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Abstract. The fields of eco-hydrological modelling and ex-
treme flow prediction and management demand detailed in-
formation of streamflow intermittency and its corresponding
landscape controls. Innovative sensing technology for mon-
itoring of streamflow intermittency in perennial rivers and
intermittent reaches improves data availability, but reliable
maps of streamflow intermittency are still rare. We used a
large dataset of streamflow intermittency observations and
a set of spatial predictors to create logistic regression mod-
els to predict the probability of streamflow intermittency for
a full year as well as wet and dry periods for the entire
247 km2 Attert catchment in Luxembourg. Similar climatic
conditions across the catchment permit a direct comparison
of the streamflow intermittency among different geological
and pedological regions. We used 15 spatial predictors de-
scribing land cover, track (road) density, terrain metrics, soil
and geological properties. Predictors were included as local-
scale information, represented by the local value at the catch-
ment outlet and as integral catchment information calculated
as the mean catchment value over all pixels upslope of the
catchment outlet. The terrain metrics catchment area and
profile curvature were identified in all models as the most
important predictors, and the model for the wet period was
based solely on these two predictors. However, the model for
the dry period additionally comprises soil hydraulic conduc-
tivity and bedrock permeability. The annual model with the
most complex predictor set contains the predictors of the dry-
period model plus the presence of tracks. Classifying the spa-
tially distributed streamflow intermittency probabilities into
ephemeral, intermittent and perennial reaches allows the es-
timation of stream network extent under various conditions.
This approach, based on extensive monitoring and statistical

modelling, is a first step to provide detailed spatial informa-
tion for hydrological modelling as well as management prac-
tice.

1 Introduction

Even though intermittent streams and rivers represent more
than half of the global stream network (Datry et al., 2014),
they have been studied to a far lesser degree than their peren-
nial counterparts. Research on streamflow intermittency con-
centrated mainly on arid and semi-arid regions, where these
streams represent the dominant stream type due to the cli-
matic conditions (Buttle et al., 2012). These streams are
largely controlled by the climatic conditions with generally
low but spatially highly variable precipitation as well as high
rates of direct evaporation and evapotranspiration through
plants (Datry et al., 2017). However, in temperate regions
the occurrence of intermittent streams is commonly lim-
ited to headwaters, and the wetter climate generally provides
enough overland flow and groundwater recharge to maintain
perennial rivers for large parts of the river system (Jaeger et
al., 2017). These intermittent streams in temperate regions
have only recently gotten more attention (e.g. Buttle et al.,
2012; Stubbington et al., 2017; Jensen et al., 2017, 2018,
2019; Kaplan et al., 2019a; Prancevic and Kirchner, 2019).
Streamflow intermittency in these regions may change in
time depending on seasonal climate conditions or in response
to rainfall or snowmelt events (Buttle et al., 2012), whereas
in the spatial dimension it is controlled by the physiographic
composition of the landscape, including geology, pedology,
topography and land cover (Olson and Brouilette, 2006; But-
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tle et al., 2012; Goodrich et al., 2018; Jensen et al., 2018;
Prancevic et al., 2019).

Intermittency of streamflow, i.e. the drying and rewet-
ting of streambeds, can be classified into ephemeral, in-
termittent and perennial by annual duration of streamflow
(e.g. Hedman and Osterkamp, 1982; Matthews, 1988; Jaeger
and Olden, 2012), but also based on hydrological processes
including the spatial dimensions of hydrological connectiv-
ity (e.g. Sophocleous, 2002; Svec et al., 2005; Nadeau and
Rains, 2007; Shanafield and Cook, 2014), or by ecological
indicators (e.g. Hansen, 2001; Leigh et al., 2015; Stromberg
and Merritt, 2015). From a hydrological point of view the
most consistent and frequently used classification of inter-
mittency is based on the share of baseflow/groundwater con-
tribution to total streamflow and is thus interrelated with the
vertical and lateral connectivity between reach and ground-
water (e.g. Sophocleus, 2002; Nadeau and Rains, 2007; But-
tle et al., 2012; Godsey and Kirchner, 2014; Keesstra et
al., 2018). Under regular conditions perennial streams gain
groundwater throughout the year and maintain an almost per-
manent baseflow (Sophocleus, 2002). Thus, the groundwater
table in perennial streams is above the level of the streambed
throughout the year. In cold regions perennial streams can
also be sustained from snowmelt (Nadeau and Rains, 2007).
Intermittent rivers preserve continuous flow during certain
times of the year when precipitation is high and/or evapotran-
spiration rates are lower and therefore the stream is receiv-
ing effluent groundwater, while in the dry season the stream
loses water to the groundwater (Sophocleous, 2002; Zimmer
and McGlynn, 2017). In ephemeral streams the groundwa-
ter table never reaches the level of the streambed, so influent
groundwater conditions can only occur during flow events
as a direct response to strong rainfall or snowmelt events
(Sophocleous, 2002; Zimmer and McGlynn, 2017). A stream
can change the degree of intermittency along the channel,
and transition zones between geological parent materials can
also cause abrupt changes in intermittency (Goodrich et al.,
2018).

In contrast to the classification based on the connection
to the groundwater, the one based on streamflow duration
is vague, because different climatic conditions result in a
climate-specific proportional share of the duration of stream-
flow presence throughout a year and thus lead to region-
specific classification schemes (e.g. Hedman and Osterkamp,
1982; Hewlett, 1982; Matthews, 1988; Texas Forest Service,
2009). Hedman and Osterkamp (1982) and Matthews (1988)
classify streams as perennial when streamflow is present over
80 % of the time annually for the western United States and
the North American prairie respectively. The threshold be-
low which streams are classified as ephemeral ranges from
10 % to 30 % of the year, so the intermittent stream class has
the following range of bounding thresholds: more than 10 %–
30 % and less than 80 %.

The spatial dynamics of streams and their longitudinal
connectivity can be quantified by observing the streamflow

continuity (temporal scale) and the longitudinal connectiv-
ity (spatial scale) with multiple sensors (e.g. EC/temperature
sensors or time-lapse imagery) along the stream (e.g. Gouls-
bra et al., 2009; Jaeger and Olden, 2012; Bhamjee et
al., 2016; Kaplan et al., 2019a) or by mapping the wet
stream network for several times at varying flow conditions
(e.g. Godsey and Kirchner, 2014; Jensen et al., 2017). De-
spite the existing classification schemes and advances in
streamflow intermittency monitoring, accurate information
of the spatial extent of intermittent stream network is sparse
and often inaccurate (Hansen, 2001; Skoulikidis et al., 2017).

