Articles | Volume 24, issue 1
https://doi.org/10.5194/hess-24-307-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-307-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of potential implications of agricultural irrigation policy on surface water scarcity in Brazil
Sebastian Multsch
Institute for Landscape Ecology and Resources Management (ILR),
Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig
University Giessen, Giessen, Germany
current address: knoell Germany GmbH, Mannheim, Germany
Maarten S. Krol
Water Engineering and Management, University of Twente, Enschede, the Netherlands
Markus Pahlow
Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand
André L. C. Assunção
Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, São Paulo, Brazil
Alberto G. O. P. Barretto
Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, São Paulo, Brazil
Quirijn de Jong van Lier
Center for Nuclear Energy in Agriculture (CENA, University of São Paulo, São Paulo, Brazil
Lutz Breuer
CORRESPONDING AUTHOR
Institute for Landscape Ecology and Resources Management (ILR),
Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig
University Giessen, Giessen, Germany
Center for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Giessen, Germany
Related authors
No articles found.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Max Weißenborn, Lutz Breuer, and Tobias Houska
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-183, https://doi.org/10.5194/hess-2024-183, 2024
Revised manuscript under review for HESS
Short summary
Short summary
Our study compares neural network models for predicting discharge in ungauged basins. We evaluated Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) using 28 years of weather data. CNN showed the best accuracy, while GRU were faster and nearly as accurate. Adding static features improved all models. The research enhances flood forecasting and water management in regions lacking direct measurements, offering efficient and accurate predictive tools.
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023, https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Short summary
Agricultural landscapes act as sinks or sources of the greenhouse gases (GHGs) CO2, CH4, or N2O. Various physicochemical and biological processes control the fluxes of these GHGs between ecosystems and the atmosphere. Therefore, fluxes depend on environmental conditions such as soil moisture, soil temperature, or soil parameters, which result in large spatial and temporal variations of GHG fluxes. Here, we describe an example of how this variation may be studied and analyzed.
Ricky Mwangada Mwanake, Gretchen Maria Gettel, Elizabeth Gachibu Wangari, Clarissa Glaser, Tobias Houska, Lutz Breuer, Klaus Butterbach-Bahl, and Ralf Kiese
Biogeosciences, 20, 3395–3422, https://doi.org/10.5194/bg-20-3395-2023, https://doi.org/10.5194/bg-20-3395-2023, 2023
Short summary
Short summary
Despite occupying <1 %; of the globe, streams are significant sources of greenhouse gas (GHG) emissions. In this study, we determined anthropogenic effects on GHG emissions from streams. We found that anthropogenic-influenced streams had up to 20 times more annual GHG emissions than natural ones and were also responsible for seasonal peaks. Anthropogenic influences also altered declining GHG flux trends with stream size, with potential impacts on stream-size-based spatial upscaling techniques.
Han Su, Bárbara Willaarts, Diana Luna-Gonzalez, Maarten S. Krol, and Rick J. Hogeboom
Earth Syst. Sci. Data, 14, 4397–4418, https://doi.org/10.5194/essd-14-4397-2022, https://doi.org/10.5194/essd-14-4397-2022, 2022
Short summary
Short summary
There are over 608 million farms around the world but they are not the same. We developed high spatial resolution maps showing where small and large farms were located and which crops were planted for 56 countries. We checked the reliability and have the confidence to use them for the country level and global studies. Our maps will help more studies to easily measure how agriculture policies, water availability, and climate change affect small and large farms.
Jaqueline Stenfert Kroese, John N. Quinton, Suzanne R. Jacobs, Lutz Breuer, and Mariana C. Rufino
SOIL, 7, 53–70, https://doi.org/10.5194/soil-7-53-2021, https://doi.org/10.5194/soil-7-53-2021, 2021
Short summary
Short summary
Particulate macronutrient concentrations were up to 3-fold higher in a natural forest catchment compared to fertilized agricultural catchments. Although the particulate macronutrient concentrations were lower in the smallholder agriculture catchment, because of higher sediment loads from that catchment, the total particulate macronutrient loads were higher. Land management practices should be focused on agricultural land to reduce the loss of soil carbon and nutrients to the stream.
Amani Mahindawansha, Christoph Külls, Philipp Kraft, and Lutz Breuer
Hydrol. Earth Syst. Sci., 24, 3627–3642, https://doi.org/10.5194/hess-24-3627-2020, https://doi.org/10.5194/hess-24-3627-2020, 2020
Short summary
Short summary
Stable isotopes of soil water are an effective tool to reveal soil hydrological processes in irrigated agricultural fields. Flow mechanisms and isotopic patterns of soil water in the soil matrix differ, depending on the crop and irrigation practices. Isotope data supported the fact that unproductive water losses via evaporation can be reduced by introducing dry seasonal crops to the crop rotation system.
Hatem Chouchane, Maarten S. Krol, and Arjen Y. Hoekstra
Hydrol. Earth Syst. Sci., 24, 3015–3031, https://doi.org/10.5194/hess-24-3015-2020, https://doi.org/10.5194/hess-24-3015-2020, 2020
Short summary
Short summary
Previous studies on water saving through food trade focussed either on comparing water productivities among countries or on analysing food trade in relation to national water endowments. Here, we consider, for the first time, both differences in water productivities and water endowments to analyse national comparative advantages. Our study reveals that blue water scarcity can be reduced to sustainable levels by changing cropping patterns while maintaining current levels of global production.
Michael C. Thrun, Alfred Ultsch, and Lutz Breuer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-87, https://doi.org/10.5194/gmd-2020-87, 2020
Revised manuscript not accepted
Short summary
Short summary
We propose an explainable AI (XAI) framework for times series describing water quality & environmental parameters. The relationship between parameters is investigated by swarm based cluster analysis designed to find similar days within & dissimilar days between clusters. Resulting clusters define three states of water bodies & are visualized by a topographic map of high-dimensional structures. Rules generated by the XAI system explain clusters & improve the understanding of aquatic environments.
Florian U. Jehn, Konrad Bestian, Lutz Breuer, Philipp Kraft, and Tobias Houska
Hydrol. Earth Syst. Sci., 24, 1081–1100, https://doi.org/10.5194/hess-24-1081-2020, https://doi.org/10.5194/hess-24-1081-2020, 2020
Short summary
Short summary
We grouped 643 rivers from the United States into 10 behavioral groups based on their hydrological behavior (e.g., how much water they transport overall). Those groups are aligned with the ecoregions in the United States. Depending on the groups’ location and other characteristics, either snow, aridity or seasonality is most important for the behavior of the rivers in a group. We also find that very similar river behavior can be found in rivers far apart and with different characteristics.
Suzanne R. Jacobs, Edison Timbe, Björn Weeser, Mariana C. Rufino, Klaus Butterbach-Bahl, and Lutz Breuer
Hydrol. Earth Syst. Sci., 22, 4981–5000, https://doi.org/10.5194/hess-22-4981-2018, https://doi.org/10.5194/hess-22-4981-2018, 2018
Short summary
Short summary
This study investigated how land use affects stream water sources and flow paths in an East African tropical montane area. Rainfall was identified as an important stream water source in the forest and smallholder agriculture sub-catchments, while springs were more important in the commercial tea plantation sub-catchment. However, 15 % or less of the stream water consisted of water with an age of less than 3 months, indicating that groundwater plays an important role in all land use types.
