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Abstract. Precipitation is a crucial variable for hydro-
meteorological applications. Unfortunately, rain gauge mea-
surements are sparse and unevenly distributed, which sub-
stantially hampers the use of in situ precipitation data in
many regions of the world. The increasing availability of
high-resolution gridded precipitation products presents a
valuable alternative, especially over poorly gauged regions.
This study examines the usefulness of current state-of-the-
art precipitation data sets in hydrological modeling. For this
purpose, we force a conceptual hydrological model with
multiple precipitation data sets in >200 European catch-
ments to obtain runoff and evapotranspiration. We consider
a wide range of precipitation products, which are generated
via (1) the interpolation of gauge measurements (E-OBS and
Global Precipitation Climatology Centre (GPCC) V.2018),
(2) data assimilation into reanalysis models (ERA-Interim,
ERA5, and Climate Forecast System Reanalysis – CFSR),
and (3) a combination of multiple sources (Multi-Source
Weighted-Ensemble Precipitation; MSWEP V2). Evaluation
is done at the daily and monthly timescales during the pe-
riod of 1984–2007. We find that simulated runoff values are
highly dependent on the accuracy of precipitation inputs; in
contrast, simulated evapotranspiration is generally much less
influenced in our comparatively wet study region. We also
find that the impact of precipitation uncertainty on simu-
lated runoff increases towards wetter regions, while the op-
posite is observed in the case of evapotranspiration. Finally,
we perform an indirect performance evaluation of the pre-
cipitation data sets by comparing the runoff simulations with
streamflow observations. Thereby, E-OBS yields the partic-
ularly strong agreement, while ERA5, GPCC V.2018, and
MSWEP V2 show good performances. We further reveal

climate-dependent performance variations of the considered
data sets, which can be used to guide their future develop-
ment. The overall best agreement is achieved when using an
ensemble mean generated from all the individual products. In
summary, our findings highlight a climate-dependent propa-
gation of precipitation uncertainty through the water cycle;
while runoff is strongly impacted in comparatively wet re-
gions, such as central Europe, there are increasing implica-
tions for evapotranspiration in drier regions.

1 Introduction

Precipitation is a key quantity in the water cycle since it con-
trols water availability, including both blue and green wa-
ter resources (Falkenmark and Rockström, 2006; Orth and
Destouni, 2018). In this way, changes in precipitation trans-
late into changes in water resources, which could have severe
impacts on ecosystems and consequently the economy and
society (Oki and Kanae, 2006; Kirtman et al., 2013; Abbott et
al., 2019). Changes in precipitation can be induced or inten-
sified by climate change and consequently lead to amplified
impacts (Blöschl et al., 2017, 2019). Thus, accurate precipi-
tation information is essential for monitoring water resources
and managing related impacts.

Despite the necessity of accurate precipitation data sets,
in most regions, reliable gauge measurements are not widely
available. Furthermore, these measurements need to be cor-
rected for potential errors such as wind-induced inaccura-
cies or precipitation undercatch, especially in higher alti-
tudes (Sevruk et al., 2009; Mekonnen et al., 2015; Zandler et
al., 2019; Duethmann et al., 2020). Next to gauge measure-
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ments, precipitation information can be inferred from satel-
lite observations and/or model simulations. Based on these
sources, a variety of global gridded precipitation data sets
have emerged. While some of these data sets make direct use
of gauge measurements to interpolate them in time and space,
others make indirect use of the gauge information to calibrate
satellite retrieval algorithms or models, enabling them to es-
timate gridded large-scale precipitation.

Across these data sets there are ample discrepancies in
space and time, highlighting the need for comparative assess-
ments (e.g., Koutsouris et al., 2016; Alijanian et al., 2017,
2019; Balsamo et al., 2018; Sun et al., 2018; Massari et al.,
2020; Brocca et al., 2019; Sharifi et al., 2019; Caroletti et al.,
2019; Levizzani and Cattani, 2019; Roca et al., 2019; Fallah
et al., 2020; Satgé et al., 2020; Contractor et al., 2020; Xu
et al., 2020; Zhou et al., 2020). In particular, indirect eval-
uation of the data sets through application in hydrological
modeling is a valuable alternative in this context as precipi-
tation is translated into variables with more reliable observa-
tions, such as runoff, as long as runoff is measured in catch-
ments with near-natural dynamics (Thiemig et al., 2013; Ner-
ini et al., 2015; Beck et al., 2017a, b, 2019a, b; Fereidoon
et al., 2019; Ehsan Bhuiyan et al., 2019; Mazzoleni et al.,
2019; Arheimer et al., 2020; Dembélé et al., 2020). However,
while this approach relies on the propagation of precipitation
uncertainty into runoff, it is largely underexplored with re-
spect to when and where this propagation pathway is active.
Conversely, it is unclear in which regions or conditions the
gridded data sets of runoff (Gudmundsson and Seneviratne,
2016) or evapotranspiration (e.g., Martens et al., 2017; Jung
et al., 2019) are impacted by the existing precipitation uncer-
tainties.