Recently this information gap has been tackled with mod-
els to predict spatially distributed streamflow intermittency
by using spatial predictors (Olson and Brouillette, 2006;
Jensen et al., 2018; Prancevic et al., 2019) but also metrics
that help to assess the longitudinal hydrological connectivity
of rivers (Lane et al., 2009; Lexartza-Artza and Wainwright,
2009; Ali and Roy, 2010; Bracken et al., 2013; Habtezion et
al., 2016). Prancevic et al. (2019) modelled the dynamical
changes in stream network length as a power function of the
water discharge to the valley transmissivity. This transmis-
sivity is represented through the topographic attributes slope,
curvature and contributing drainage area. Olson and Brouil-
lette (2006) used a logistic regression approach to differen-
tiate between intermittent and perennial stream sites using a
set of 50 basin characteristics as predictors. These included
soil characteristics, geological grouping, mean elevation and
land use as the areal percentage of the contributing area but
also terrain predictors like slope, relative relief and drainage
area as well as climatological parameters like mean annual
precipitation. The logistic regression model approach from
Jensen et al. (2018) focused on terrain metrics as predictors
for predicting the probability of a stream being wet or dry.
Most of the terrain metrics in their study were included as
predictors on the local scale as well as the mean upslope
area. Among the most important predictors in these studies
were topographic wetness index (TWI; Beven and Kirkby,
1979), topographic position index (TPI; Jensen et al., 2018),
mean elevation, ratio of basin relief to basin perimeter, areal
percentage of well and moderately well drained soils in the
basin (Olson and Brouillette, 2006), drainage area (Olson and
Brouillette, 2006; Prancevic et al., 2019), slope, and curva-
ture (Prancevic et al., 2019). The most successful predictors
to model the spatio-temporal dynamics of the stream network
are also part of the metrics developed to predict hydrological
connectivity and are related to terrain (e.g. Lexartza-Artza
and Wainwright, 2009; Ali and Roy, 2010), soil drainage and
transmissivity (e.g. Nadeau and Rains, 2007; Lexartza-Artza
and Wainwright, 2009; Ali and Roy, 2010). In addition, vege-
tation, land use and road network were investigated as control
of hydrological connectivity (e.g. Lexartza-Artza and Wain-
wright, 2009; Jencso and McGlynn, 2011; Bracken et al.,
2013).

This study will build upon the work of Olson and Brouil-
lette (2006) and Jensen et al. (2018), who aimed towards a
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separation of intermittent (dry) and perennial (wet) reaches
using a logistic regression model (GLM) with a set of spa-
tial predictors. In our study we present a new approach of
using a GLM to predict not only the intermittent/perennial or
dry/wet classes but also using probabilities of the model out-
put to classify ephemeral, intermittent and perennial streams.
Therefore, instead of using binary data of for example inter-
mittent (0) and perennial (1) classes, the dependent variable
in our models is the measure of relative intermittency, which
represents the probability of streams having flow in a de-
fined period (e.g. annual period) ranging between 0 and 1.
In this way we can then classify the stream network into
perennial, intermittent and ephemeral based on the statisti-
cal classification schemes (Hedman and Osterkamp, 1982).
The set of predictors used in this study comprises land cover,
road network, geology, pedology and terrain metrics both on
the local scale and upslope area. The model was developed
for the mesoscale Attert catchment, whose catchment size of
247 km2 ranges between those used in the studies of Olson
and Brouillette (2006; 24.902 km2) and Jensen et al. (2018;
0.7 to 0.12 km2).

2 Research area

The Attert River originates in the eastern part of Belgium
and flows westwards into Luxembourg, receiving its water
from a catchment area of 247 km2 at the outlet at Usel-
dange (Hellebrand et al., 2008). The prevalent geologies of
the catchment consist – roughly from north to south – of the
Devonian slate of the Luxembourg Ardennes (north-west),
sandy Keuper marls (centre) and the Jurassic Luxembourg
Sandstone formation (south) (Fig. 1; Martínez-Carreras et
al., 2012). Altitudes range from 245 m a.s.l. in Useldange
to 549 m a.s.l. in the Luxembourg Ardennes. Lowlands with
moderate relief dominate the topography in the Keuper marls
with steeper slopes at the hilly Luxembourg Sandstone for-
mation (Martínez-Carreras et al., 2012). Land use in the
lowlands with Keuper marls is characterized by agriculture
(41 %), with a considerable share of forest (29 %) and grass-
land (26 %) and small patches of urban areas (4 %), while
sandstone areas are dominated by forest (55 %), with lower
proportions of grassland and agriculture (39 %). Land use
in the slate-dominated region in the Ardennes splits into
the plateaus, which are predominantly used for agriculture
(42 %) and urban areas (4 %), whereas the steep hillslopes
and valleys are covered by forest (48 %) and pasture (6 %).

Soils in the Attert catchment include many of the major
soil types of the temperate zone and are largely linked to
lithology, land cover and land use (Cammeraat et al., 2018).
Thus, dominant soils in regions with slate geology are stony
silty soils, whereas the soils in the central parts of the catch-
ment are comprised mainly of silty clayey soils based on the
Keuper marl geology, and the south sandy and silty soils are
dominant in the Luxembourg Sandstone formation (Müller

et al., 2016). Cammeraat et al. (2018) pointed out the influ-
ence of land use on soil development in the Keuper marls
with Stagnosols or Planosols under forest and Regosols un-
der agriculture.

The climate in the Attert basin shows a strong impact
of the westerly atmospheric circulation and temperate air
masses from the Atlantic Ocean, which results in similar cli-
mate conditions across the catchment (Pfister et al., 2017;
Fig. S2). Mean annual precipitation varies slightly from
1000 mm a−1 in the north-west to 800 mm a−1 in the south-
east (Pfister et al., 2017), with a mean for the whole catch-
ment of about 850 mm a−1 for the years 1971–2000 (Pfis-
ter et al., 2005). Seasonal changes in soil moisture and sur-
face hydrology are induced by seasonal fluctuations of mean
monthly temperatures (min. 0 ◦C in January, max. 17 ◦C
in July) and thus amount of monthly potential evapotran-
spiration (min. 13 mm in December, max. 80 mm in July),
which superimposes the low variability of monthly precip-
itation (min. 70 mm in August–September, max. 100 mm in
December–February; Pfister et al., 2005; Wrede et al., 2014).

Pfister et al. (2017) showed the strong impact of bedrock
geology on the storage, mixing and release of water in the
Attert catchment, which determine the strong differences of
seasonal flow regimes in areas of predominantly low perme-
able bedrock (slate and marls) compared to permeable sand-
stone bedrock or diverse geology. Geology may also cause
the strong differences in the appearance of perennial and
intermittent stream density which are visible in the topo-
graphic map (Le Gouvernement du Grand-Duché de Lux-
embourg, 2009). The catchment is subject to numerous an-
thropogenic alterations of surface flow. Surface and sub-
surface drainage, dams, ditches, and river regulation mea-
sures changed the natural stream beds and flow conditions
in the agricultural areas of the marly lowlands considerably.
This can result in lower groundwater tables through drainage
measures and increased runoff velocity through for example
straightened stream channels, ultimately changing the peri-
ods with streamflow presence in ephemeral and intermittent
streams (Schaich et al., 2011). Shifts in hydrological regime
from intermittent to perennial can appear on the plateaus of
the Ardennes, where some wastewater treatment plants are
located (Le Gouvernement du Grand-Duché de Luxembourg,
2018).

3 Methods

3.1 Data

3.1.1 Streamflow data

We used the dataset of binary information of presence and
absence of streamflow at 182 measurement sites in the Attert
catchment described and provided in Kaplan et al. (2019a).
The dataset combines streamflow data from various data
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Figure 1. Geology and stream network of the Attert catchment and streamflow monitoring sites. Monitoring sites comprise “Sites”, which
were equipped with monitoring devices, and “Virtual Sites”, which were not permanently monitored but were never found to have surface
runoff during several field trips in a 2-year period and thus are included as zero-flow virtual sites. Sites marked with a purple triangle have
an increased uncertainty concerning the delineation of the catchment area. Detailed maps show the more densely equipped areas in each
predominant geology: slate (blue box), marls (red box) and sandstone (green box). The geological map from 1947 was provided by the
Geological Service of Luxembourg (adapted from Kaplan et al., 2019a).

sources including time-lapse imagery, electrical conductiv-
ity sensors and water level measurements. Data from 1 year
(July 2016–July 2017) with a temporal resolution of 30 min
were used for this analysis. Sites were removed from the
dataset if they (A) were located downstream of the Attert
gauge in Useldange, (B) contained extensive no-data peri-
ods (> 50 %) within the selected 1-year period or (C) were
located at positions where catchment calculations were not
possible due to the relative coarse resolution of the digital
elevation model (DEM). The dataset analysed in this study
comprises 164 sites of monitored intermittency.