Florian U. Jehn, Lutz Breuer, Tobias Houska, Konrad Bestian, and Philipp Kraft
Hydrol. Earth Syst. Sci., 22, 4565–4581, https://doi.org/10.5194/hess-22-4565-2018, https://doi.org/10.5194/hess-22-4565-2018, 2018
Short summary
Short summary
By realizing that hydrological models are not one single hypothesis, but an assemblage of many hypotheses, new ways to scrutinize hydrological models are needed. Up until now, studies concentrate on comparing existing models or built models incrementally. This approach here tries to tackle the problem the other way around. We construct a complex model, containing all processes important for the catchment, and deconstruct it step by step to understand the influence of single processes.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Tobias Houska, David Kraus, Ralf Kiese, and Lutz Breuer
Biogeosciences, 14, 3487–3508, https://doi.org/10.5194/bg-14-3487-2017, https://doi.org/10.5194/bg-14-3487-2017, 2017
Short summary
Short summary
CO2 and N2O are two prominent GHGs contributing to global warming. We combined measurement and modelling to quantify GHG emissions from adjacent arable, forest and grassland sites in Germany. Measured emissions reveal seasonal patterns and management effects like fertilizer application, tillage, harvest and grazing. Modelling helps to estimate the magnitude and uncertainty of not measurable C and N fluxes and indicates missing input source, e.g. nitrate uptake from groundwater.
Abebe D. Chukalla, Maarten S. Krol, and Arjen Y. Hoekstra
Hydrol. Earth Syst. Sci., 21, 3507–3524, https://doi.org/10.5194/hess-21-3507-2017, https://doi.org/10.5194/hess-21-3507-2017, 2017
Short summary
Short summary
In the current study, we have developed a method to obtain marginal cost curves (MCCs) for WF reduction in crop production. The method is innovative by employing a model that combines soil water balance accounting and a crop growth model and assessing costs and WF reduction for all combinations of irrigation techniques, irrigation strategies and mulching practices. While this approach has been used in the field of constructing MCCs for carbon footprint reduction, this has never been done before.
Marcos Alex dos Santos, Quirijn de Jong van Lier, Jos C. van Dam, and Andre Herman Freire Bezerra
Hydrol. Earth Syst. Sci., 21, 473–493, https://doi.org/10.5194/hess-21-473-2017, https://doi.org/10.5194/hess-21-473-2017, 2017
Short summary
Short summary
Some empirical root water uptake (RWU) models were assessed under varying environmental conditions predicted from numerical simulations with a detailed physical model. The widely used empirical RWU model by Feddes only performs well in scenarios of low RWU compensation. The RWU model by Jarvis cannot mimic the RWU patterns predicted by the physical model for high root length density scenarios. The two proposed models are more capable of predicting similar RWU patterns.
Natalie Orlowski, Philipp Kraft, Jakob Pferdmenges, and Lutz Breuer
Hydrol. Earth Syst. Sci., 20, 3873–3894, https://doi.org/10.5194/hess-20-3873-2016, https://doi.org/10.5194/hess-20-3873-2016, 2016
Short summary
Short summary
The 2-year measurements of δ2H and δ18O in rainfall, stream, soil, and groundwater revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions in the Schwingbach catchment. We established a hydrological model to estimate spatially distributed groundwater ages and flow directions. Our model revealed complex age dynamics and showed that runoff must have been stored in the catchment for much longer than event water.
Giovanny M. Mosquera, Catalina Segura, Kellie B. Vaché, David Windhorst, Lutz Breuer, and Patricio Crespo
Hydrol. Earth Syst. Sci., 20, 2987–3004, https://doi.org/10.5194/hess-20-2987-2016, https://doi.org/10.5194/hess-20-2987-2016, 2016
Short summary
Short summary
This study focuses on the investigation of baseflow mean transit times (MTTs) in a high-elevation tropical ecosystem (páramo) using stable water isotopes. Results showed short MTTs (< 9 months) and topographic controls on their spatial variability. We conclude that (1) the hydrology of the ecosystem is dominated by shallow subsurface flow and (2) the interplay between the high storage capacity of the páramo soils and the catchments' slopes provides the ecosystem with high regulation capacity.
A. H. Aubert, O. Schnepel, P. Kraft, T. Houska, I. Plesca, N. Orlowski, and L. Breuer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-11591-2015, https://doi.org/10.5194/hessd-12-11591-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Studienlandschaft Schwingbachtal is an out-door full-scale study site since 2008. It deals with hydrology in an interdisciplinary approach and enhances active learning by various means (field monitoring, education trails and geocache). In order to adapt to the change in students habits and to suit better as a communication tool for the locals, it is newly equipped with augmented reality which adds virtual objects on the real landscape, making learning pleasant.
S. Multsch, J.-F. Exbrayat, M. Kirby, N. R. Viney, H.-G. Frede, and L. Breuer
Geosci. Model Dev., 8, 1233–1244, https://doi.org/10.5194/gmd-8-1233-2015, https://doi.org/10.5194/gmd-8-1233-2015, 2015
Short summary
Short summary
Irrigation agriculture is required to sustain yields that allow feeding the world population. A robust assessment of irrigation requirement (IRR) relies on a sound quantification of evapotranspiration (ET). We prepared a multi-model ensemble considering several ET methods and investigate uncertainties in simulating IRR. More generally, we provide an example of the value of investigating the uncertainty in models that may be used to inform policy-making and to elaborate best management practices.
E. Timbe, D. Windhorst, R. Celleri, L. Timbe, P. Crespo, H.-G. Frede, J. Feyen, and L. Breuer
Hydrol. Earth Syst. Sci., 19, 1153–1168, https://doi.org/10.5194/hess-19-1153-2015, https://doi.org/10.5194/hess-19-1153-2015, 2015
Short summary
Short summary
Stream, soil and precipitation waters were collected in a tropical montane cloud forest catchment for 2 years and analyzed for stable water isotopes in order to infer transit time distribution functions and mean transit times for semi-steady-state conditions. Samples were aggregated to diverse sampling resolutions for checking the sensitivity of sampling frequency on lumped-model predictions. Results provide valuable information for the planning of future fieldwork in similar catchments.
D. Windhorst, P. Kraft, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 18, 4113–4127, https://doi.org/10.5194/hess-18-4113-2014, https://doi.org/10.5194/hess-18-4113-2014, 2014
E. Timbe, D. Windhorst, P. Crespo, H.-G. Frede, J. Feyen, and L. Breuer
Hydrol. Earth Syst. Sci., 18, 1503–1523, https://doi.org/10.5194/hess-18-1503-2014, https://doi.org/10.5194/hess-18-1503-2014, 2014
N. Orlowski, H.-G. Frede, N. Brüggemann, and L. Breuer
J. Sens. Sens. Syst., 2, 179–193, https://doi.org/10.5194/jsss-2-179-2013, https://doi.org/10.5194/jsss-2-179-2013, 2013
S. Multsch, Y. A. Al-Rumaikhani, H.-G. Frede, and L. Breuer
Geosci. Model Dev., 6, 1043–1059, https://doi.org/10.5194/gmd-6-1043-2013, https://doi.org/10.5194/gmd-6-1043-2013, 2013
D. Windhorst, T. Waltz, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 17, 409–419, https://doi.org/10.5194/hess-17-409-2013, https://doi.org/10.5194/hess-17-409-2013, 2013
J.-F. Exbrayat, N. R. Viney, H.-G. Frede, and L. Breuer
Geosci. Model Dev., 6, 117–125, https://doi.org/10.5194/gmd-6-117-2013, https://doi.org/10.5194/gmd-6-117-2013, 2013
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Making a case for power-sensitive water modelling: a literature review
Developing water supply reservoir operating rules for large-scale hydrological modelling
An investigation of anthropogenic influences on hydrologic connectivity using model stress tests
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment
How economically and environmentally viable are multiple dams in the upper Cauvery Basin, India? A hydro-economic analysis using a landscape-based hydrological model
Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction
A generalised ecohydrological landscape classification for assessing ecosystem risk in Australia due to an altering water regime
Determining the threshold of issuing flash flood warnings based on people’s response process simulation
Modeling water balance components of conifer species using the Noah-MP model in an eastern Mediterranean ecosystem
A scalable and modular reservoir implementation for large scale integrated hydrologic simulations
Process-based three-layer synergistic optimal-allocation model for complex water resource systems considering reclaimed water
Assessment of Upscaling Methodologies for Daily Crop Transpiration using Sap-Flows and Two-Source Energy Balance Models in Almonds under Different Water Status and Production Systems
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management
Modeling hydropower operations at the scale of a power grid: a demand-based approach
How to account for irrigation withdrawals in a watershed model
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
The precision of satellite-based net irrigation quantification in the Indus and Ganges basins
Developing a Bayesian network model for understanding river catchment resilience under future change scenarios
Quantifying the trade-offs in re-operating dams for the environment in the Lower Volta River
Dynamically coupling system dynamics and SWAT+ models using Tinamït: application of modular tools for coupled human–water system models
Development of an integrated socio-hydrological modeling framework for assessing the impacts of shelter location arrangement and human behaviors on flood evacuation processes
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
An improved model of shade-affected stream temperature in Soil & Water Assessment Tool
Seasonal forecasting of snow resources at Alpine sites
Operationalizing equity in multipurpose water systems
Evaluation of a new observationally based channel parameterization for the National Water Model
High-resolution drought simulations and comparison to soil moisture observations in Germany
Cooperation under conflict: participatory hydrological modeling for science policy dialogues for the Aculeo Lake
Socio-hydrological modeling of the tradeoff between flood control and hydropower provided by the Columbia River Treaty
Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP
A system dynamic model to quantify the impacts of water resources allocation on water–energy–food–society (WEFS) nexus
Net irrigation requirement under different climate scenarios using AquaCrop over Europe
The role of multi-criteria decision analysis in a transdisciplinary process: co-developing a flood forecasting system in western Africa
Unfolding the relationship between seasonal forecast skill and value in hydropower production: a global analysis
Drought impact links to meteorological drought indicators and predictability in Spain
Opportunities for seasonal forecasting to support water management outside the tropics
Probabilistic modelling of the inherent field-level pesticide pollution risk in a small drinking water catchment using spatial Bayesian belief networks
Are maps of nitrate reduction in groundwater altered by climate and land use changes?