In this study, we investigate the uncertainty across
six widely used gridded precipitation data sets, including
their propagation into the hydrological cycle, i.e., runoff
and evapotranspiration (ET). Thereby, we consider gauge-
interpolated (E-OBS v17.0 and GPCC V.2018), reanal-
ysis (ERA-Interim, ERA5, and CFSR), and multisource
(MSWEP V2) data sets. With each of them, and with an en-
semble mean computed from all of them, we force a concep-
tual land surface model and compare the respectively sim-
ulated runoff and ET. This is done separately for different
hydro-climatological regimes. In addition, by validating the
runoff simulations against respective observations we can in-
directly infer the performance of the precipitation data sets.
This further allows us to obtain guidelines with respect to the
usefulness of the different types of precipitation products in
the considered regimes.

Section 2 introduces the reference, forcing data sets, and
model calibration used in the study, and Sect. 3 illustrates the
results and discussion. Finally, in Sect. 4 the conclusions of
this study are presented.

2 Data and methodology

2.1 Forcing data

Runoff and ET are modeled with a conceptual hydrological
model, the simple water balance model (SWBM). The un-
derlying framework was initially presented by Koster and
Mahanama (2012), where runoff (normalized by precipita-
tion) and ET (normalized by net radiation) are assumed to be
polynomial functions of soil moisture (Whan et al., 2015).
We use the model version introduced by Orth and Senevi-
ratne (2015) in which the original model is adapted to the
daily timescale by the addition of an implicit form of the
water balance equation and a streamflow recession param-
eter, which enables streamflow that is delayed with respect
to the respective precipitation event. Please refer to Orth and
Seneviratne (2015) for the relevant model equations and val-
idation results. Note that the basic concept and the governing
equations of runoff and ET formation used here are well es-
tablished and employed in many similar conceptual models,
such as Hydrologiska Byråns Vattenbalansavdelning (HBV;
Bergström, 1995; Orth and Seneviratne, 2015). As inputs,
the model uses temperature, net radiation, and precipitation.
For each catchment, temperature and net radiation are used
from the respective grid cells from the E-OBS (Cornes et al.,
2018) and ERA-Interim (Dee et al., 2011) data sets, respec-
tively. Corresponding grid-cell-based precipitation data are
used from various data sets derived from different sources,
namely gauge-based (E-OBS and GPCC V.2018), reanalysis
(ERA-Interim, ERA5, and CFSR), and multisource data sets
(MSWEP V2). A summary of all precipitation data sets and
their respective characteristics is shown in Table 1.

Before using the precipitation data sets to force the
SWBM, they are regridded to a common 0.5◦ spatial res-
olution, if necessary. This was done through conserva-
tive remapping, which preserves the water mass (Jones,
1999), using climate data operators (Schulzweida, 2019).
The SWBM simulations are performed with a daily time
step, and the analysis thereof is done at daily and monthly
timescales.

2.2 Reference data

Modeled runoff is evaluated against streamflow observa-
tions obtained from 416 catchments distributed across Eu-
rope (Stahl et al., 2010). The streamflow data were collected
from the European water archive, national ministries and me-
teorological agencies and from the Water and Global Change
(WATCH) project. These daily data are available for the pe-
riod 1984–2007. There is no or little human influence on the
streamflow in these catchments, which are mostly between
10 and 100 km2 in size. More details on the data and catch-
ments can be found in Stahl et al. (2010).
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Table 1. Summary of the precipitation data sets evaluated in this study.