The dataset of the gauging sites is shown in Fig. 2. In this
study we model streamflow intermittency during a 1-year pe-
riod on the one hand and two selected periods of 3 months
(representing wet and dry conditions) on the other hand. The
164 sites chosen from Kaplan et al. (2019a) contain 96 sites
which show perennial flow and 50 sites with intermittent
streamflow, 14 sites with ephemeral streamflow, and 1 site in-
dicating zero-flow conditions throughout the year. The high
share of sites with perennial streamflow observations would
lead to an overrepresentation of those sites in the statistical
model. Thus, a total of 21 virtual gauges with zero flow were

added to the dataset in locations where numerous field ob-
servations over a 2-year period provide strong evidence of
no surface flow conditions throughout the year. The majority
of virtual sites were visited every 2 months during mainte-
nance campaigns for the monitoring sites. Virtual sites lo-
cated at the ridge of southern sandstone regions were vis-
ited less frequently but showed no sign of surface flow dur-
ing all visits. The sites were added to the dataset at locations
which (a) were frequently visited and thus known to have no-
flow behaviour and (b) also in areas where no-flow observa-
tions are underrepresented in the dataset, such as ridges in the
sandstone region or the riparian zone of valleys in the slate
region, and (c) improved the model. Hence the total number
of sites used in this study was 185 (Fig. 1). The selection of
the different modelling periods is based on the streamflow
data and is closely related to the often-used winter and sum-
mer seasons. Due to the extraordinary dry winter season the
wet period is defined from February to April, whereas the
dry period is defined from June to August, but consisting of
the data from the years 2016 and 2017 due to the end of the
available time series after July 2017 (Fig. 2).
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Figure 2. Streamflow data used in this study. Gauge ID is a combination of the number on the left and the letters on the right. The dataset
combines data from different sources: time-lapse camera (C), conventional gauges (CG) and electric conductivity measurements (EC). The
wet and the combined dry period are indicated within the dark blue and orange boxes, respectively. For the analysis of the dry period the
summers 2016 and 2017 were combined. Discharge (Q) at the outlet of the Attert catchment gauged in Useldange is shown at the top.

We introduce the measure of relative intermittency of
streamflow Ir as the ratio of the duration of streamflow oc-
currence to the total duration of valid measurements in that
given period:

Ir =

∑
tw∑

tw+
∑
td
, (1)

where tw represents wet time periods with streamflow occur-
rence and td represents dry time periods without streamflow.
Values between 0 and 1 represent the relative intermittency,
with a value of 1 meaning perennial flow.

3.1.2 Spatial data

Contributing area averages

We tested a broad range of landscape feature data such as
land use, topographical, pedological and geological proper-
ties with respect to their ability to predict Ir. Streamflow in-
termittency at a certain location is not only dependent on lo-
cal characteristics of the landscape represented by the pixel
value of a raster layer at this location but also on the integral
value of the upstream contributing area (CA). Therefore, the
average value or proportion of landscape features in the con-
tributing area was calculated for every cell of the associated
landscape feature raster, resulting in a new raster layer where
every pixel value represents the average of the landscape fea-
ture of the contributing area. The SAGA GIS (version 2.3.2)
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Figure 3. Example for contributing area averages using relative bedrock permeability with values between 0 and 1. The digital elevation
model (DEM) and the relative bedrock permeability are used as inputs to calculate the catchment area averages. The example is calculated
for the pixel xy at the upper left of the catchment (red line).

tool “flow accumulation recursive” (Conrad et al., 2015) was
used with the “deterministic 8” method and a DEM of 15 m
resolution as elevation input to calculate the number of con-
tributing cells (output: catchment area) and the accumulated
cell values of the landscape feature (output: total accumu-
lated material) for all cells in the Attert catchment. For a
few measurement locations, the relatively coarse DEM re-
sulted in uncertainty in the delineation of catchment area (see
Fig. 1). We assume that all upstream cells contribute equally
to the value of a pour point cell; thus, no weighting was in-
cluded when accumulating cell values. The number of con-
tributing cells n was calculated from the contributing area
divided by the cell size. Raster layers containing the land-
scape feature information (e.g. relative bedrock permeability,
Fig. 3) are used as input “material” Mv for the “catchment
area recursive” algorithm and accumulate along the flow path
through the catchment. The total accumulated material Mt
into a cell xy for a given upslope area of n cells can be writ-
ten for each cell xy as

Mt,xy =

i=nxy∑
i=1

Mv. (2)

The accumulated material Mt,xy divided by the number of
cells n contributing to the cell xy results in average values of
the landscape feature in the sub-catchment:

Mv,xy =
Mt,xy

nxy
. (3)

Proportions of landscape features in a catchment result from
a special case of catchment averages with Mv values of 1
indicating the presence and values of 0 indicating the absence
of selected landscape features.

Tracks

The “highway” class from the OpenStreetMap (OSM)
dataset (Open Street Map Wiki, 2020) was downloaded using
the integrated OSM download function in QGIS. A dataset
for the category “tracks” was extracted from the original
dataset which includes all OSM values featured under the
OSM-key highway. This dataset for tracks contains only
the OSM values track, escape, footway, bridleway and path,
which usually characterize unsealed surfaces (Open Street
Map Wiki, 2020) of the different categories calculated in Ar-
cGIS for a radius of 25, 50 and 100 m. The average track
density per catchment was computed for all categories and
radiuses using the approach of Eq. (3).

Manning’s n for CORINE land cover

The average Manning roughness coefficient was derived for
all catchments based on the 2012 CORINE land cover dataset
and the land-cover-specific Manning roughness coefficient
(Philips and Tadayon, 2006; Kalyanapu et al., 2009) by us-
ing Eq. (3). Table 1 provides an overview of the land cover
classes and the respective Manning roughness coefficient.

Terrain

Terrain analysis was based on a digital elevation
model (DEM) with a grid size of 15 m and included
catchment area (Ac), catchment height (hC), catchment area
volumes (CAVs), slope, curvature, topographic wetness
index (TWI), topographic position index (TPI), vector
ruggedness measure (VRM), terrain ruggedness index (TRI)
and the mass balance index (MBI).

Catchment area and height were computed with the SAGA
GIS tool catchment area recursive (Conrad et al., 2015).
Slope and curvature were computed using the corresponding
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Table 1. CORINE land cover classes and their corresponding Manning n values adapted from Kalyanapu et al. (2009)1 and Philips and
Tadayon (2006)2.

CORINE land CORINE land cover class 3 Manning’s
cover class 1 n value

Forest Broad-leaved forest 0.0361

Coniferous forest 0.0321

Mixed forest 0.041

Transitional woodland shrub 0.041

Agriculture Complex cultivation patterns 0.0312

Land principally occupied by agriculture, with significant areas of natural vegetation 0.03681

Non-irrigated arable land 0.0302

Pastures 0.03251

Artificial surfaces Discontinuous urban fabric 0.006781

Mineral extraction sites 0.006781

tools from the ArcGIS 10.3 surface toolbox. Calculations for
curvature comprise planar curvature (perpendicular to the di-
rection of the maximum slope), profile curvature (parallel to
the direction of maximum slope), and a combined measure
of both planar and profile curvature (ESRI, 2020). Slope was
also calculated as a catchment average according to Eq. (3).
Computations for topographic wetness index were based on
the TOPMODEL approach, which is accessible as the SAGA
GIS Hydrology toolbox with slope and catchment area as
input. The topographic position index (Guisan et al., 1999),
vector ruggedness measure (Conrad et al., 2015) and terrain
ruggedness index (Riley et al., 1999) were included as terrain
roughness measures. All measures were determined with the
SAGA GIS Morphometry toolbox and require the DEM data
as input. The mass balance index (Friedrich, 1996, 1998) is a
measure of landscape and sediment connectivity and was in-
cluded as it can serve as a proxy for hydrological surface con-
nectivity. MBI is available from the SAGA GIS Morphome-
try toolbox.