Historical simulation of maize water footprints with a new global gridded crop model ACEA
Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin
Identifying the dynamic evolution and feedback process of water resources nexus system considering socioeconomic development, ecological protection, and food security: A practical tool for sustainable water use
Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land
Robustness of a parsimonious subsurface drainage model at the French national scale
Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system
Delineation of dew formation zones in Iran using long-term model simulations and cluster analysis
Streamflow estimation at partially gaged sites using multiple-dependence conditions via vine copulas
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4157–4186, https://doi.org/10.5194/hess-28-4157-2024, https://doi.org/10.5194/hess-28-4157-2024, 2024
Short summary
Short summary
The exact power of models often remains hidden, especially when neutrality is claimed. Our review of 61 scientific articles shows that in the scientific literature little attention is given to the power of water models to influence development processes and outcomes. However, there is a lot to learn from those who are openly reflexive. Based on lessons from the review, we call for power-sensitive modelling, which means that people are critical about how models are made and with what effects.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
Hydrol. Earth Syst. Sci., 28, 4203–4218, https://doi.org/10.5194/hess-28-4203-2024, https://doi.org/10.5194/hess-28-4203-2024, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large scales. We design a new and simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain, where we can significantly improve the simulation of reservoir-impacted flow.
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
Short summary
Surface water–groundwater interaction can vary along a river. This study used a groundwater model that reproduced relative observed longitudinal and vertical connectivity patterns in the river network to assess the system's response to imposed stress tests. For the case study, imposed groundwater abstraction appears to influence connectivity relatively more than altered recharge, but a quantification of absolute exchange flows will require further model improvements.
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024, https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Short summary
The H2Ours game is designed to facilitate knowledge transfer and sharing among stakeholders to trigger commitment and collaborative action to restore hydrological conditions. The adaptability of the H2Ours game was proven in two different landscapes: groundwater recharge in upper to middle sub-watersheds with (over)use of water in the lowland zone and a peatland with drainage, rewetting, oil palm conversion and fire as issues. The game evaluation shows that the H2Ours game meets its purpose.
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024, https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Short summary
Monitoring agricultural drainage flow in irrigated areas is key to water and soil management. In this paper, four simple drainage models are evaluated on two irrigated sub-basins where drainage flow is measured daily. The evaluation of their precision shows that they simulate drainage very well when calibrated with drainage data and that one of them is slightly better. The evaluation of their accuracy shows that only one model can provide rough drainage estimates without calibration data.
Gláuber Pontes Rodrigues, Arlena Brosinsky, Ítalo Sampaio Rodrigues, George Leite Mamede, and José Carlos de Araújo
Hydrol. Earth Syst. Sci., 28, 3243–3260, https://doi.org/10.5194/hess-28-3243-2024, https://doi.org/10.5194/hess-28-3243-2024, 2024
Short summary
Short summary
The research focuses on a 4-million-inhabitant tropical region supplied by a network of open-water reservoirs where the dry season lasts for 8 months (Jun−Dec). We analysed the impact of four climate change scenarios on the evaporation rate and the associated availability (water yield distributed per year). The worst-case scenario shows that by the end of the century (2071−2099), the evaporation rate in the dry season could increase by 6 %, which would reduce stored water by about 80 %.
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024, https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Short summary
For the first time, we analyse the economic and ecological performance of existing multiple big reservoirs on a daily timescale for a major river basin (upper Cauvery) in India, where pre-intervention data were not available but where there are increasing calls for such assessments. Results show that smaller reservoirs on smaller streams that maximize the economic value of stored water are better for the basin economy and the environment. The approach can help to prioritize dam removals.
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Alexander Herr, Linda E. Merrin, Patrick J. Mitchell, Anthony P. O'Grady, Kate L. Holland, Richard E. Mount, David A. Post, Chris R. Pavey, and Ashley D. Sparrow
Hydrol. Earth Syst. Sci., 28, 1957–1979, https://doi.org/10.5194/hess-28-1957-2024, https://doi.org/10.5194/hess-28-1957-2024, 2024
Short summary
Short summary
We develop an ecohydrological classification for regions with limited hydrological records. It provides causal links of landscape features and their water requirement. The classification is an essential framework for modelling the impact of future coal resource developments via water on the features. A rule set combines diverse data with prioritisation, resulting in a transparent, repeatable and adjustable approach. We show examples of linking ecohydrology with environmental impacts.
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-130, https://doi.org/10.5194/hess-2024-130, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Flash flood warnings cannot be effective without people’s responses to them. We propose a method to determine the threshold of issuing the warnings based on the people’s response process simulation. The results show that adjusting the warning threshold according to the people’s tolerance levels of the failed warnings can improve warning effectiveness, but the prerequisite is to increase the forecasting accuracy and decrease the forecasting variance.
Mohsen Amini Fasakhodi, Hakan Djuma, Ioannis Sofokleous, Marinos Eliades, and Adriana Bruggeman
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-107, https://doi.org/10.5194/hess-2024-107, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This study examined the water use of pine and cypress trees in a semi-arid Mediterranean forest environment. We applied a widely used land surface model (Noah-MP) to simulate the water balance of the ecosystem. We found good modeling results for soil moisture. However, the model underestimated the transpiration of the trees during the dry summer months. These findings indicate that more research is needed to improve the modeling of ecosystem responses to climate and land use change.
Benjamin D. West, Reed M. Maxwell, and Laura E. Condon
EGUsphere, https://doi.org/10.5194/egusphere-2024-965, https://doi.org/10.5194/egusphere-2024-965, 2024
Short summary
Short summary
This article describes the addition of reservoirs to the hydrologic model, ParFlow. ParFlow is particularly good at helping us understand some of the broader drivers behind different parts of the water cycle. By having reservoirs in such a model we hope to be better able to understand both our impacts on the environment, and how to adjust our management of reservoirs to changing conditions.