Group Data set Temporal Spatial Spatial Data Reference
coverage coverage resolution sources

Interpolated E-OBS 1950–2019 Europe 0.25◦ Gauge Cornes et al. (2018)
GPCC V.2018 1901–2016 Global 1◦ Gauge Ziese et al. (2018)

Multisource MSWEP V2 1979–2017 Global 0.1◦ Satellite, Beck et al. (2019)
Gauge, and
Reanalysis

ERA-Interim 1979–2019 Global 0.5◦ Reanalysis Dee et al. (2011)
Modeled ERA5 1950–present Global ∼ 0.28◦ Reanalysis Copernicus Climate Change Service (2017)

CFSR 1979–present Global 0.5◦ Reanalysis Saha et al. (2010, 2012)

2.3 Model calibration

The simple water balance model employed in this study in-
cludes six adjustable parameters, namely water-holding ca-
pacity, inverse streamflow recession timescale, runoff ratio
exponent, ET ratio exponent, maximum evaporative fraction,
and a snowmelt parameter (as in Orth and Seneviratne, 2015;
see also Table S1). For model calibration, 500 parameter
sets are tested, which are randomly sampled from the en-
tire parameter space using Latin hypercube sampling (LHS;
McKay et al., 1979). The ranges for each parameter within
this parameter space are obtained from O et al., 2020 (see
also Table S1). In this way, we performed 500 correspond-
ing simulations for each catchment over the entire considered
time period (1984–2007). For each simulation, we computed
the resulting Nash–Sutcliffe efficiency (NSE; Nash and Sut-
cliffe, 1970) between the observed and simulated runoff to
determine the best-performing parameter set. The results are
shown in Fig. S1 in the Supplement. In addition, any catch-
ments with NSE <0.36 in the case of the best parameter set
were disregarded from the further analyses. This NSE thresh-
old for the catchment selection is adopted from Motovilov et
al. (1999) and Moriasi (2007). The model was deemed not
applicable there due to, e.g., human influence on the local
runoff dynamics or model shortcomings. In this way, out of
the original >400 catchments, 264 are retained for the ac-
tual analyses, which are well distributed across the European
continent and its climate regimes.

Note that we perform only the calibration of the model and
no validation. This is because we focus on the influence of
the precipitation forcing on the modeled runoff performance
and not on the simulation capacity of the model outside train-
ing conditions. A satisfactory predictive performance of the
model has been shown in previous studies (Orth et al., 2015;
Orth and Seneviratne, 2014, 2015; Schellekens et al., 2017;
O et al., 2020).

As shown in Fig. 1, the hydro-climatological regime is
characterized through long-term average temperature and
aridity (Budyko, 1974). Thereby, for each catchment the tem-
perature is taken from the E-OBS data set, and aridity is

Figure 1. Map of the study area. Points mark the position of the
264 study catchments, with colors indicating their annual average
temperature. Map colors show the aridity index of regions, as deter-
mined by a ratio of long-term average net radiation and precipitation
(1984–2007).

computed as the ratio of the mean annual net radiation to
mean annual precipitation calculated from ERA-Interim and
E-OBS, respectively.

In each of the 264 catchments, the SWBM is forced with
temperature, net radiation, and the different precipitation
data sets, respectively, as illustrated in Fig. 2. In this way,
six simulations with the six different precipitation data sets
are performed for each catchment, leaving the temperature
and net radiation data unchanged. The model parameters are
thereby obtained from the abovementioned calibration using
E-OBS precipitation. As this can potentially introduce biases
into our results, we additionally calibrated the model using
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Figure 2. Overview of the modeling approach. The simple water
balance model (SWBM) is forced with consistent net radiation and
temperature data and six different precipitation data sets. The ob-
tained runoff and evapotranspiration are assessed in terms of the
variability between the simulations. The performance of the runoff
simulations is determined against streamflow observations.

GPCC V.2018 precipitation data to derive alternative param-
eters with which we recomputed the main analyses.

All analyses are performed during the warm season (May–
September) to minimize the impact of snow and ice, even
though snowmelt can locally affect streamflow even in the
warm season (Jenicek et al., 2016).