Analogous to the hypsometric curve approach by
Strahler (1952), catchment area volumes represent the maxi-
mum possible upslope storage volume that can contribute to
streamflow by gravimetric forcing. CAVs can either be cal-
culated as a difference between surface and bedrock topogra-
phy when focusing on soil processes or in a simpler approach
as all material including bedrock and soil which is above and
upslope of a given point in the catchment. We calculated the
CAVs using the second approach under the assumption that
the main processes of transferring water through the volume
to the outlet follow gravitational forcing, and hence volume
below the stream channel (Vl) does not contribute to water
storage capacity through capillary or artesian processes. CAV
was calculated in QGIS. In a first step, the average catch-
ment elevation (E) was calculated for all cells using Eq. (3).
Second, subtracting the elevation, which is equal to or lower
than the lowest position in the catchment (the pour point at

cell xy, Fig. 2), from its average elevation gives the aver-
age elevation of the catchment above the respective outflow
point, which can be used to calculate the CAV as

CAV=
(
E−Emin

)
·Ac, (4)

with Emin representing the minimal elevation of the catch-
ment and Ac representing the catchment area.

Soil

Spatial information on soils is obtained from homogenized
soil maps of Luxembourg and Belgium (see Table S1 in the
Supplement). Homogenization was required due to slightly
differing classification schemes in both national soil clas-
sification schemes. Available data include information on
soil texture, drainage behaviour and soil profile (see Ta-
ble S2). Saturated soil hydraulic conductivity (Ks) and field
capacity (θa) were derived from the homogenized soil maps
and a set of soil hydrological parameters which is avail-
able from the combined field efforts of the CAOS research
group (Catchments as Organized Systems; see e.g. Zehe et
al., 2014). Detailed information about the process is provided
in the Sect. S1 in the Supplement.

Geology

Spatial information of bedrock geology is based on a 1 :
25000-scale geological map from 1947 provided by the Ser-
vice géologique de l’Etat (2018) in Luxembourg. Permeabil-
ity classes were defined for all geological units and values of
relative bedrock permeability assigned to each permeability
class (Table 2). Relative bedrock permeability classes follow
the approach of Pfister et al. (2017).
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Table 2. Classes of relative bedrock permeability for all geology units in the Attert catchment. Permeability classes were adapted from Pfister
et al. (2017).

Geology Permeability Relative
class permeability

value

Slates Impermeable 0
Phyllades Impermeable 0
Sandstone and slates Impermeable 0
Gypsiferous sandy marls Impermeable 0
Gypsiferous marls (groupe de l’anhydrite) Impermeable 0
Marls and sandstones (Schistes de Virton) Impermeable 0
Marls and sandstones (Formation de Mortinsart) Semipermeable 0.5
Marls and dolomites (Groupe de la Lettenkohle) Semipermeable 0.5
Alluvial deposits Semipermeable 0.5
Silts with quartzitic concretions (Limons des Plateaux) Semipermeable 0.5
Marls and limestones (Formation de Strassen) Semipermeable 0.5
Marls and clay limestones (Elvange Formation) Semipermeable 0.5
Shelly sandstone Semipermeable 0.5
Sandstones, clay and conglomerates Semipermeable 0.5
Dolomites and sandstones Permeable 1
Luxembourg Sandstone Permeable 1

3.2 Statistical model

The relative intermittency data Ir (Sect. 3.1.1) represents
the likelihood of counts of the binary conditions flow or no
flow; therefore, these data can be modelled with a general-
ized linear model (GLM) using a quasi-binomial link func-
tion. The quasi-binomial link function is used to account
for overdispersion. Spatial data described in Sect. 3.1.2 were
used as the predictor dataset at all locations of the intermit-
tency dataset (Table 3). The independence of predictors was
checked by identifying linear correlation among the predic-
tors. Predictors which showed no strong linear correlation
with other predictors (threshold value at 0.8, e.g. Famiglietti
et al., 1998) were selected for the final model development
and are listed in Table 3. Some predictors were grouped in
clusters of high correlation among each other; the predic-
tor with the highest correlation to all other predictors within
the cluster was chosen as the representative predictor for the
predictor cluster. Secondly, if predictors of two main pre-
dictor classes were highly correlated, the predictor with the
lower number of predictors in the class was chosen. The
GLM model was derived from automated model selection
using a stepwise backwards model selection approach based
on the quasi-Akaike information criterion (qAIC). GLM and
model selection were implemented in R software (R ver-
sion 3.1.3) using the basic GLM functionality of R. In to-
tal five different models were developed: one model with
intermittency data obtained from the entire time period of
1 year (Model Y, 1 July 2016–1 July 2017) and two inde-
pendent models whose predictor sets were selected based
on the intermittency data from data subsets representing the
wet (Model W1, February–April) and dry (Model D1, June–

August) periods, i.e. with high and low flows observed in the
streamflow data. Finally, two models based on the predictors
selected by the Model-Y were set up and parameters and sig-
nificance levels calculated by using the intermittency data of
the wet (Model W2) and dry (Model D2) periods instead of
the annual period. Evaluation of the models (Y, D2 and W2)
allows for direct comparison of parameter importance among
all simulated periods and allows us to test the applicability of
the predictor selection from the Model-Y to the wet and dry
periods of the modelled year.

The importance of predictors was determined by the auto-
mated selection based on the qAIC. The significance of each
predictor for the model is rated through the p values of the
GLM output. The model performance was analysed based
on the McFadden pseudo-R2 measure in order to evaluate
an overall model fit but also for the ability of each model
to predict the intermittency classes ranging from ephemeral
over intermittent to perennial. Due to the small dataset, which
does not allow for a split validation approach, a leave-one-
out cross validation (LOOCV) approach (e.g. Akbar et al.,
2019; Ossa-Moreno et al., 2019) was chosen to validate the
model based on the original dataset. Thus 185 models were
calibrated, each leaving out one of the data points. Then, the
GLM derived from n− 1 data points is used to predict the
value ŷ for the left-out point with the observed value y. This
process is repeated for all observations. The measure of root
mean square error (RMSE) is used to assess the model accu-
racy as follows:

RMSE=

√√√√1
n

n∑
i=1

(
yi − ŷi

)2
.
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Table 3. Predictors and their abbreviations for GLM development. All predictors are based on the available geodata. The scale of the
predictors indicates whether the predictors were calculated on the local scale (at the pixel scale) or represent an integral measure of the
contributing area according to Eq. (3). Predictors with correlation coefficients of ≤ 0.8 (Fig. 4) and a selection of the most representative
predictors among the highly correlated predictors were included in the final model development and are written in bold.