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024, https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Short summary
Applying optimal water allocation models to simultaneously enable economic benefits, water preferences, and environmental demands at different decision levels, timescales, and regions is a challenge. In this study, a process-based three-layer synergistic optimal-allocation model (PTSOA) is established to achieve these goals. Reused, reclaimed water is also coupled to capture environmentally friendly solutions. Network analysis was introduced to reduce competition among different stakeholders.
Manuel Quintanilla-Albornoz, Xavier Miarnau, Ana Pelechá, Héctor Nieto, and Joaquim Bellvert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-5, https://doi.org/10.5194/hess-2024-5, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Remote sensing can be a helpful tool for monitoring crop transpiration (T) for agricultural water management. Since remote sensing provides instantaneous data, upscaling techniques are required to estimate T on a daily scale. This study assesses optimal image acquisition times and four upscaling approaches to estimate daily T. The results indicate that the main errors derive from measurement time and water stress levels, which can be mitigated by choosing a proper upscaling approach.
Bing-Yi Zhou, Guo-Hua Fang, Xin Li, Jian Zhou, and Hua-Yu Zhong
Hydrol. Earth Syst. Sci., 28, 817–832, https://doi.org/10.5194/hess-28-817-2024, https://doi.org/10.5194/hess-28-817-2024, 2024
Short summary
Short summary
The current unreasonable inter-basin water transfer operation leads to the problem of spatial and temporal imbalances in water allocation. This paper defines a water deficit evenness index and incorporates it into a joint optimization model for the Jiangsu section of the South-to-North Water Diversion Project considering ecology and economy. At the same time, the lake storage capacity performs well, and the water transfer efficiency of the river is significantly improved.
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci., 28, 801–816, https://doi.org/10.5194/hess-28-801-2024, https://doi.org/10.5194/hess-28-801-2024, 2024
Short summary
Short summary
This study examines the impact of extreme rainfall events on flood risk management in Thailand's Chi watershed. By analyzing historical data, we identified regions, notably Udon Thani and Chaiyaphum, with a high risk of flash flooding. To aid in flood risk assessment, visual maps were created. The study underscores the importance of preparing for extreme rainfall events, particularly in the context of climate change, to effectively mitigate potential flood damage.
Laure Baratgin, Jan Polcher, Patrice Dumas, and Philippe Quirion
EGUsphere, https://doi.org/10.5194/egusphere-2023-3106, https://doi.org/10.5194/egusphere-2023-3106, 2024
Short summary
Short summary
Hydrological modeling is valuable for estimating the possible impacts of climate change on hydropower generation. In this study, we present a more comprehensive approach to model the management of hydroelectric reservoirs. The total power-grid demand is distributed to the various power plants according to their reservoir states to compute their release. The method is tested on France, and demonstrates that it succeeds in reproducing the observed behavior of reservoirs.
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024, https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Short summary
This study aims to take into account irrigation withdrawals in a watershed model. The model we used combines agriculture and hydrological modeling. Two different crop models were compared, the first based on air temperature and the second based on Sentinel-2 satellite data. Results show that including remote sensing data leads to better emergence dates. Both methods allow us to simulate the daily irrigation withdrawals and downstream flow with a good accuracy, especially during low-flow periods.
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023, https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Short summary
Using a new approach based on a combination of modeling and Earth observation, useful information about the filling of the Grand Ethiopian Renaissance Dam can be obtained with limited data and proper rainfall selection. While the monthly streamflow into Sudan has decreased significantly (1.2 × 109–5 × 109 m3) with respect to the non-dam scenario, the negative impact has been masked due to higher-than-average rainfall. We reveal that the dam will need 3–5 more years to complete filling.
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023, https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary
Short summary
This study investigates the precision of irrigation estimates from a global hotspot of unsustainable irrigation practice, the Indus and Ganges basins. We show that irrigation water use can be estimated with high precision by comparing satellite and rainfed hydrological model estimates of evapotranspiration. We believe that our work can support sustainable water resource management, as it addresses the uncertainty of a key component of the water balance that remains challenging to quantify.
Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell
Hydrol. Earth Syst. Sci., 27, 2205–2225, https://doi.org/10.5194/hess-27-2205-2023, https://doi.org/10.5194/hess-27-2205-2023, 2023
Short summary
Short summary
We applied participatory methods to create a hybrid equation-based Bayesian network (BN) model to increase stakeholder understanding of catchment-scale resilience to the impacts of both climatic and socio-economic stressors to a 2050 time horizon. Our holistic systems-thinking approach enabled stakeholders to gain new perspectives on how future scenarios may influence their specific sectors and how their sector impacted other sectors and environmental conditions within the catchment system.
Afua Owusu, Jazmin Zatarain Salazar, Marloes Mul, Pieter van der Zaag, and Jill Slinger
Hydrol. Earth Syst. Sci., 27, 2001–2017, https://doi.org/10.5194/hess-27-2001-2023, https://doi.org/10.5194/hess-27-2001-2023, 2023
Short summary
Short summary
The construction of two dams in the Lower Volta River, Ghana, adversely affected downstream riverine ecosystems and communities. In contrast, Ghana has enjoyed vast economic benefits from the dams. Herein lies the challenge; there exists a trade-off between water for river ecosystems and water for anthropogenic water demands such hydropower. In this study, we quantify these trade-offs and show that there is room for providing environmental flows under current and future climatic conditions.
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023, https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary
Short summary
To facilitate the meaningful participation of stakeholders in water management, model choice is crucial. We show how system dynamics models (SDMs), which are very visual and stakeholder-friendly, can be automatically combined with physically based hydrological models that may be more appropriate for modelling the water processes of a human–water system. This allows building participatory SDMs with stakeholders and delegating hydrological components to an external hydrological model.
Erhu Du, Feng Wu, Hao Jiang, Naliang Guo, Yong Tian, and Chunmiao Zheng
Hydrol. Earth Syst. Sci., 27, 1607–1626, https://doi.org/10.5194/hess-27-1607-2023, https://doi.org/10.5194/hess-27-1607-2023, 2023
Short summary
Short summary
This study develops an integrated socio-hydrological modeling framework that can simulate the entire flood management processes, including flood inundation, flood management policies, public responses, and evacuation activities. The model is able to holistically examine flood evacuation performance under the joint impacts of hydrological conditions, management policies (i.e., shelter location distribution), and human behaviors (i.e., evacuation preparation time and route-searching strategy).
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023, https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary
Short summary
Forecasts may be valuable for user decisions, but current practice to quantify it has critical limitations. This study introduces RUV (relative utility value, a new metric that can be tailored to specific decisions and decision-makers. It illustrates how critical this decision context is when evaluating forecast value. This study paves the way for agencies to tailor the evaluation of their services to customer decisions and researchers to study model improvements through the lens of user impact.
Efrain Noa-Yarasca, Meghna Babbar-Sebens, and Chris Jordan
Hydrol. Earth Syst. Sci., 27, 739–759, https://doi.org/10.5194/hess-27-739-2023, https://doi.org/10.5194/hess-27-739-2023, 2023
Short summary
Short summary
Riparian vegetation has been identified as a strategy to control rising stream temperatures by shading streams. Riparian vegetation is included within a sub-basin-scale hydrological model and evaluated for full and efficient restoration scenarios. Results showed average temperature reductions of 0.91 and 0.86 °C for full and efficient riparian restoration, respectively. Notwithstanding the similar benefits, efficient restoration was 14.4 % cheaper than full riparian vegetation restoration.