3 Results and discussion

3.1 Impact of precipitation uncertainty on runoff and
ET

Figure 3 illustrates the propagation of precipitation uncer-
tainty into simulated runoff and ET at the monthly scale.
Each point denotes the standard deviation across the six sim-
ulations obtained with the different precipitation data sets
and represents a particular month (May–September) in a spe-
cific catchment. Runoff simulations are impacted by precip-
itation uncertainty, while the ET simulations are much less
influenced by precipitation uncertainty, as indicated by the
regression slope. The clear relationship between runoff and
precipitation is in line with previous studies (e.g., Beck et
al., 2017a, b; Sun et al., 2018; Blöschl et al., 2019). It is re-
lated to the fact that most of the considered catchments are
located in relatively wet climates (aridity <1), such that soils
are often saturated, triggering a rather direct runoff response
to precipitation (Ghajarnia et al., 2020). Also, in these cli-
mate regimes ET is typically energy controlled rather than
water controlled (Koster et al., 2004; Zheng et al., 2019; Pan
et al., 2020; Denissen et al., 2020), leading to the observed
low sensitivity of ET to precipitation (uncertainty).

Figure 3. Propagation of precipitation uncertainty into the runoff
and ET simulations. Standard deviations (SDs) are computed across
the precipitation estimates and the resulting runoff and evapotran-
spiration values. This is done at every grid cell and for every month
between May and September. Red lines indicate linear regression
lines. Note that a log–log scale is used.

3.2 Climate-dependent propagation of precipitation
uncertainty

In addition to examining the role of precipitation uncertainty
for runoff and ET across all considered catchments, we an-
alyze this uncertainty propagation within individual hydro-
climatological regimes (Fig. 4). For this purpose, we com-
pute the median of the standard deviations from catchments
within each regime, considering all respective warm season
months. Figure S2 shows the number of catchments located
within each regime. Only regimes with >5 catchments are
considered in the analysis. The uneven distribution of catch-
ments across the regimes induces higher uncertainties in the
results obtained for the wettest and driest regimes. As shown
in Fig. 4a, the precipitation variability across the considered
products is higher in comparatively cold and wet regions.
This could be related to especially sparse gauge networks and
more intense rainfall in these regions which are known to in-
crease precipitation uncertainty (Dinku et al., 2008; Hu et al.,
2016; Beck et al., 2017b; O and Kristetter, 2018).

Similarly, Fig. 4b and c illustrate the fraction of precip-
itation uncertainty propagating into runoff and ET, respec-
tively. Interestingly, we find systematic variations in this un-
certainty propagation with respect to climate. In wet and cold
regions, precipitation uncertainty almost exclusively affects
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Figure 4. Climate-dependent propagation of precipitation uncer-
tainty into runoff and ET. Panel (a) shows the standard deviation
across precipitation products, while panels (b) and (c) show the rel-
ative standard deviation of resulting runoff and ET simulations with
respect to precipitation, respectively.

runoff, whereas ET remains unchanged. Towards drier and
warmer climates the uncertainty propagation shifts, affecting
runoff less and increasingly influencing ET.

In addition to the previous analyses using monthly aver-
aged data, we recompute Fig. 4 using daily data. The results
are shown in Fig. S3. The similarity between Figs. 4 and S3
suggests that our findings on the climate-dependent propa-
gation of precipitation uncertainty are valid across daily and
monthly timescales. Furthermore, we repeat the uncertainty
propagation analysis (i) using model parameters obtained
from calibration with GPCC V.2018 precipitation forcing in-
stead of E-OBS precipitation (Fig. S4); (ii) using all months
instead of focusing on the warm season (Fig. S5); and (iii) us-
ing an NSE limit of 0.5 instead of 0.36 to select catch-
ments where the SWBM is applicable (Fig. S6). We find that
Figs. S4–S6 show similar patterns to Fig. 4, which confirms
that our findings are robust with respect to the methodolog-
ical approach, particularly in terms of the precipitation data
set employed for model calibration, the considered season,
and the applied NSE threshold to determine the applicability
of the model (see also Sect. 2.3).

3.3 Indirect validation of precipitation data set
qualities

Given the preferential propagation of precipitation uncer-
tainty to runoff in the considered European catchments, we
focus in the following on runoff only. In this context, we use
streamflow measurements from the catchments to validate
the modeled runoff, which also allows us to draw conclu-
sions on the usefulness of the employed precipitation forcing
data sets and of a mean ensemble thereof. This is, however,
not possible in the case of ET due to the lacking relationship
between ET and the precipitation forcing in our study region
(Fig. 3). For the runoff validation, we consider the correlation
of monthly anomalies in each catchment and the absolute
bias. To obtain anomalies, we remove the mean seasonal cy-
cle from the observed and modeled runoff time series of each
catchment. The six runoff simulations derived with the indi-
vidual precipitation products alongside the runoff simulation
obtained with the mean ensemble are then ranked in each
catchment with respect to (i) correlation and (ii) bias. The
sum of these two ranks is used to obtain an overall ranking
of runoff simulations and corresponding precipitation forc-
ing data sets in each catchment.