Predictor Predictor subclass Abbreviation Scale
main class

Road network Track density 25 m radius TD25 Local
Track density 50 m radius TD50 Local
Track density 100 m radius TD100 Local
Track density 25 m radius average of contributing area TD25A Contributing area
Track density 50 m radius average of contributing area TD50A Contributing area
Track density 100 m radius average of contributing area TD100A Contributing area

Land use Manning’s n n Contributing area

Soil Effective saturated hydraulic conductivity Ks,avg Contributing area
Field capacity θ Contributing area
Catchment average field capacity θavg Contributing area

Geology Relative bedrock permeability Kbr Contributing area

Terrain log (catchment area) A Contributing area
Catchment area volumes CAV Contributing area
Catchment storage height CSH Contributing area
Catchment average slope β Contributing area
Curvature planar Cpl Local
Curvature profile Cpr Local
Curvature planar and profile combined Cc Local
Topographic wetness index (TOPMODEL) TWI Local
Topographic position index TPI Local
Vector ruggedness measure VRM Local
Terrain ruggedness index TRI Local
Mass balance index MBI Local

The bias of the model is determined by

Bias=
1
n

n∑
i=1

(
yi − ŷi

)
,

where n is the number of observations, ŷ is the predicted
relative intermittency, and y is the observed relative intermit-
tency (Akbar et al., 2019). The observed and modelled data
were classified according to the degree of intermittency into
ephemeral (Ir < 0.1), intermittent (0.1≤ Ir< 0.8) and peren-
nial (Ir ≥ 0.8). We used the same classification classes to
describe the degree of intermittency for comparison of the
3-month periods used to model the wet and dry period, al-
though the terms ephemeral, intermittent and perennial ap-
ply solely for the annual period. In order to additionally vali-
date the results from the classified reaches we compare the
stream length of the modelled streams with the length of
the streams from the topographic map (Le Gouvernement
du Grand-Duché de Luxembourg, 2009). We assume that the
mapped stream network approximately represents the natu-
ral layout of the stream network in areas with lower human
impacts.

4 Results

4.1 Predictor importance

The results of all models show that the most important pre-
dictors for modelling relative intermittency are the logarithm
of the catchment area log(A) and profile curvature Cpr (Ta-
ble 4). The predictors of soil hydraulic conductivity, bedrock
permeability and track density become important when mod-
elling the dry period. Apart from are the logarithm of the
catchment area log(A) and profile curvature Cpr as the most
significant predictors, the predictor set for Model-Y also in-
cluded soil hydraulic conductivity and relative bedrock per-
meability, but with lower significance levels (Table 4). Track
density within a 100 m radius was only selected for Model-Y
and contributes to the model on a rather low level of sig-
nificance. The predictors found in the Model-Y were used
for the models W2 and D2 and showed differing signifi-
cance for these two periods. While log(A) and Cpr had a
significant contribution to both models, the predictors of soil
hydraulic conductivity and bedrock permeability were only
significant for the dry period (Table 4). Track density was
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Table 4. The significance of each predictor – curvature planar (Cpr),
catchment area (log(A)), soil hydraulic conductivity (Ks,avg), rela-
tive bedrock permeability (Kbr) and track density within a 100 m
radius (TD100) – for each model. The intermittency values of the
Model-Y were based on an annual period of flow observations,
whereas the models W1 and W2 represent the three wettest month
of the annual period and the models D1 and D2 the three driest
months. Significance codes represent the following P values for
model predictors: 0.000= ∗∗∗; 0.001= ∗∗; 0.01= ∗; 0.05= L; not
significant= x. Positive and negative signs indicate the signs for the
model parameter estimations.

Parameter Model-Y D1 W1 D2 W2

Intercept − (∗∗∗) − (∗∗∗) − (∗∗∗) − (∗∗∗) − (∗∗∗)
Cpr + (∗∗) + (∗) + (∗∗∗) + (∗) + (∗∗)
log(A) + (∗∗∗) + (∗∗∗) + (∗∗∗) + (∗∗∗) + (∗∗∗)
Ks,avg + (∗) + (∗) + (∗) + (x)
Kbr − (∗) − (L) − (∗) − (x)
TD100 − (L) − (x) − (x)

not important in either of the two sub-periods. On the other
hand, based on the full set of available predictors the auto-
mated model selection process for the models W1 and D1
only chose those predictors which were also significant in the
corresponding models W2 and D2 without adding additional
predictors from the overall set of predictors. For the wet pe-
riod a predictor set including profile curvature and catchment
area on log-scale was identified, while for the dry period soil
hydraulic conductivity and bedrock permeability were added
to the predictor set, resulting in a small increase in explained
variance (Table 4).

4.2 Model performances

Considering the McFadden pseudo R2 between 0.2 and 0.4
for a good model fit (Backhaus et al., 2006), low values
for pseudo-R2 were found for all GLMs, ranging between
0.147 (W1) and 0.168 (Model-Y, Table 5). Nonetheless, the
error matrix based on the classified data reveals the ability
of the model to correctly classify the intermittency classes
of ephemeral, intermittent and perennial sites (Table 6). The
Model-Y shows 59 % correct classifications for intermittent
streams and 89 % for perennial streams. Ephemeral streams
are not well represented by the model, with only 18 % correct
classifications (Table 6). For the models W1 and W2 80 %
of the intermittent, 21 % (23 %) of the ephemeral and 86 %
(83 %) of the perennial stream sites were correctly classified.
Similar performances show both models D1 and D2 with
33 % (29 %) correct classifications for ephemeral, 67 % for
intermittent and 70 % for perennial stream sites.

The overall accuracy for the modelled intermittency
classes is increasing, with a higher number of monitoring
sites having perennial streamflow, and is within the range of
58 %–60 % for the dry period, 68 % for the annual period
and 72 %–73 % for the wet period. Correct classifications

Table 5. Explained individual variance (McFadden pseudo-R2) of
the models with predictors added to the model starting from a single
predictor model using ln(catchment area) with the lowest pseudo-
R2.

Parameter Model-Y W1 and D1 and
W2 D2

log(A) 0.148 0.130 0.111
Cpr 0.159 0.147 0.120
Ks,avg 0.160 0.148 0.121
Kbr 0.164 0.151 0.126
TD100 0.168 0.153 0.127

Table 6. Confusion matrix for the stream classification of
ephemeral, intermittent and perennial classes. Counts within each
class are shown in bold; the percentages of modelled class counts
within each measured class are shown in brackets. Italic values
highlight the correct predictions for each class.

Measured intermittency

Simulated Ephemeral Intermittent Perennial

Model-Y

Ephemeral 7 (18 %) 1 (3 %) 0 (0 %)
Intermittent 31 (79 %) 22 (59 %) 12 (11 %)
Perennial 1 (3 %) 14 (38 %) 97 (89 %)

Model W1

Ephemeral 7 (21 %) 0 (0 %) 1 (1 %)
Intermittent 25 (73 %) 24 (80 %) 16 (13 %)
Perennial 2 (6 %) 6 (20 %) 104 (86 %)

Model W2

Ephemeral 9 (24 %) 0 (0 %) 1 (1 %)
Intermittent 22 (65 %) 24 (80 %) 19 (16 %)
Perennial 3 (9 %) 6 (20 %) 101 (83 %)

Model D1

Ephemeral 16 (33 %) 0 (0 %) 0 (0 %)
Intermittent 32 (67 %) 18 (67 %) 33 (30 %)
Perennial 0 (0 %) 9 (33 %) 77 (70 %)

Model D2

Ephemeral 14 (29 %) 0 (0 %) 1 (1 %)
Intermittent 33 (69 %) 18 (67 %) 32 (29 %)
Perennial 1 (2 %) 9 (33 %) 77 (70 %)

depend strongly on relative bedrock permeability, with low
classification performance for sites with high bedrock per-
meability and higher performance for sites with low bedrock
permeability (Fig. 5). The number of monitoring sites with
ephemeral streamflow is low compared to the sites with in-
termittent and perennial streamflow (Fig. 6). In contrast to
the observations, the number of modelled ephemeral streams
is overestimated by all models as the modelled intermittency
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Figure 4. Correlations between predictors. Correlations are first shown for each subclass (a terrain, b permeability, c tracks) and the correla-
tion of the independent predictors of all subclasses after final selection. Predictors which show a correlation coefficient≤ 0.8 were selected
from the subclasses. From strongly correlated predictors (correlation coefficient≥ 0.8) those which can be derived from basic analysis of the
geospatial data were selected. Characteristics that combine multiple predictors such as TWI (combination of slope and catchment area) were
preferably rejected as predictors when strongly correlated to their corresponding combinations. The final predictor set of independent (not
strongly correlated) predictors is shown in panel (d).

values show a strong tendency towards the extreme values of
flow or zero flow (Fig. 6). The RMSE for Model-Y is 0.26,
which is the lowest among all models, with 0.263 for W2 and
0.29 for D2. The bias of the models is very low and ranges
around zero, with values between −9.6× 10−4 (Model Y)
and 4× 10−5 (Model W2). Model residuals for all models
are shown in Fig. 7.