Silvia Terzago, Giulio Bongiovanni, and Jost von Hardenberg
Hydrol. Earth Syst. Sci., 27, 519–542, https://doi.org/10.5194/hess-27-519-2023, https://doi.org/10.5194/hess-27-519-2023, 2023
Short summary
Short summary
Reliable seasonal forecasts of the abundance of mountain snowpack over the winter/spring ahead provide valuable information for water management, hydropower production and ski tourism. We present a climate service prototype to generate multi-model ensemble seasonal forecasts of mountain snow depth, based on Copernicus seasonal forecast system meteorological data used to force the SNOWPACK model. The prototype shows skill at predicting snow depth below and above normal and extremely dry seasons.
Guang Yang, Matteo Giuliani, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 27, 69–81, https://doi.org/10.5194/hess-27-69-2023, https://doi.org/10.5194/hess-27-69-2023, 2023
Short summary
Short summary
Participatory decision-making is a well-established approach to address the increasing pressure on water systems that searches for system-wise efficient solutions but often does not quantify how the resulting benefits are distributed across stakeholders. In this work, we show how including equity principles into the design of water system operations enriches the solution space by generating more compromise solutions that balance efficiency and justice.
Aaron Heldmyer, Ben Livneh, James McCreight, Laura Read, Joseph Kasprzyk, and Toby Minear
Hydrol. Earth Syst. Sci., 26, 6121–6136, https://doi.org/10.5194/hess-26-6121-2022, https://doi.org/10.5194/hess-26-6121-2022, 2022
Short summary
Short summary
Measurements of channel characteristics are important for accurate forecasting in the NOAA National Water Model (NWM) but are scarcely available. We seek to improve channel representativeness in the NWM by updating channel geometry and roughness parameters using a large, previously unpublished, dataset of approximately 48 000 gauges. We find that the updated channel parameterization from this new dataset leads to improvements in simulated streamflow performance and channel representation.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Anahi Ocampo-Melgar, Pilar Barría, Cristián Chadwick, and Cesar Rivas
Hydrol. Earth Syst. Sci., 26, 5103–5118, https://doi.org/10.5194/hess-26-5103-2022, https://doi.org/10.5194/hess-26-5103-2022, 2022
Short summary
Short summary
This article examines how a hydrological model exploring the causes of a lake desiccation was turned into a 5-step participatory process to better adjust the model to address questions that were causing suspicions and conflicts in the community. Although the process was key in finding a combination of strategies that were of moderate impact and higher local acceptability, we address the challenges of such collaboration in modeling when conflict is deeply embedded in the context.
Ashish Shrestha, Felipe Augusto Arguello Souza, Samuel Park, Charlotte Cherry, Margaret Garcia, David J. Yu, and Eduardo Mario Mendiondo
Hydrol. Earth Syst. Sci., 26, 4893–4917, https://doi.org/10.5194/hess-26-4893-2022, https://doi.org/10.5194/hess-26-4893-2022, 2022
Short summary
Short summary
Equitable sharing of benefits is key to successful cooperation in transboundary water resource management. However, external changes can shift the split of benefits and shifts in the preferences regarding how an actor’s benefits compare to the other’s benefits. To understand how these changes can impact the robustness of cooperative agreements, we develop a socio-hydrological system dynamics model of the benefit sharing provision of the Columbia River Treaty and assess a series of scenarios.
Sara Modanesi, Christian Massari, Michel Bechtold, Hans Lievens, Angelica Tarpanelli, Luca Brocca, Luca Zappa, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 4685–4706, https://doi.org/10.5194/hess-26-4685-2022, https://doi.org/10.5194/hess-26-4685-2022, 2022
Short summary
Short summary
Given the crucial impact of irrigation practices on the water cycle, this study aims at estimating irrigation through the development of an innovative data assimilation system able to ingest high-resolution Sentinel-1 radar observations into the Noah-MP land surface model. The developed methodology has important implications for global water resource management and the comprehension of human impacts on the water cycle and identifies main challenges and outlooks for future research.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci., 26, 3965–3988, https://doi.org/10.5194/hess-26-3965-2022, https://doi.org/10.5194/hess-26-3965-2022, 2022
Short summary
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.
Louise Busschaert, Shannon de Roos, Wim Thiery, Dirk Raes, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 3731–3752, https://doi.org/10.5194/hess-26-3731-2022, https://doi.org/10.5194/hess-26-3731-2022, 2022
Short summary
Short summary
Increasing amounts of water are used for agriculture. Therefore, we looked into how irrigation requirements will evolve under a changing climate over Europe. Our results show that, by the end of the century and under high emissions, irrigation water will increase by 30 % on average compared to the year 2000. Also, the irrigation requirement is likely to vary more from 1 year to another. However, if emissions are mitigated, these effects are reduced.
Judit Lienert, Jafet C. M. Andersson, Daniel Hofmann, Francisco Silva Pinto, and Martijn Kuller
Hydrol. Earth Syst. Sci., 26, 2899–2922, https://doi.org/10.5194/hess-26-2899-2022, https://doi.org/10.5194/hess-26-2899-2022, 2022
Short summary
Short summary
Many western Africans encounter serious floods every year. The FANFAR project co-designed a pre-operational flood forecasting system (FEWS) with 50 key western African stakeholders. Participatory multi-criteria decision analysis (MCDA) helped prioritize a FEWS that meets their needs: it should provide accurate, clear, and timely flood risk information and work reliably in tough conditions. As a theoretical contribution, we propose an assessment framework for transdisciplinary hydrology research.
Donghoon Lee, Jia Yi Ng, Stefano Galelli, and Paul Block
Hydrol. Earth Syst. Sci., 26, 2431–2448, https://doi.org/10.5194/hess-26-2431-2022, https://doi.org/10.5194/hess-26-2431-2022, 2022
Short summary
Short summary
To fully realize the potential of seasonal streamflow forecasts in the hydropower industry, we need to understand the relationship between reservoir design specifications, forecast skill, and value. Here, we rely on realistic forecasts and simulated hydropower operations for 753 dams worldwide to unfold such relationship. Our analysis shows how forecast skill affects hydropower production, what type of dams are most likely to benefit from seasonal forecasts, and where these dams are located.
Herminia Torelló-Sentelles and Christian L. E. Franzke
Hydrol. Earth Syst. Sci., 26, 1821–1844, https://doi.org/10.5194/hess-26-1821-2022, https://doi.org/10.5194/hess-26-1821-2022, 2022
Short summary
Short summary
Drought affects many regions worldwide, and future climate projections imply that drought severity and frequency will increase. Hence, the impacts of drought on the environment and society will also increase considerably. Monitoring and early warning systems for drought rely on several indicators; however, assessments on how these indicators are linked to impacts are still lacking. Our results show that meteorological indices are best linked to impact occurrences.
Leah A. Jackson-Blake, François Clayer, Elvira de Eyto, Andrew S. French, María Dolores Frías, Daniel Mercado-Bettín, Tadhg Moore, Laura Puértolas, Russell Poole, Karsten Rinke, Muhammed Shikhani, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 26, 1389–1406, https://doi.org/10.5194/hess-26-1389-2022, https://doi.org/10.5194/hess-26-1389-2022, 2022
Short summary
Short summary
We explore, together with stakeholders, whether seasonal forecasting of water quantity, quality, and ecology can help support water management at five case study sites, primarily in Europe. Reliable forecasting, a season in advance, has huge potential to improve decision-making. However, managers were reluctant to use the forecasts operationally. Key barriers were uncertainty and often poor historic performance. The importance of practical hands-on experience was also highlighted.
Mads Troldborg, Zisis Gagkas, Andy Vinten, Allan Lilly, and Miriam Glendell
Hydrol. Earth Syst. Sci., 26, 1261–1293, https://doi.org/10.5194/hess-26-1261-2022, https://doi.org/10.5194/hess-26-1261-2022, 2022
Short summary
Short summary
Pesticides continue to pose a threat to surface water quality worldwide. Here, we present a spatial Bayesian belief network (BBN) for assessing inherent pesticide risk to water quality. The BBN was applied in a small catchment with limited data to simulate the risk of five pesticides and evaluate the likely effectiveness of mitigation measures. The probabilistic graphical model combines diverse data and explicitly accounts for uncertainties, which are often ignored in pesticide risk assessments.
