Articles | Volume 24, issue 6
https://doi.org/10.5194/hess-24-3189-2020
https://doi.org/10.5194/hess-24-3189-2020
Research article
 | 
19 Jun 2020
Research article |  | 19 Jun 2020

Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules – the caRamel algorithm

Céline Monteil, Fabrice Zaoui, Nicolas Le Moine, and Frédéric Hendrickx

Related authors

Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022,https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Tailor-made spatial patterns for hydrological model parameters combining regionalisation methods
Laura Rouhier, Federico Garavaglia, Matthieu Le Lay, Timothée Michon, William Castaings, Nicolas Le Moine, Frédéric Hendrickx, Céline Monteil, and Pierre Ribstein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-342,https://doi.org/10.5194/hess-2018-342, 2018
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Development of an integrated socio-hydrological modeling framework for assessing the impacts of shelter location arrangement and human behaviors on flood evacuation processes
Erhu Du, Feng Wu, Hao Jiang, Naliang Guo, Yong Tian, and Chunmiao Zheng
Hydrol. Earth Syst. Sci., 27, 1607–1626, https://doi.org/10.5194/hess-27-1607-2023,https://doi.org/10.5194/hess-27-1607-2023, 2023
Short summary
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023,https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023,https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary
An improved model of shade-affected stream temperature in Soil & Water Assessment Tool
Efrain Noa-Yarasca, Meghna Babbar-Sebens, and Chris Jordan
Hydrol. Earth Syst. Sci., 27, 739–759, https://doi.org/10.5194/hess-27-739-2023,https://doi.org/10.5194/hess-27-739-2023, 2023
Short summary
Seasonal forecasting of snow resources at Alpine sites
Silvia Terzago, Giulio Bongiovanni, and Jost von Hardenberg
Hydrol. Earth Syst. Sci., 27, 519–542, https://doi.org/10.5194/hess-27-519-2023,https://doi.org/10.5194/hess-27-519-2023, 2023
Short summary

Cited articles

Baluja, S. and Caruana, R.: Removing the genetics from the standard genetic algorithm, in: Machine Learning Proceedings 1995, Morgan Kaufmann, San Francisco, USA, 38–46, 1995. a
Campo, L., Caparrini, F., and Castelli, F.: Use of multi-platform, multi-temporal remote-sensing data for calibration of a distributed hydrological model: an application in the Arno basin, Italy, Hydrol. Process., 20, 2693–2712, 2006. a
Coron, L., Thirel, G., Delaigue, O., Perrin, C., and Andréassian, V.: The Suite of Lumped GR Hydrological Models in an R package, Environ. Model. Softw., 94, 166–171, https://doi.org/10.1016/j.envsoft.2017.05.002, 2017. a, b, c
Coron, L., Delaigue, O., Thirel, G., Perrin, C., and Michel, C.: airGR: Suite of GR Hydrological Models for Precipitation-Runoff Modelling. R package version 1.3.2.23, available at: https://cran.r-project.org/package=airGR (last access: 15 June 2020), 2019. a, b, c
Deb, K., Pratap, A., Agarwal, S. Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 182–197, 2002. a, b, c
Download
Short summary
Environmental modelling is complex, and models often require the calibration of several parameters that are not able to be directly evaluated from a physical quantity or a field measurement. Based on our experience in hydrological modelling, we propose combining two algorithms to obtain a fast and accurate way of calibrating complex models (many parameters and many objectives). We built an R package, caRamel, so that this multi-objective calibration algorithm can be easily implemented.