4.3 Prediction maps

Intermittent and perennial streams were predicted for the en-
tire Attert catchment based on spatially distributed predic-
tor data (Fig. 8). All modelled stream networks have a ten-
dency to show many more first-order streams compared to
the stream network of the topographic map (Le Gouverne-
ment du Grand-Duché de Luxembourg, 2009). The model
also predicts streams in areas of agricultural land use where
the topographic map shows no streams. The W1 model set up
for the wet period is driven by two predictors: catchment area
and curvature. The additional predictors in the W2 lead to a
large increase in the modelled stream length of the intermit-
tent streams (Table 7), which becomes visible in the mapped
stream network with a high density of intermittent streams in
areas of lower bedrock permeability (Fig. 8). However, mod-
els for the dry period generally show lower numbers of first-
order streams compared to the other models (Fig. 8), and thus
the length of the intermittent stream network is also in higher
agreement with the topographic map (mapped streams, Ta-
ble 7). Therefore, the models for the dry periods underesti-

mate the length of the perennial stream network compared
to the topographic map (Table 7). Expansion of the stream
network with the change from the dry to wet period becomes
visible through the stream length of the modelled stream net-
works (Table 7). The total stream lengths for the dry-period
models are 684 and 833 km, while the stream length for the
models W1 and W2 ranges from 1317 to 2109 km. On av-
erage the modelled perennial stream network expands with
a factor of 1.4 from the dry to wet period, while the inter-
mittent streams show a change in stream length of a factor
of 2.5. Stream length of the perennial streams in Model-Y is
227 km and within the range of the mapped perennial stream
length of 274 km. However, the intermittent stream length is
658 km for the Model-Y, which is 8 times higher than the
mapped stream length of 82 km (Table 7).

5 Discussion

5.1 Evaluation of GLM model predictors

Intermittency of rivers results from superimposed interac-
tions among climatic factors (ET, P ), the physiographic lay-
out of the landscape (geology, topography, topology, soil
type, land cover) and possible artificial alterations (streets,
land use, drainage, water supply) (Buttle et al., 2012; Costi-
gan et al., 2016; Jaeger et al., 2019). Some of the physio-
graphic attributes can be expressed in a physically meaning-
ful yet simplifying representation; for example spatial infor-
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Figure 5. Measured intermittency is plotted against modelled intermittency for each model. Relative bedrock permeability is colour coded.
The grey boxes indicate the classes of ephemeral (Ir < 0.1), intermittent (0.1≤ Ir< 0.8) and perennial (0.8≤ Ir< 1.0) streamflow.

Figure 6. Distribution of modelled and measured intermittency for each model. The measured intermittency values show a strong trend
towards the higher intermittency values and contain for the year and for the wet models very low numbers in the zero-flow intermittency bin.
The modelled intermittency values show a strong tendency towards the minimal and maximum intermittency values.
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Figure 7. Model residuals for all models. The intermittency class is based on the classification scheme from Hedman and Osterkamp (1982).
The relative intermittency is < 0.1 for the ephemeral, ≥ 0.1 and < 0.8 for the intermittent, and ≥ 0.8 for the perennial class.

Table 7. Stream length (km) of modelled streams and mapped
streams from the topographic map (Le Gouvernement du Grand-
Duché de Luxembourg, 2009).

Modelled stream length (km)

Model Perennial Intermittent Total
streams streams

Model-Y 227 658 885
W1 246 1071 1317
W2 278 1831 2109
D1 179 505 684
D2 191 642 833
Mapped streams 274 82 356

mation of hydraulic conductivity in soils simplifies soil het-
erogeneity and presence of macropore flow (van Genuchten,
1980; Weiler and McDonnell, 2007). For other predictors
classified representations are necessary due to difficulties in
gathering representative data on a larger scale. This applies
to the hydraulic conductivity in bedrock represented in this
study as relative bedrock permeability (Pfister et al., 2017)
or terrain metrics such as terrain roughness which provide a
measure for sources and sinks at the surface (Ali and Roy,
2010; Bracken et al., 2013; Boulton et al., 2017).

We assume for the selection of predictor variables in this
study that climatic heterogeneity plays a minor role in our
catchment, which is supported by the small differences in
annual precipitation (Pfister et al., 2005; Wrede et al., 2014;
Fig. S3). Focusing on non-climatic predictors we find a gen-
eral importance of the contributing area and profile curva-
ture among all models tested. This finding is consistent with
the studies of Prancevic and Kirchner (2019), who predicted
the extension and retraction of stream networks based on
the topographic attributes slope, curvature and contributing
drainage area.

The topographic wetness index (TWI) is frequently used
as a topographic attribute to predict streamflow permanence
at the local scale and the extent of the perennial stream net-
work (Hallema et al., 2016; Jensen et al., 2018; Jaeger et
al., 2019). However, the TWI was not included as an impor-
tant predictor due to its high correlation (r = 0.99) with con-
tributing area on the log scale. Thus, in this study the TWI is
represented through the combination of catchment area and
curvature, which was confirmed by a test run for model se-
lection using the TWI instead of contributing area.

Other important predictors include the soil hydraulic con-
ductivity and the relative bedrock permeability as inte-
gral measures for the contributing area. The importance
of bedrock permeability was emphasized by Pfister et
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Figure 8. Prediction maps of intermittency. Ephemeral streams
are not displayed. Intermittent streams are defined for streamflow
present between 10 % and 80 % of the modelled time period, as well
perennial for streams with ≥ 80 % streamflow presence.

al. (2017), who identified bedrock permeability as a major
control for storage, mixing and release of water in the Attert
and Alzette River basin. Both predictors control the storage
of water in the catchment (Buttle et al., 2012; Pfister et al.,
2017) and the transit time (Costigan et al., 2016; Zimmer
and McGlynn 2017; Pfister et al., 2017) of water through the
catchment. Generally, storage capacity of water in the catch-
ment can determine the permanence of water availability and
thus the permanence of flow. Also, the potential velocity
of surface and subsurface flow facilitated by the catchment
properties can have a direct impact on flow permanence.

The fact that the predictors bedrock permeability and soil
hydraulic conductivity were identified as important predic-
tors in our study is in strong agreement with the study
by Prancevic and Kirchner (2019), who modelled the ex-
tension and retraction of flowing streams and the study of
Nadeau and Rains (2007) on initiation of fluvial erosion. As
data of width, thickness and conductivity for the permeable
zone underlying temporal channels is generally not available,
Prancevic and Kirchner (2019) derive the valley transmis-
sivity (representing a combination of bedrock permeability,
soil hydrological conductivity and the valley cross-sectional

area) from topographic attributes. Besides the transmissivity
of the soil and bedrock, the infiltration capacity of the surface
can cause surface flow initiation. Not only paved surfaces but
also logging tracks were identified as source areas of Horto-
nian overland flow (Ziegler and Giambelluca, 1997).

