Articles | Volume 24, issue 6
https://doi.org/10.5194/hess-24-3135-2020
https://doi.org/10.5194/hess-24-3135-2020
Research article
 | 
19 Jun 2020
Research article |  | 19 Jun 2020

A meteorological–hydrological regional ensemble forecast for an early-warning system over small Apennine catchments in Central Italy

Rossella Ferretti, Annalina Lombardi, Barbara Tomassetti, Lorenzo Sangelantoni, Valentina Colaiuda, Vincenzo Mazzarella, Ida Maiello, Marco Verdecchia, and Gianluca Redaelli

Related authors

High-Resolution Data Assimilation for Two Maritime Extreme Weather Events: A comparison between 3DVar and EnKF
Diego Saúl Carrió, Vincenzo Mazzarella, and Rossella Ferretti
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-177,https://doi.org/10.5194/nhess-2024-177, 2024
Preprint under review for NHESS
Short summary
Investigating 3D and 4D variational rapid-update-cycling assimilation of weather radar reflectivity for a heavy rain event in central Italy
Vincenzo Mazzarella, Rossella Ferretti, Errico Picciotti, and Frank Silvio Marzano
Nat. Hazards Earth Syst. Sci., 21, 2849–2865, https://doi.org/10.5194/nhess-21-2849-2021,https://doi.org/10.5194/nhess-21-2849-2021, 2021
Short summary
Impact of multiple radar reflectivity data assimilation on the numerical simulation of a flash flood event during the HyMeX campaign
Ida Maiello, Sabrina Gentile, Rossella Ferretti, Luca Baldini, Nicoletta Roberto, Errico Picciotti, Pier Paolo Alberoni, and Frank Silvio Marzano
Hydrol. Earth Syst. Sci., 21, 5459–5476, https://doi.org/10.5194/hess-21-5459-2017,https://doi.org/10.5194/hess-21-5459-2017, 2017
Short summary
Comparison between 3D-Var and 4D-Var data assimilation methods for the simulation of a heavy rainfall case in central Italy
Vincenzo Mazzarella, Ida Maiello, Vincenzo Capozzi, Giorgio Budillon, and Rossella Ferretti
Adv. Sci. Res., 14, 271–278, https://doi.org/10.5194/asr-14-271-2017,https://doi.org/10.5194/asr-14-271-2017, 2017
Short summary
Seeking key meteorological parameters to better understand Hector
S. Gentile and R. Ferretti
Nat. Hazards Earth Syst. Sci., 16, 431–447, https://doi.org/10.5194/nhess-16-431-2016,https://doi.org/10.5194/nhess-16-431-2016, 2016
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Observation-driven model for calculating water-harvesting potential from advective fog in (semi-)arid coastal regions
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo del Río
Hydrol. Earth Syst. Sci., 29, 109–125, https://doi.org/10.5194/hess-29-109-2025,https://doi.org/10.5194/hess-29-109-2025, 2025
Short summary
Review of gridded climate products and their use in hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing datasets
Kyle R. Mankin, Sushant Mehan, Timothy R. Green, and David M. Barnard
Hydrol. Earth Syst. Sci., 29, 85–108, https://doi.org/10.5194/hess-29-85-2025,https://doi.org/10.5194/hess-29-85-2025, 2025
Short summary
Downscaling the probability of heavy rainfall over the Nordic countries
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
Hydrol. Earth Syst. Sci., 29, 45–65, https://doi.org/10.5194/hess-29-45-2025,https://doi.org/10.5194/hess-29-45-2025, 2025
Short summary
Modelling convective cell life cycles with a copula-based approach
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
Hydrol. Earth Syst. Sci., 29, 1–25, https://doi.org/10.5194/hess-29-1-2025,https://doi.org/10.5194/hess-29-1-2025, 2025
Short summary
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024,https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary

Cited articles

Abaza, M., Anctil, F., Fortin, V., and Perreault, L.: On the incidence of meteorological and hydrological processors: Effect of resolution, sharpness and reliability of hydrological ensemble forecasts, J. Hydrol., 555, 371–384, https://doi.org/10.1016/j.jhydrol.2017.10.038, 2017. a
Addor, N., Jaun, S., Fundel, F., and Zappa, M.: An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios, Hydrol. Earth Syst. Sci., 15, 2327–2347, https://doi.org/10.5194/hess-15-2327-2011, 2011. a
Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., and Thie-len, J.: Operational early warning systems for water-related hazards in Europe, Environ. Sci. Policy, 21, 35–49, 2012. a, b, c, d, e, f
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013. a
Bauer, P., Thorpe, A. and Brunet, G.,:The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Download
Short summary
Floods and severe rainfall are among the major natural hazards in the Mediterranean basin. Though precipitation weather forecasts have improved considerably, precipitation estimation is still affected by errors that can deteriorate the hydrological forecast. To improve hydrological forecasting, a regional-scale meteorological–hydrological ensemble is presented. This allows for predicting potential severe events days in advance and for characterizing the uncertainty of the hydrological forecast.