Ida Karlsson Seidenfaden, Torben Obel Sonnenborg, Jens Christian Refsgaard, Christen Duus Børgesen, Jørgen Eivind Olesen, and Dennis Trolle
Hydrol. Earth Syst. Sci., 26, 955–973, https://doi.org/10.5194/hess-26-955-2022, https://doi.org/10.5194/hess-26-955-2022, 2022
Short summary
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
Oleksandr Mialyk, Joep F. Schyns, Martijn J. Booij, and Rick J. Hogeboom
Hydrol. Earth Syst. Sci., 26, 923–940, https://doi.org/10.5194/hess-26-923-2022, https://doi.org/10.5194/hess-26-923-2022, 2022
Short summary
Short summary
As the global demand for crops is increasing, it is vital to understand spatial and temporal patterns of crop water footprints (WFs). Previous studies looked into spatial patterns but not into temporal ones. Here, we present a new process-based gridded crop model to simulate WFs and apply it for maize in 1986–2016. We show that despite the average unit WF reduction (−35 %), the global WF of maize production has increased (+50 %), which might harm ecosystems and human livelihoods in some regions.
Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans
Hydrol. Earth Syst. Sci., 26, 861–883, https://doi.org/10.5194/hess-26-861-2022, https://doi.org/10.5194/hess-26-861-2022, 2022
Short summary
Short summary
The arid plains of the lower Indus Basin rely heavily on the water provided by the mountainous upper Indus. Rapid population growth in the upper Indus is expected to increase the water that is consumed there. This will subsequently reduce the water that is available for the downstream plains, where the population and water demand are also expected to grow. In future, this may aggravate tensions over the division of water between the countries that share the Indus Basin.
Yaogeng Tan, Zengchuan Dong, Sandra M. Guzman, Xinkui Wang, and Wei Yan
Hydrol. Earth Syst. Sci., 25, 6495–6522, https://doi.org/10.5194/hess-25-6495-2021, https://doi.org/10.5194/hess-25-6495-2021, 2021
Short summary
Short summary
The rapid increase in economic development and urbanization is contributing to the imbalances and conflicts between water supply and demand and further deteriorates river ecological health, which intensifies their interactions and causes water unsustainability. This paper proposes a methodology for sustainable development of water resources, considering socioeconomic development, food safety, and ecological protection, and the dynamic interactions across those water users are further assessed.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Alexis Jeantet, Hocine Henine, Cédric Chaumont, Lila Collet, Guillaume Thirel, and Julien Tournebize
Hydrol. Earth Syst. Sci., 25, 5447–5471, https://doi.org/10.5194/hess-25-5447-2021, https://doi.org/10.5194/hess-25-5447-2021, 2021
Short summary
Short summary
The hydrological subsurface drainage model SIDRA-RU is assessed at the French national scale, using a unique database representing the large majority of the French drained areas. The model is evaluated following its capacity to simulate the drainage discharge variability and the annual drained water balance. Eventually, the temporal robustness of SIDRA-RU is assessed to demonstrate the utility of this model as a long-term management tool.
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021, https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Short summary
In this study, we assessed the sustainability of water resources in a wadi region with the help of a hydrologic model. Our assessment showed that the increases in groundwater demand and consumption exacerbate the negative impact of climate change on groundwater sustainability and hydrologic regime alteration. These alterations have severe consequences for a downstream wetland and its ecosystem. The approach may be applicable in other wadi regions with different climate and water use systems.
Nahid Atashi, Dariush Rahimi, Victoria A. Sinclair, Martha A. Zaidan, Anton Rusanen, Henri Vuollekoski, Markku Kulmala, Timo Vesala, and Tareq Hussein
Hydrol. Earth Syst. Sci., 25, 4719–4740, https://doi.org/10.5194/hess-25-4719-2021, https://doi.org/10.5194/hess-25-4719-2021, 2021
Short summary
Short summary
Dew formation potential during a long-term period (1979–2018) was assessed in Iran to identify dew formation zones and to investigate the impacts of long-term variation in meteorological parameters on dew formation. Six dew formation zones were identified based on cluster analysis of the time series of the simulated dew yield. The distribution of dew formation zones in Iran was closely aligned with topography and sources of moisture. The dew formation trend was significantly negative.
Kuk-Hyun Ahn
Hydrol. Earth Syst. Sci., 25, 4319–4333, https://doi.org/10.5194/hess-25-4319-2021, https://doi.org/10.5194/hess-25-4319-2021, 2021
Short summary
Short summary
This study proposes a multiple-dependence model for estimating streamflow at partially gaged sites. The evaluations are conducted on a case study of the eastern USA and show that the proposed model is suited for infilling missing values. The performance is further evaluated with six other infilling models. Results demonstrate that the proposed model produces more reliable streamflow estimates than the other approaches. The model can be applicable to other hydro-climatological variables.
Cited articles
Abdi, R. and Yasi, M.: Evaluation of environmental flow requirements using
eco-hydrologic–hydraulic methods in perennial rivers, Water Sci. Technol.,
72, 354–363, https://doi.org/10.2166/wst.2015.200, 2015.
Abe, C. A., Lobo, F. L., Dibike, Y. B., Costa, M. P. F., Dos Santos, V., and
Novo, E. M. L. M.: Modelling the effects of historical and future land cover
changes on the hydrology of an Amazonian Basin, Water, 10, 932,
https://doi.org/10.3390/w10070932, 2018.
Alkimim, A., Sparovek, G., and Clarke, K. C.: Converting Brazil's pastures
to cropland: an alternative way to meet sugarcane demand and to spare
forestlands, Appl. Geogr., 62, 75–84,
https://doi.org/10.1016/j.apgeog.2015.04.008, 2015.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration-guidelines for computing crop water requirements, FAO
Irrigation and drainage paper 56, Food and Agriculture Organization of the
United Nations, Rome, Italy, 1998.
ANA: Conjuntura dos recursos hídricos no Brasil, Informe 2015,
Agência Nacional de Águas, Brasília, Brazil, 88 pp., ISBN 978-85-8210-030-1, 2015.
ANA: Disponibilidade Hídrica Superficial, Agência Nacional de
Águas, Brasília, Brazil, available at:
http://metadados.ana.gov.br/geonetwork/srv/pt/metadata.show?id=307 (last access: 25 November 2019), 2016.
ANA: Levantamento da agricultura irrigada por pivôs centrais no Brasil,
Agência Nacional de Águas, Embrapa Milho e Sorgo, 2nd edn.,
Brasília, Brazil, 47 pp., ISBN 978-85-8210-060-8, 2019.
Arvor, D., Dubreuil, V., Ronchail, J., Simões, M., and Funatsu, B.M.:
Spatial patterns of rainfall regimes related to levels of double cropping
agriculture systems in Mato Grosso (Brazil), Int. J. Climatol. 34,
2622–2633, https://doi.org/10.1002/joc.3863, 2014.
Berger, M., van der Ent, R., Eisner, S., Bach, V., and Finkbeiner, M.: Water accounting and vulnerability evaluation (WAVE): Considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting, Environ. Sci. Technol., 48, 4521–4528, https://doi.org/10.1021/es404994t, 2014.
Bosznay, M.: Generalization of SCS curve number method, J. Irrig. Drain.
Eng., 115, 139–144, 1989.