In our study, the density of tracks in a 100 m radius was
identified as a predictor in the model for the annual pe-
riod showing the potential importance of the low infiltration
capacity of tracks during strong precipitation events. How-
ever, this predictor had no importance for the other peri-
ods. This could be attributed to the low proportion of tracks
in the catchment with sufficient inclination to cause Horto-
nian overland flow. Additionally, most of the observed log-
ging tracks are located in a geological setting with sandstone
bedrock and sandy soils. Thus, observed events in the dry pe-
riods are limited to a low number of storm events with suffi-
cient precipitation to generate surface runoff. Due to the very
short time with flow, these sites may reduce their weight in
the automated predictor selection compared to no-flow sites.
Nonetheless, for individual tracks Hortonian overland flow
initiation can be important (Ziegler and Giambelluca, 1997).

The use of integral information of averaged predictor val-
ues based on contributing area was helpful to predict point-
scale intermittency, although abrupt changes in intermittency
due to local-scale geological layout have been reported by
for example Goodrich et al. (2018). Bedrock permeability
and soil hydraulic conductivity were included as averaged
information of the catchment, while curvature and track den-
sity are point-scale information. Although integral and point-
scale information is strongly correlated at the sites of this
dataset, the model does not only benefit from the lower cor-
relation among the predictors with integral information of
bedrock permeability and soil hydraulic properties. By using
integral predictors, we take into account that the streamflow
intermittency at any point in the catchment can be influenced
by the overall contributing area properties (see e.g. Olson and
Brouilette, 2006; Pfister et al., 2017; Jensen et al., 2018).
Streamflow initiated upstream will be maintained when the
longitudinal hydrological connectivity allows the propaga-
tion of the flow downstream. Therefore, vertical or lateral
connectivity measures which are also strongly linked to per-
meability (Jensco et al., 2010; Boulton et al., 2017) need to
be considered an integral component of the catchments that
contributes to the probability of streamflow. The integral in-
formation of bedrock permeability and soil hydraulic con-
ductivity may be able to serve as one of these measures.

5.2 Variability and uncertainty in model predictions

Spatially distributed model predictions of streamflow prob-
abilities enable the comparison of model output with the
mapped stream network from the topographic map cover-
ing the diverse geologies, soils, land cover and topography
in the Attert catchment. Classification based on streamflow
intermittency separates stream reaches into ephemeral, inter-

Hydrol. Earth Syst. Sci., 24, 5453–5472, 2020 https://doi.org/10.5194/hess-24-5453-2020



N. H. Kaplan et al.: Predicting probabilities of streamflow intermittency 5467

mittent and perennial streamflow classes to derive a hierar-
chical stream network containing the intermittent and peren-
nial reaches (Fig. 6). We are aware of the fact that the num-
ber of gauging sites limits the model evaluation with a split
calibration–validation approach. We used 185 sites to de-
velop the GLMs with up to five predictors, which is within
the range of the necessary 20 to 50 observations per vari-
able proposed by van der Ploeg et al. (2014) for a good GLM
setup. The number of sites allows for a data-based leave-one-
out cross validation. The RMSE values (0.26–0.31) obtained
for the different models related to the maximum possible
RMSE of 1 show overall model deviations of around 26 %
to 30 %. The plotted residuals (Fig. 7) reveal some extreme
deviations of nearly 1. The majority of perennial streams
seem to be well represented by the model, while many of
the ephemeral streams have residuals of > 0.5. This could
be due to the distribution of observation sites in the dataset,
which have a strong tendency towards permanent streamflow
sites and thus to the perennial reaches, while intermittent and
ephemeral reaches are underrepresented (Fig. 6). The better
representation of perennial streams becomes also visible in
the model validation by its ability to predict the spatial dis-
tribution of intermittent/perennial streams compared to the
mapped stream network.

Changes between wet and dry periods of the year result
in expansion and contraction of the stream network (Buttle
et al., 2012). This process is predicted in the model results
of the changes in stream length of perennial and intermit-
tent streams (Table 7). We use the classification of perennial
and intermittent streamflow for all modelled periods to use a
consistent classification, although we are aware that the orig-
inal definition is based on annual streamflow and does not
address the streamflow intermittency of a 3-month period.
Perennial here simply means that streamflow is permanent
over the 3-month period. The accuracy of class predictions
of perennial and intermittent streams varies significantly be-
tween the time periods used for the model setup (Table 6).
Predictions of intermittent and perennial streams during the
wet period are fairly well represented by the model. This
goes hand in hand with a reduced number of predictors in
the model with solely the two topographic predictors: profile
curvature and contributing area. The dominant role of ter-
rain metrics, which are highly correlated with the TWI, re-
flects the importance of runoff generation processes leading
to saturation and maintaining streamflow in wet conditions.
Those processes include the rise of the groundwater table and
high soil saturation during the wet period, which enhance the
vertical and lateral hydrological connectivity (Hallema et al.,
2016; Zimmer and McGlynn, 2017; Keesstra et al., 2018).

The comparison between models for the wet, dry and an-
nual period reveals the additional complexity in the system
as additional predictors are necessary to predict the dry sys-
tem state. Model accuracy for classes with intermittent and
perennial streamflow decreases slightly for models of the dry
and annual period in comparison to the models for the wet

period. Conversely, model accuracy for the ephemeral class
increases. However, for the wet period, model accuracy of
the intermittent and ephemeral classes is directly linked to
the low number of sites that cease to flow during the wet
period. The shift of the observed data towards conditions
of perennial flow and the underrepresentation of intermittent
sites leads to lower model accuracies for the models W1 and
W2.

All models have a general tendency to overestimate the
extremes of relative intermittency classes close to zero and
perennial flow (Fig. 5). Simulated intermittent stream length
increases by 112 % to 185 % between dry and wet model pe-
riods, whereas perennial stream length increases by 37 % to
45 %. Prancevic and Kirchner (2019) calculate a hypothet-
ical change in stream length between 10 % for a low and
900 % for a highly dynamic stream network using similar
model predictors as in this study. To increase the low predic-
tive power of the ephemeral and intermittent model classes,
additional sites with information of sustained no-flow condi-
tions could enhance the predictive power for these classes.

Bedrock permeability of the catchments is a major con-
trol of the hydrology of the catchment and is also iden-
tified as a major predictor for the annual and dry-period
models. Nevertheless, catchments with high bedrock perme-
ability lack proper representation by the model, particularly
for sites with low streamflow intermittency (Fig. 4). One
data-inherent reason for the low model accuracy in catch-
ments with highly permeable geology results from the lower
number of sites representing such a geological condition.
Process-based reasons arise from the geological setup which
is needed for the initiation of sources in the highly perme-
able geologies of Buntsandstein and Luxembourg Sandstone
in the Attert catchment. Springs were observed to be initi-
ated at the boundary of rather impermeable marls and the
thick layer of overlaying highly permeable sandstone. They
usually maintain the perennial reaches in these catchments
throughout the year due to large dynamic storage (Pfister et
al., 2018). Thus, for predictions not only the information of
the mean bedrock permeability of the bedrock is needed but
also the thickness and orientation of subsurface layers differ-
ing in permeability. Less permeable geologies are better rep-
resented in all models (Fig. 4) but would also benefit from
a larger number of sites of intermittent streams to enhance
the model accuracy for this class. Intermittent streams turned
out to be more important in areas with less permeable geolo-
gies. This could result from smaller storage capacity which
is not able to maintain perennial streamflow throughout the
year in the marl and slate geologies of the catchment (Pfis-
ter et al., 2018). Intermittency in the marl geology can also be
induced by land use. The modelled stream length of intermit-
tent streams is significantly higher than the mapped streams
of the topographic map (Table 7). The maps in Fig. 6 re-
veal key areas with agricultural land use that contain sub-
stantially more modelled intermittent streams than the topo-
graphic map. The modelled streams may not be completely
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wrong when assuming a natural environment, but streamflow
in these areas was heavily altered by artificial surface and
subsurface drainage (Schaich et al., 2011). Sites which are
located in catchments with merely agricultural land use are
underrepresented in our dataset. Thus, a higher spatial den-
sity of these sites may improve the representation of such
areas.

