Articles | Volume 24, issue 7
https://doi.org/10.5194/hess-24-3725-2020
https://doi.org/10.5194/hess-24-3725-2020
Research article
 | 
23 Jul 2020
Research article |  | 23 Jul 2020

Climate-dependent propagation of precipitation uncertainty into the water cycle

Ali Fallah, Sungmin O, and Rene Orth

Related authors

State-of-the-art hydrological datasets exhibit low water balance consistency globally
Hao Huang, Junguo Liu, Aifang Chen, Melissa Ruiz-Vásquez, and René Orth
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-376,https://doi.org/10.5194/essd-2025-376, 2025
Preprint under review for ESSD
Short summary
Global relevance of atmospheric and land surface drivers for hot temperature extremes
Yigit Uckan, Melissa Ruiz-Vásquez, Kelley De Polt, and René Orth
Earth Syst. Dynam., 16, 869–889, https://doi.org/10.5194/esd-16-869-2025,https://doi.org/10.5194/esd-16-869-2025, 2025
Short summary
Reviews and syntheses: Current perspectives on biosphere research 2024–2025 – eight findings from ecology, sociology, and economics
Friedrich J. Bohn, Ana Bastos, Romina Martin, Anja Rammig, Niak Sian Koh, Giles B. Sioen, Bram Buscher, Louise Carver, Fabrice DeClerck, Moritz Drupp, Robert Fletcher, Matthew Forrest, Alexandros Gasparatos, Alex Godoy-Faúndez, Gregor Hagedorn, Martin C. Hänsel, Jessica Hetzer, Thomas Hickler, Cornelia B. Krug, Stasja Koot, Xiuzhen Li, Amy Luers, Shelby Matevich, H. Damon Matthews, Ina C. Meier, Mirco Migliavacca, Awaz Mohamed, Sungmin O, David Obura, Ben Orlove, Rene Orth, Laura Pereira, Markus Reichstein, Lerato Thakholi, Peter H. Verburg, and Yuki Yoshida
Biogeosciences, 22, 2425–2460, https://doi.org/10.5194/bg-22-2425-2025,https://doi.org/10.5194/bg-22-2425-2025, 2025
Short summary
Estimating hourly ground-level aerosols using Geostationary Environment Monitoring Spectrometer aerosol optical depth: a machine learning approach
Sungmin O, Ji Won Yoon, and Seon Ki Park
Atmos. Meas. Tech., 18, 1471–1484, https://doi.org/10.5194/amt-18-1471-2025,https://doi.org/10.5194/amt-18-1471-2025, 2025
Short summary
Learning Evaporative Fraction with Memory
Wenli Zhao, Alexander J. Winkler, Markus Reichstein, Rene Orth, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2025-365,https://doi.org/10.5194/egusphere-2025-365, 2025
Preprint archived
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Probabilistic precipitation downscaling for ungauged mountain sites: a pilot study for the Hindu Kush Himalaya
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
Hydrol. Earth Syst. Sci., 29, 3073–3100, https://doi.org/10.5194/hess-29-3073-2025,https://doi.org/10.5194/hess-29-3073-2025, 2025
Short summary
Implementation of global soil databases in the Noah-MP model and the effects on simulated mean and extreme soil hydrothermal changes
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025,https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary
Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025,https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting
Peyman Abbaszadeh, Fatemeh Gholizadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 29, 2407–2427, https://doi.org/10.5194/hess-29-2407-2025,https://doi.org/10.5194/hess-29-2407-2025, 2025
Short summary
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025,https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary

Cited articles

Alexander, L. V., Bador, M., Roca, R., Contractor, S., Donat, M. G., and Nguyen, P. L.: Intercomparison of annual precipitation indices and extremes over global land areas from in situ, space-based and reanalysis products, Environ. Res. Lett., 15, 055002, https://doi.org/10.1088/1748-9326/ab79e2, 2020. 
Alijanian, M., Rakhshandehroo, G. R., Mishra, A. K., and Dehghani, M.: Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran, Int. J. Climatol., 37, 4896–4914, https://doi.org/10.1002/joc.5131, 2017. 
Alijanian, M., Reza Rakhshandehroo, G., Mishra, A., and Dehghani, M.: Evaluation of Remotely Sensed Precipitation Estimates using PERSIANN-CDR and MSWEP for Spatio-Temporal Drought Assessment over Iran, J. Hydrol., 579, 124189, https://doi.org/10.1016/j.jhydrol.2019.124189, 2019. 
Alnahit, A. O., Mishra, A. K., and Khan, A. A.: Evaluation of high-resolution satellite products for streamflow and water quality assessment in a Southeastern US watershed, J. Hydrol., 27, 100660, https://doi.org/10.1016/j.ejrh.2019.100660, 2020. 
Download
Short summary
We find that simulated runoff values are highly dependent on the accuracy of precipitation inputs. In contrast, simulated evapotranspiration is generally much less influenced in our comparatively wet study region. We also find that the impact of precipitation uncertainty on simulated runoff increases towards wetter regions, while the opposite is observed in the case of evapotranspiration.
Share