Boulay, A., Bare, J., Benini, L., Berger, M., Lathuillière, M. J.,
Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A. V.,
Ridoutt, B., Oki, T., Worbe, S., and Pfister, S.: The WULCA consensus
characterization model for water scarcity footprints: assessing impacts of
water consumption based on available water remaining (AWARE), Int. J. Life
Cycle Ass., 23, 368–378, https://doi.org/10.1007/s11367-017-1333-8, 2018.
Castello, L. and Macedo, M. N.: Large-scale degradation of Amazonian
freshwater ecosystems, Glob. Change Biol., 22, 990–1007, 2016.
Chukalla, A. D., Krol, M. S., and Hoekstra, A. Y.: Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching, Hydrol. Earth Syst. Sci., 19, 4877–4891, https://doi.org/10.5194/hess-19-4877-2015, 2015.
Cohn, A. S., VanWey, L. K., Spera, S. S, and Mustard, J. F.: Cropping
frequency and area response to climate variability can exceed yield
response, Nat. Clim. Change, 6, 601–604, 2016.
Conab: Acomp. Safra bras. grãos, v. 2 – Safra 2014/15, no. 10 –
Décimo levantamento, Brasília, 1–109, Companhia Nacional de
Abastecimento, Observatório Agrícola, Brasília, Brasil, ISSN 2318-6852, 2015.
Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A., and Rodriguez-Iturbe, I.:
Evolution of the global virtual water trade network, P. Natl. Acad. Sci.
USA, 109, 5989–5994, https://doi.org/10.1073/pnas.1203176109, 2012.
Damkjaer, S. and Taylor, R.: The measurement of water scarcity: Defining a
meaningful indicator, Ambio, 46, 513–531, 2017.
da Silva, V. D. P. R., De Oliveira, S. D., Hoekstra, A. Y., Dantas Neto, J.,
Campos, J. H. B. C., Braga, C. C., De Araújo, L. E., Aleixo, D. D. O.,
De Brito, J. I. B., De Souza, M. D., and De Holanda, R. M.: Water footprint
and virtual water trade of Brazil, Water, 8, 517, https://doi.org/10.3390/w8110517, 2016.
Dickie, A., Magno, I., Giampietro, J., and Dolginow, A.: Challenges and
opportunities for conservation, agricultural production, and social
inclusion in the Cerrado biome, CEA Consulting, San Francisco, USA, 54 pp.,
2016.
Dos Santos, V., Laurent, F., Abe, C., and Messner, F.: Hydrologic response
to land use change in a large basin in Eastern Amazon, Water, 10, 429,
https://doi.org/10.3390/w10040429, 2018.
Fachinelli, N. P. and Pereira Jr., A. O.: Impacts of sugarcane ethanol
production in the Paranaiba basin water resources, Biomass Bioenerg., 83,
8–16, https://doi.org/10.1016/j.biombioe.2015.08.015, 2015.
Fader, M., Gerten, D., Thammer, M., Heinke, J., Lotze-Campen, H., Lucht, W., and Cramer, W.: Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade, Hydrol. Earth Syst. Sci., 15, 1641–1660, https://doi.org/10.5194/hess-15-1641-2011, 2011.
Falkenmark, M.: Land-water linkages: a synopsis, in: FAO, Land and water
integration and river basin management, Proceedings of an FAO informal
workshop, 31 January–2 February 1993, Rome, Italy, FAO Land and Water
Bulletin 1, Food and Agriculture Organization, Rome, Italy, 15–16, 1995.
FEALQ/IICA/MI: Integrated spatial analysis for development of irrigated
agriculture in Brazil. Luiz de Queiroz Agricultural Studies Foundation/Inter-American Institute for Cooperation on Agriculture/Ministry of
National Integration, Technical Cooperation Program PCT BRA/IICA/08/002,
available at:
http://www.mi.gov.br/analise-territorial-para-o-desenvolvimento-da-agricultura-irrigada (last access: 25 November 2019), 2015 (in Portuguese).
Flach, R., Ran, Y., Godar, J., Karlberg, L., and Suavet, C.: Towards more
spatially explicit assessments of virtual water flows: Linking local water
use and scarcity to global demand of Brazilian farming commodities, Environ.
Res. Lett., 11, 075003, https://doi.org/10.1088/1748-9326/11/7/075003, 2016.
Gerbens-Leenes, W. and Hoekstra, A. Y.: The water footprint of sweeteners
and bio-ethanol, Environ. Int., 40, 202–211, 2012.
Getirana, A.: Extreme water deficit in Brazil detected from space, J.
Hydrometeorol., 17, 591–599, 2016.
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G.
B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh,
M. G., and Ruiperez Gonzalez, M.: SoilGrids1km – Global Soil Information
Based on Automated Mapping, PLoS ONE, 9, e105992,
https://doi.org/10.1371/journal.pone.0105992, 2014 (data available at: https://www.isric.org/explore/soilgrids, last access: 25 November 2019).
Hernandes, T. A., Bufon, V. B., and Seabra, J. E.: Water footprint of
biofuels in Brazil: assessing regional differences, Biofuel. Bioprod. Bior.,
8, 241–252, https://doi.org/10.1002/bbb.1454, 2014.
Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E., and
Richter, B. D.: Global monthly water scarcity: Blue water footprints versus
blue water availability, PLoS One 7, e32688.
https://doi.org/10.1371/journal.pone.0032688, 2012.
IBGE: Censo Agropecuário 2006. Instituto Brasileiro de Geografia e
Estatística, Rio de Janeiro, Brazil, available at:
http://www.sidra.ibge.gov.br/ (last access: 25 November 2019), 2006.
IBGE: Produção Agrícola Municipal. Instituto Brasileiro de
Geografia e Estatística, Rio de Janeiro, Brazil, available at:
http://www.sidra.ibge.gov.br/ (last access: 25 November 2019), 2012.
Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., and Lucht, W.: Water savings potentials of irrigation systems: global simulation of processes and linkages, Hydrol. Earth Syst. Sci., 19, 3073–3091, https://doi.org/10.5194/hess-19-3073-2015, 2015.
Jägermeyr, J., Gerten, D., Schaphoff, S., Heinke, J., Lucht, W., and
Rockström, J.: Integrated crop water management might sustainably halve
the global food gap, Environ. Res. Lett., 11, 25002,
https://doi.org/10.1088/1748-9326/11/2/025002, 2016.
Książek, L., Woś, A., Florek, J., Wyrębek, M., Młyński, D., and Wałęga, A.: Combined use of the hydraulic and
hydrological methods to calculate the environmental flow: Wisloka river,
Poland: case study, Environ. Monit. Assess., 191, 254,
https://doi.org/10.1007/s10661-019-7402-7, 2019.
Lathuillière, M. J., Coe, M. T., and Johnson, M. S.: A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia?, Hydrol. Earth Syst. Sci., 20, 2179–2194, https://doi.org/10.5194/hess-20-2179-2016, 2016.
Lathuillière, M. J., Dalmagro, H. J., Black, T. A., Arruda, P. H. Z. d.,
Hawthorne, I., Couto, E. G., and Johnson, M. S.: Rain-fed and irrigated
cropland-atmosphere water fluxes and their implications for agricultural
production in Southern Amazonia, Agr. Forest Meteorol., 256–257, 407–419,
https://doi.org/10.1016/j.agrformet.2018.03.023, 2018.
Mekonnen, M. M. and Hoekstra, A. Y.: A global and high-resolution assessment of the green, blue and grey water footprint of wheat, Hydrol. Earth Syst. Sci., 14, 1259–1276, https://doi.org/10.5194/hess-14-1259-2010, 2010.
Mittermeier, R. A., Gil, P. R., Hoffman, M., Pilgrim, J., Brooks, T.,
Mittermeier, C. G., Lamoreux, J., and da Fonseca, G. A. B.: Hotspots
revisited-Earth's biologically richest and most endangered terrestrial
ecoregions, University of Chicago Press, Chicago, IL, USA, 2005.