The predictors for soil hydraulic conductivity were derived
from multiple soil maps and translated the soil attributes to
saturated hydraulic conductivity and field capacity. Although
deriving hydraulic properties from texture information us-
ing pedo-transfer functions is a common procedure (Wösten
et al., 2001), spatial information of transmissivity in valleys
based on hydraulic conductivity of soil and bedrock is often
not available for all soils and rock formations in the area of
interest (Prancevic and Kirchner, 2019). We tried to capture
the effects of soil heterogeneity on effective soil hydraulic
conductivity as much as possible by including factors that al-
ter soil hydraulic conductivity such as soil drainage (Clausen
and Pearson, 1995) and soil horizons (Zimmer and McGlynn,
2017). This required some assumptions for the parametriza-
tion of the soil maps, which needed to be based on sparse
data from literature and a small database of soil properties
from the research area. These assumptions potentially intro-
duce uncertainty to the effective soil hydraulic conductivity.
Nonetheless, these data add valuable information to the soil
hydraulic properties and their representation in the statisti-
cal models. The predictor of relative bedrock permeability
relies strongly on the classification of the underlying dataset.
The dataset provides only a coarse classification of bedrock
permeability and misses information of geological layering.
Nonetheless, the permeability data both for soil and bedrock
are crucial information to predict streamflow intermittency
within our models.

Further uncertainty in the predictions may arise from the
quality of the geospatial predictor data. Terrain metrics are
dependent on the quality and the resolution of the underly-
ing DEM (Habtezion et al., 2016). In this study only a DEM
with 15 m spatial resolution was available to derive terrain
metrics (e.g. contributing area, slope, curvature, TWI) which
allowed delineation of most streams. However, some small
channels in flat areas such as road ditches or tile drainages
require a higher resolution of the DEM to calculate the ex-
act terrain metrics in such areas. Coarser DEMs enhance
hydrologic connectivity by reducing depression storage and
therefore increase the probability of runoff (Habtezion et al.,
2016). Thus, terrain predictors require DEMs with particu-
lar small cell size when aiming for an adequate representa-
tion of intermittent and ephemeral reaches in models. Using
a coarse cell-size DEM can result in a shift of sites into larger
catchments, which are actually located in smaller catchments
in cases where accuracy of the site’s position is lower than
the cell size of the DEM. With a maximum spatial deviation
of 8 m for the site position, mismatching between sites and
cells can occur. With contributing area and curvature, two

predictors of the GLMs are dependent on DEM resolution
and are prone to the discussed errors. Contributing area can
be either overestimated or underestimated due to inaccurate
localization of sites and the coarse cell size of the DEM. Mis-
representation of curvature can be caused from coarse cells
that submerge micro-topographic information. Therefore, a
DEM with smaller cell size (2–3 m) can enhance model re-
sults and can provide a better representation of reaches with
low relative intermittency (Habtezion et al., 2016; Jensen et
al., 2018). In the dataset of this study nine sites may be prone
to non-accurate delineation of the catchment area, mainly in
areas with very flat or highly detailed relief (Fig. 1). Unfor-
tunately, such a finer-resolution DEM was not available for
the study area.

The simulated performance of the GLMs is generally low
compared to other studies which use GLMs to discriminate
between intermittent and perennial streamflow (e.g. Olson
and Brouilette, 2006; Jensen et al., 2018). The low perfor-
mance arises from the higher model complexity, with the aim
of modelling relative intermittency instead of discriminating
only between the two classes of intermittent and perennial
streams. In addition, the dataset used in this study is limited
to point measurements instead of mapped stream reaches.
Missing the complete information along the stream also com-
plicates the tracing of the movement of channel heads over
time. Thus, the highly dynamic transitions of streamflow in-
termittency at the most upstream sections of a reach are nei-
ther represented by the data nor can they reflect the sharp
transition zone to areas with no flow. The missing informa-
tion of exact position of the channel heads is also leading
to an overestimation of the length of the intermittent stream
network (Fig. 6). This can be improved by defining areas of
zero flow when observing flow occurrence throughout the
seasons (with e.g. time-lapse camera) and especially during
strong precipitation events (e.g. visual observations). How-
ever, the model results for the three intermittency classes are
promising, and the performance of the model could benefit
from denser monitoring networks and extended field obser-
vations mainly of sites with intermittent to no flow. Thus,
our modelling approach advances from previous studies that
used GLMs to discriminate between perennial and intermit-
tent streamflow by adding the ability to discriminate between
the full range of probabilities between zero and perennial
flow (e.g. Olson and Brouillette, 2006; Jensen et al., 2018).

6 Conclusion

This study presents a novel approach of modelling stream-
flow intermittency using logistic regression models. In con-
trast to earlier studies we use the here newly introduced re-
sponse variable of relative intermittency instead of binary
streamflow classes (e.g. intermittent/perennial), which al-
lows for modelling of streamflow probabilities. The compa-
rable climatic conditions across the studied catchment permit
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a focus on quasi-static predictor variables such as geology,
soil, terrain, land cover, or tracks and roads. Significance and
selection of model predictors varied among models of wet
and dry periods, indicating a change in predictor importance
for wet and dry states of the catchment. Models for the wet
periods were mainly driven by the terrain metrics contribut-
ing area and profile curvature, which represent a measure for
saturation probability. Dry-period models contained relative
bedrock permeability and saturated soil hydraulic conductiv-
ity as additional predictors, which are a measure of transmis-
sivity and storage capacity of the system in the dry system
state. The model for the annual period includes all the pre-
dictors from the dry period and additionally track density,
which was recognized as a potential indicator of local Horto-
nian overland flow. The innovative approach using integrated
contributing area information for the predictors of soil hy-
draulic conductivity and bedrock permeability was valuable
to describe upstream controls of intermittency like infiltra-
tion and storage capacity.

Modelling results classified into ephemeral, intermittent
and perennial streamflow are promising, yet the overall mod-
elling accuracy needs to be improved by denser spatial in-
formation of streamflow intermittency ground truth and dig-
ital terrain models of higher resolution. After classification
into ephemeral, intermittent and perennial reaches all models
are able to discriminate between intermittent and perennial
streams. Changes in length of the stream network when shift-
ing from the wet to dry state of the catchment are captured
by the models, but correct representation of the whole stream
network has not yet been achieved. Future testing the model
in catchments of different sizes and climates with a higher
data density could improve the classification thresholds and
cumulate in a comprehensive and representative classifica-
tion. A logistic regression model approach as presented in
this study has the potential to provide the information for
the streamflow probabilities throughout the year but also for
the wet and dry state of a catchment and therefore the dy-
namics of the stream network rather than a static stream net-
work. The logistic regression model is simple to set up and
can be trained with different predictor sets. We recommend
a larger sample size for model application to achieve reliable
modelling results. Maps of streamflow probability are rare
but would be extremely beneficial for ecological modelling,
operational implementation of water policies for catchment
conservation and regulation as well as modelling of flash-
flood-induced streamflow. The share of streams with non-
permanent streamflow within the total stream network and
the spatial extent is critical information for researchers as
well as for river ecosystem and extreme-event management.
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