. H. M., Lilly, A., Nemes, A., and Le Bas, C.: Development and use of a database of hydraulic properties of European soils, Geoderma, 90, 169–185, 2001.
Wrede, S., Fenicia, F., Martínez-Carreras, N., Juilleret, J., Hissler, C., Krein, A., Savenjie, H. H. G., Uhlenbrook, S., Kavetski, D., and Pfister, L.: Towards more systematic perceptual model development: a case study using 3 Luxembourgish catchments, Hydrol. Process., 29, 2731–2750,
https://doi.org/10.1002/hyp.10393, 2014.
Zehe, E., Ehret, U., Pfister, L., Blume, T., Schröder, B., Westhoff, M.,
Jackisch, C., Schymanski, S. J., Weiler, M., Schulz, K., Allroggen, N., Tronicke, J., van Schaik, L., Dietrich, P., Scherer, U., Eccard, J., Wulfmeyer, V., and Kleidon, A.: HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments, Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, 2014.
Ziegler, A. D. and Giambelluca, T. W.: Importance of rural roads as source areas for runoff in mountainous areas of northern Thailand, J. Hydrol., 196, 204–229, 1997.
Zimmer, M. A. and McGlynn, B. L.: Ephemeral and intermittent runoff generation processes in a low relief, highly weathered catchment, Water Resour. Res., 53, 7055–7077, https://doi.org/10.1002/2016WR019742, 2017.
Short summary
In recent decades the demand for detailed information of spatial and temporal dynamics of the stream network has grown in the fields of eco-hydrology and extreme flow prediction. We use temporal streamflow intermittency data obtained at various sites using innovative sensing technology as well as spatial predictors to predict and map probabilities of streamflow intermittency. This approach has the potential to provide intermittency maps for hydrological modelling and management practices.
In recent decades the demand for detailed information of spatial and temporal dynamics of the...