Articles | Volume 24, issue 8
Hydrol. Earth Syst. Sci., 24, 4025–4043, 2020
https://doi.org/10.5194/hess-24-4025-2020
Hydrol. Earth Syst. Sci., 24, 4025–4043, 2020
https://doi.org/10.5194/hess-24-4025-2020
Research article
20 Aug 2020
Research article | 20 Aug 2020

Evaluation of the WMO Solid Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements

Craig D. Smith et al.

Related authors

The hourly wind-bias-adjusted precipitation data set from the Environment and Climate Change Canada automated surface observation network (2001–2019)
Craig D. Smith, Eva Mekis, Megan Hartwell, and Amber Ross
Earth Syst. Sci. Data, 14, 5253–5265, https://doi.org/10.5194/essd-14-5253-2022,https://doi.org/10.5194/essd-14-5253-2022, 2022
Short summary
An improved post-processing technique for automatic precipitation gauge time series
Amber Ross, Craig D. Smith, and Alan Barr
Atmos. Meas. Tech., 13, 2979–2994, https://doi.org/10.5194/amt-13-2979-2020,https://doi.org/10.5194/amt-13-2979-2020, 2020
Short summary
The Environment and Climate Change Canada solid precipitation intercomparison data from Bratt's Lake and Caribou Creek, Saskatchewan
Craig D. Smith, Daqing Yang, Amber Ross, and Alan Barr
Earth Syst. Sci. Data, 11, 1337–1347, https://doi.org/10.5194/essd-11-1337-2019,https://doi.org/10.5194/essd-11-1337-2019, 2019
Short summary
Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Tilden Meyers, Samuel Buisan, Ketil Isaksen, Ragnar Brækkan, Scott Landolt, and Al Jachcik
Hydrol. Earth Syst. Sci., 22, 1437–1452, https://doi.org/10.5194/hess-22-1437-2018,https://doi.org/10.5194/hess-22-1437-2018, 2018
Short summary
Measuring precipitation with a geolysimeter
Craig D. Smith, Garth van der Kamp, Lauren Arnold, and Randy Schmidt
Hydrol. Earth Syst. Sci., 21, 5263–5272, https://doi.org/10.5194/hess-21-5263-2017,https://doi.org/10.5194/hess-21-5263-2017, 2017
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Instruments and observation techniques
Multi-scale temporal analysis of evaporation on a saline lake in the Atacama Desert
Felipe Lobos-Roco, Oscar Hartogensis, Francisco Suárez, Ariadna Huerta-Viso, Imme Benedict, Alberto de la Fuente, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 26, 3709–3729, https://doi.org/10.5194/hess-26-3709-2022,https://doi.org/10.5194/hess-26-3709-2022, 2022
Short summary
Coastal and orographic effects on extreme precipitation revealed by weather radar observations
Francesco Marra, Moshe Armon, and Efrat Morin
Hydrol. Earth Syst. Sci., 26, 1439–1458, https://doi.org/10.5194/hess-26-1439-2022,https://doi.org/10.5194/hess-26-1439-2022, 2022
Short summary
Unshielded precipitation gauge collection efficiency with wind speed and hydrometeor fall velocity
Jeffery Hoover, Michael E. Earle, Paul I. Joe, and Pierre E. Sullivan
Hydrol. Earth Syst. Sci., 25, 5473–5491, https://doi.org/10.5194/hess-25-5473-2021,https://doi.org/10.5194/hess-25-5473-2021, 2021
Short summary
Evaluation of Integrated Nowcasting through Comprehensive Analysis (INCA) precipitation analysis using a dense rain-gauge network in southeastern Austria
Esmail Ghaemi, Ulrich Foelsche, Alexander Kann, and Jürgen Fuchsberger
Hydrol. Earth Syst. Sci., 25, 4335–4356, https://doi.org/10.5194/hess-25-4335-2021,https://doi.org/10.5194/hess-25-4335-2021, 2021
Short summary
Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, an island in the northwestern Pacific
Jayalakshmi Janapati, Balaji Kumar Seela, Pay-Liam Lin, Meng-Tze Lee, and Everette Joseph
Hydrol. Earth Syst. Sci., 25, 4025–4040, https://doi.org/10.5194/hess-25-4025-2021,https://doi.org/10.5194/hess-25-4025-2021, 2021
Short summary

Cited articles

Buisán, S. T., Earle, M. E., Collado, J. L., Kochendorfer, J., Alastrué, J., Wolff, M., Smith, C. D., and López-Moreno, J. I.: Assessment of snowfall accumulation underestimation by tipping bucket gauges in the Spanish operational network, Atmos. Meas. Tech., 10, 1079–1091, https://doi.org/10.5194/amt-10-1079-2017, 2017. 
Førland, E. J. and Hanssen-Bauer, I.: Increased Precipitation in the Norwegian Arctic: True or False?, Climatic Change, 46, 485–509, https://doi.org/10.1023/A:1005613304674, 2000. 
Goodison, B., Louie, P., and Yang, D.: The WMO solid precipitation measurement intercomparison, WMO/TD No. 872, World Meteorological Organization Publications, Geneva, 1998. 
Goodison, B. E.: Accuracy of Canadian snow gauge measurements, J. Appl. Meteorol., 17, 1542–1548, 1978. 
Harder, P. and Pomeroy, J.: Estimating precipitation phase using a psychrometric energy balance method, Hydrol. Process., 27, 1901–1914, https://doi.org/10.1002/hyp.9799, 2013. 
Download
Short summary
During the World Meteorological Organization Solid Precipitation Intercomparison Experiment (SPICE), transfer functions were developed to adjust automated gauge measurements of solid precipitation for systematic bias due to wind. The transfer functions were developed by combining data from eight sites, attempting to make them more universally applicable in a range of climates. This analysis is an assessment of the performance of those transfer functions, using data collected when SPICE ended.