Multsch, S., Al-Rumaikhani, Y. A., Frede, H.-G., and Breuer, L.: A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0), Geosci. Model Dev., 6, 1043–1059, https://doi.org/10.5194/gmd-6-1043-2013, 2013.
Multsch, S., Pahlow, M., Ellensohn, J., Michalik, T., Frede, H.-G., and
Breuer, L.: A hotspot analysis of water footprints and groundwater decline
in the High Plains aquifer region, USA, Reg. Environ. Change, 16,
2419–2428, https://doi.org/10.1007/s10113-016-0968-5, 2016.
Multsch, S., Elshamy, M. E., Batarseh, S., Seid, A. H., Frede, H.-G., and
Breuer, L.: Improving irrigation efficiency will be insufficient to meet
future water demand in the Nile Basin, J. Hydrol., Regional Studies, 12,
315–30, 2017a.
Multsch, S., Grabowski, D., Lüdering, J., Alquwaizany, A. S., Lehnert,
K., Frede, H.-G., Winker, P., and Breuer, L.: A practical planning software
program for desalination in agriculture – SPARE:WATERopt, Desalination, 404,
121–131, https://doi.org/10.1016/j.desal.2016.11.012, 2017b.
Pereira, L. S., Oweis, T., and Zairi, A.: Irrigation management under water scarcity, Agr. Water. Manage., 57, 175–206, https://doi.org/10.1016/S0378-3774(02)00075-6, 2002.
Pereira, L. S., Allen, R. G., Smith, M., and Raes, D.: Crop evapotranspiration estimation with FAO56: Past and future, Agr. Water Manag., 147, 4–20, https://doi.org/10.1016/j.agwat.2014.07.031, 2015.
Raskin, P., Gleick, P. H., Kirshen, P., Pontius Jr., R. G., and Strzepek, K.:
Comprehensive assessment of the freshwater resources of the world, Stockholm
Environmental Institute, Stockholm, Sweden, p. 51, 1997.
Richter, B. D., Davis, M. M., Apse, C., and Konrad, C.: A presumptive
standard for environmental flow protection, River Res. Appl., 28,
1312–1321, https://doi.org/10.1002/rra.1511, 2012.
Rockström, J., Karlberg, L., Wani, S. P., Barron, J., Hatibu, N., Oweis,
T., Bruggeman, A., Farahani, J., and Qiang, Z.: Managing water in rainfed
agriculture - The need for a paradigm shift, Agr. Water Manage., 97,
543–550, https://doi.org/10.1016/j.agwat.2009.09.009, 2010.
Rodrigues, L. N., Sano, E. E., Steenhuis, T. S., and Passo, D. P.:
Estimation of small reservoir storage capacities with remote sensing in the
Brazilian Savannah region, Water Resour. Manag., 26, 873–882,
https://doi.org/10.1007/s11269-011-9941-8, 2012.
Rost, S., Gerten, D., Hoff, H., Lucht, W., Falkenmark, M., and
Rockström, J.: Global potential to increase crop production through
water management in rainfed agriculture, Environ. Res. Lett., 4, 44002,
https://doi.org/10.1088/1748-9326/4/4/044002, 2009.
Scarpare, F. V., Hernandes, T. A. D., Ruiz-Corrêa, S. T., Picoli, M. C.
A., Scanlon, B. R., Chagas, M. F., Duft, D. G., and de Fatima Cardoso, T.:
Sugarcane land use and water resources assessment in the expansion area in
Brazil, J. Clean. Prod., 133, 1318–1327, 2016.
Siebert, S. and Döll, P.: Quantifying blue and green virtual water
contents in global crop production as well as potential production losses
without irrigation, J. Hydrol., 384, 198–217, 2010.
Smakhtin, V., Revenga, C., and Döll, P.: A pilot global assessment of
environmental water requirements and scarcity, Water International, 29,
307–317, https://doi.org/10.1080/02508060408691785, 2004.
Sparovek, G., Barretto, A. G. O. P., Matsumoto, M., and Berndes, G.: Effects
of governance on availability of land for agriculture and conservation in
Brazil, Environ. Sci. Technol., 49, 10285–10293, 2015.
Spera, S. A.: Agricultural intensification can preserve the Brazilian
Cerrado: Applying lessons from Mato Grosso and Goiás to Brazil's last
agricultural frontier, Trop. Conserv. Sci., 10, 1–7,
https://doi.org/10.1177/1940082917720662, 2017.
Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N., and Mustard, J. F.:
Land-use change affects water recycling in Brazil's last agricultural
frontier, Glob. Change Biol., 22, 3405–3413,
https://doi.org/10.1111/gcb.13298, 2016.
Strassburg, B. B. N., Latawiec, A. E., Barioni, L. G., Nobre, C. A., da
Silva, V. P., Valentim, J. F., Vianna, M., and Assad, E. D.: When enough
should be enough: Improving the use of current agricultural lands could meet
production demands and spare natural habitats in Brazil, Global Environ.
Chang., 28, 84–97, 2014.
Strassburg, B. B. N., Brooks T., Feltran-Barbieri R., Iribarrem A.,
Crouzeilles R., Loyola R., Latawiec A. E., Oliveira Filho F. J., de M.
Scaramuzza, C. A., Scarano, F. R., Soares-Filho, B., and Balmford, A.: Moment
of truth for the Cerrado hotspot, Nat. Ecol. Evol., 1, 0099,
https://doi.org/10.1038/s41559-017-0099, 2017.
Tennant, D. L.: Instream flow regimens for fish, wildlife, recreation and
related environmental resources, Fisheries 1, 6–10, 1976.
Tomasella, J., Hodnett, M. G., and Rossato, L.: Pedotransfer functions for
the estimation of soil water retention in Brazilian soils, Soil Sci. Soc.
Am. J., 64, 327–38, 2000.
UN: Comprehensive assessment of the freshwater resources of the world.
Report of the Secretary General, Report E/CN.17/1997/9, United
Nations, New York, NY, USA, 1997.
Van Genuchten, M. T.: A closed form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980.
Vanham, D., Hoekstra, A. Y., Wada, Y., Bouraoui, F., de Roo, A., Mekonnen,
M. M., van de Bund, W. J., Batelaan, O., Pavelic, P., Bastiaanssen, W. G. M.,
Kummu, M., Rockström, J., Liu, J., Bisselink, B., Ronco, P., Pistocchi,
A., and Bidoglio, G.: Physical water scarcity metrics for monitoring
progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of
water stress”, Sci. Total Environ., 613–614, 218–232,
https://doi.org/10.1016/j.scitotenv.2017.09.056, 2018.
VanWey, L. K., Spera, S., de Sa, R., Mahr, D., and Mustard, J. F.:
Socioeconomic development and agricultural intensification in Mato Grosso,
Philos. T. Roy. Soc. A, 368, 20120168, https://doi.org/10.1098/rstb.2012.0168,
2013.
Wriedt, G., Van der Velde, M., Aloe, A., and Bouraoui, F.: Estimating
irrigation water requirements in Europe, J. Hydrol., 373, 527–544, 2009.
Xavier, A. C., King, C. W., and Scanlon, B. R.: Daily gridded meteorological
variables in Brazil (1980–2013), Int. J. Climatol., 36, 2644–2659,
https://doi.org/10.1002/joc.4518, 2016 (data available at: http://careyking.com/data-downloads/, last access: 25 November 2019).
Short summary
Expanding irrigation in agriculture is one of Brazil's strategies to increase production. In this study the amount of water required to grow the main crops has been calculated and compared to the water that is available in rivers at least 95 % of the time. Future decisions regarding expanding irrigated cropping areas must, while intensifying production practices, consider the likely regional effects on water scarcity levels, in order to reach sustainable agricultural production.
Expanding irrigation in agriculture is one of Brazil's strategies to increase production. In...