Articles | Volume 24, issue 8
https://doi.org/10.5194/hess-24-4025-2020
https://doi.org/10.5194/hess-24-4025-2020
Research article
 | 
20 Aug 2020
Research article |  | 20 Aug 2020

Evaluation of the WMO Solid Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements

Craig D. Smith, Amber Ross, John Kochendorfer, Michael E. Earle, Mareile Wolff, Samuel Buisán, Yves-Alain Roulet, and Timo Laine

Related authors

The hourly wind-bias-adjusted precipitation data set from the Environment and Climate Change Canada automated surface observation network (2001–2019)
Craig D. Smith, Eva Mekis, Megan Hartwell, and Amber Ross
Earth Syst. Sci. Data, 14, 5253–5265, https://doi.org/10.5194/essd-14-5253-2022,https://doi.org/10.5194/essd-14-5253-2022, 2022
Short summary
An improved post-processing technique for automatic precipitation gauge time series
Amber Ross, Craig D. Smith, and Alan Barr
Atmos. Meas. Tech., 13, 2979–2994, https://doi.org/10.5194/amt-13-2979-2020,https://doi.org/10.5194/amt-13-2979-2020, 2020
Short summary
The Environment and Climate Change Canada solid precipitation intercomparison data from Bratt's Lake and Caribou Creek, Saskatchewan
Craig D. Smith, Daqing Yang, Amber Ross, and Alan Barr
Earth Syst. Sci. Data, 11, 1337–1347, https://doi.org/10.5194/essd-11-1337-2019,https://doi.org/10.5194/essd-11-1337-2019, 2019
Short summary
Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Tilden Meyers, Samuel Buisan, Ketil Isaksen, Ragnar Brækkan, Scott Landolt, and Al Jachcik
Hydrol. Earth Syst. Sci., 22, 1437–1452, https://doi.org/10.5194/hess-22-1437-2018,https://doi.org/10.5194/hess-22-1437-2018, 2018
Short summary
Measuring precipitation with a geolysimeter
Craig D. Smith, Garth van der Kamp, Lauren Arnold, and Randy Schmidt
Hydrol. Earth Syst. Sci., 21, 5263–5272, https://doi.org/10.5194/hess-21-5263-2017,https://doi.org/10.5194/hess-21-5263-2017, 2017
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Instruments and observation techniques
Technical note: A guide to using three open-source quality control algorithms for rainfall data from personal weather stations
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024,https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Technical note: Investigating the potential for smartphone-based monitoring of evapotranspiration and land surface energy-balance partitioning
Adriaan J. Teuling, Belle Holthuis, and Jasper F. D. Lammers
Hydrol. Earth Syst. Sci., 28, 3799–3806, https://doi.org/10.5194/hess-28-3799-2024,https://doi.org/10.5194/hess-28-3799-2024, 2024
Short summary
Exploring patterns in precipitation intensity–duration–area–frequency relationships using weather radar data
Talia Rosin, Francesco Marra, and Efrat Morin
Hydrol. Earth Syst. Sci., 28, 3549–3566, https://doi.org/10.5194/hess-28-3549-2024,https://doi.org/10.5194/hess-28-3549-2024, 2024
Short summary
Technical Note: A simple feedforward artificial neural network for high temporal resolution classification of wet and dry periods using signal attenuation from commercial microwave links
Erlend Øydvin, Maximilian Graf, Christian Chwala, Mareile Astrid Wolff, Nils-Otto Kitterød, and Vegard Nilsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-647,https://doi.org/10.5194/egusphere-2024-647, 2024
Short summary
An intercomparison of four gridded precipitation products over Europe using the three-cornered-hat method
Llorenç Lledó, Thomas Haiden, and Matthieu Chevallier
EGUsphere, https://doi.org/10.5194/egusphere-2024-807,https://doi.org/10.5194/egusphere-2024-807, 2024
Short summary

Cited articles

Buisán, S. T., Earle, M. E., Collado, J. L., Kochendorfer, J., Alastrué, J., Wolff, M., Smith, C. D., and López-Moreno, J. I.: Assessment of snowfall accumulation underestimation by tipping bucket gauges in the Spanish operational network, Atmos. Meas. Tech., 10, 1079–1091, https://doi.org/10.5194/amt-10-1079-2017, 2017. 
Førland, E. J. and Hanssen-Bauer, I.: Increased Precipitation in the Norwegian Arctic: True or False?, Climatic Change, 46, 485–509, https://doi.org/10.1023/A:1005613304674, 2000. 
Goodison, B., Louie, P., and Yang, D.: The WMO solid precipitation measurement intercomparison, WMO/TD No. 872, World Meteorological Organization Publications, Geneva, 1998. 
Goodison, B. E.: Accuracy of Canadian snow gauge measurements, J. Appl. Meteorol., 17, 1542–1548, 1978. 
Harder, P. and Pomeroy, J.: Estimating precipitation phase using a psychrometric energy balance method, Hydrol. Process., 27, 1901–1914, https://doi.org/10.1002/hyp.9799, 2013. 
Download
Short summary
During the World Meteorological Organization Solid Precipitation Intercomparison Experiment (SPICE), transfer functions were developed to adjust automated gauge measurements of solid precipitation for systematic bias due to wind. The transfer functions were developed by combining data from eight sites, attempting to make them more universally applicable in a range of climates. This analysis is an assessment of the performance of those transfer functions, using data collected when SPICE ended.