Figure 5 shows the number of catchments in which each
precipitation product yields the best-ranked runoff simu-
lation. Our findings show that overall the performance of
modeled runoff is clearly dependent on the employed pre-
cipitation product. This is expected given the considerable
disagreement between precipitation products and the pref-
erential propagation of this uncertainty to runoff (Fig. 4).
Generally, among the individual products, the runoff com-
puted with E-OBS precipitation agrees best with observa-
tions. Also, ERA5, MSWEP V2, and GPCC V.2018 yield
comparatively good runoff estimates. In contrast, runoff sim-
ulations obtained with ERA-Interim and CFSR agree less
well with observations. The precipitation ensemble outper-
forms all individual products, highlighting the usefulness of
multisource and multiproduct approaches in the derivation
of suitable precipitation data sets for hydrological model-
ing. Furthermore, we compute runoff performance assess-
ments separately for anomaly correlation and absolute bias
(Fig. S10). This reveals that the performance of the precipi-
tation data sets is rather similar in terms of resulting runoff
biases. Only ERA5 seems to lead to reduced biases when
compared with the other products; this is probably because it
does not suffer from a gauge-based precipitation undercatch.
In contrast, there are considerable differences in terms of the
runoff anomaly correlation performance across the products.
This indicates that the differences across products shown
in Fig. 5 are mostly resulting from contrasting performance
with respect to runoff anomaly correlation.

When repeating the evaluation from Fig. 5 with the daily
data (Fig. S7) we find similar results. This suggests that the
relative quality of the considered precipitation is compara-
ble across daily and monthly timescales. In addition, we
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Figure 5. Number of catchments where each precipitation prod-
uct yields the best agreement with runoff observations (May–
September). Multiple data products can be best performing at a
catchment since they are ranked based on a merged score by com-
bining anomaly correlation and absolute error.

recompute Fig. 5, using all months of the year (Fig. S8),
and GPCC-derived SWBM parameters (Fig. S9), which both
largely confirm the described results. Note that, not surpris-
ingly, model calibration with a particular precipitation prod-
uct, e.g., E-OBS or GPCC V.2018, leads to the better perfor-
mance of that respective product.

Figure 6 shows the runoff performance resulting from the
various precipitation products for the previously considered
hydro-climatological regimes. Interestingly, we find remark-
able performance differences across the regimes, suggesting
differential usefulness of precipitation products for hydro-
logical modeling across different climate zones. Also, we
can identify regimes in which the precipitation products per-
form particularly well or not. For example, MSWEP V2 leads
to strong agreement between modeled and observed runoff,
mostly in comparatively cold and wet climate and less so in
warmer and drier regimes. This might be related to problems
of the products incorporated in MSWEP V2 in capturing con-
vective rainfall in warm and dry regions while this is less
problematic in colder regions (Ebert et al., 2007; Beck et al.,
2017a, b; Massari et al., 2017; Fallah et al., 2020). The oppo-
site performance pattern is observed for GPCC V.2018. The
weaker performance in the cold climate, which is also present
in the case of E-OBS, might be related to smaller gauge net-
work density and more complex topography in colder areas
(Beck et al., 2017b; Ziese et al., 2018). For the other prod-
ucts, such as CFSR and ERA-Interim, the performance is less
dependent on the hydro-climatological regime.

4 Conclusions

In this study, we investigate how the remarkable discrepancy
across state-of-the-art gridded precipitation data sets propa-
gates through the water cycle. This is essential for hydrolog-
ical modeling and the applicability of resulting simulations
of water balance components such as runoff or ET. Our find-

Figure 6. Runoff-based performance of precipitation products
across climate regimes. Colors refer to the percentage of catch-
ments within each box recognized as the best performance based
on anomaly correlation and absolute bias during May–September.

ings reveal that the uncertainty across precipitation data sets
propagates mainly into runoff rather than ET simulations in
Europe. In addition, the partitioning of precipitation uncer-
tainty between runoff and ET is climate dependent. In com-
paratively cold and wet regions, such as Europe, runoff is
more impacted, whereas in drier and warmer regions the un-
certainty partitioning shifts towards ET. This applies across
daily and monthly timescales.

The results in this study are obtained with a single model
and are potentially dependent on the choice of that model.
Even though this model has been validated thoroughly and
applied in previous studies (Orth et al., 2015; Orth and
Seneviratne, 2014, 2015; Schellekens et al., 2017; O et al.,
2020), future research needs to explore precipitation error
propagation with other models (as in Ehsan Bhuiyan et al.,
2019). This should particularly include distributed models,
adding to our use of a lumped scheme. However, we do ob-
tain similar results with different calibrations of this model,
while previous research indicated that differences across
model calibrations can be similar to those across models
(Tebaldi and Knutti, 2007).

The strong link between precipitation and runoff in Eu-
rope allowed us to perform an indirect validation of pre-
cipitation products through the performance of the respec-
tively modeled runoff. Overall, the E-OBS precipitation data
set yields the most reliable streamflow simulations in Eu-
rope across the considered precipitation products. Weaker
but still comparatively good agreement between modeled and
observed streamflow is obtained with ERA5, GPCC V.2018,
and MSWEP V2. Thus, the products differ mostly with re-
spect to the temporal dynamics rather than the overall amount
of precipitation (Sun et al., 2018; Fallah et al., 2020). The in-
terpolated products overall outperform the satellite-derived
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products in Europe. This is probably due to the high den-
sity of gauge observations, as previous research found con-
trasting conclusions in regions with low gauge density (e.g.,
Thiemig et al., 2013, for Africa). We further find that the
ensemble mean of the considered precipitation data sets out-
performs the individual data sets, suggesting that such ap-
proaches are promising to obtain more reliable precipitation
forcing for hydrological modeling as shortcomings in indi-
vidual data sets seem to cancel out to some extent when used
within an ensemble. Further, we study the performance of
the considered precipitation products with respect to climate.
We find systematic variations for data sets like MSWEP V2
and GPCC V.2018, whereas ERA5, ERA-Interim, and CFSR
perform more similarly across climate regimes. Revealing
climate-dependent accuracies in some precipitation data sets
supports focused development of these products. In this way,
innovative hydrological validation of precipitation data, in
addition to direct validation against ground truth, can con-
tribute to addressing the still considerable uncertainty across
state-of-the-art gridded products in future efforts.

Furthermore, these findings allow a more targeted combi-
nation of products to compensate for individual weaknesses
and preserve respective strengths. The climate-dependent
(propagation of) precipitation uncertainties illustrates that
there is no best overall product but instead a careful re-
gional, climate-based selection can support hydrological ap-
plications. Overall, these findings highlight the usefulness of
streamflow measurements capturing truly large-scale hydro-
logical dynamics, which can then be used to make inferences
on the accuracy of precipitation data sets (Behrangi et al.,
2011; Thiemig et al., 2013; Beck et al., 2017a, 2019a; Ehsan
Bhuiyan et al., 2019; Mazzoleni et al., 2019; Alnahit et al.,
2020; Arheimer et al., 2020).

Another important outcome of our analyses is that ET
simulations are mostly insensitive to precipitation uncer-
tainty in the European climate, confirming previous studies
(Ehsan Bhuiyan et al., 2019; Zheng et al., 2019). However,
in warmer and drier regions, such as the Middle East, central
North America, or Australia, the link between ET and pre-
cipitation should be stronger. Wherever available in these re-
gions, ET measurements can and should be used for the indi-
rect evaluation of large-scale precipitation products to com-
plement the results in this study where we focused more on
comparatively wet regions.

Moreover, our findings suggest that, across Europe and
regions with similar climate, gridded runoff data sets (e.g.,
Gudmundsson and Seneviratne, 2016) inevitably suffer from
the existing uncertainty in state-of-the-art precipitation data
sets, although this depends on the extent to which they rely
on precipitation data. In contrast, gridded ET products (e.g.,
Martens et al., 2017; Jung et al., 2019) are not impacted
by precipitation uncertainty in these regions. In warmer and
drier regions, however, the gridded ET products are more
challenged than the runoff products.

Overall, our findings highlight the important role of pre-
cipitation accuracy and the understanding of the propagation
of existing inaccuracies through the water cycle. By reveal-
ing the climate dependency of this propagation, this study
contributes to improved modeling and monitoring of water
resources, which is of particular relevance in the case of ex-
treme events, such as floods and droughts (e.g., Golian et al.,
2019; Alexander et al., 2020), that might increase in a chang-
ing climate.
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