Articles | Volume 24, issue 1
Hydrol. Earth Syst. Sci., 24, 307–324, 2020
https://doi.org/10.5194/hess-24-307-2020
Hydrol. Earth Syst. Sci., 24, 307–324, 2020
https://doi.org/10.5194/hess-24-307-2020

Research article 21 Jan 2020

Research article | 21 Jan 2020

Assessment of potential implications of agricultural irrigation policy on surface water scarcity in Brazil

Sebastian Multsch et al.

Related authors

Particulate macronutrient exports from tropical African montane catchments point to the impoverishment of agricultural soils
Jaqueline Stenfert Kroese, John N. Quinton, Suzanne R. Jacobs, Lutz Breuer, and Mariana C. Rufino
SOIL, 7, 53–70, https://doi.org/10.5194/soil-7-53-2021,https://doi.org/10.5194/soil-7-53-2021, 2021
Short summary
Investigating unproductive water losses from irrigated agricultural crops in the humid tropics through analyses of stable isotopes of water
Amani Mahindawansha, Christoph Külls, Philipp Kraft, and Lutz Breuer
Hydrol. Earth Syst. Sci., 24, 3627–3642, https://doi.org/10.5194/hess-24-3627-2020,https://doi.org/10.5194/hess-24-3627-2020, 2020
Short summary
Changing global cropping patterns to minimize national blue water scarcity
Hatem Chouchane, Maarten S. Krol, and Arjen Y. Hoekstra
Hydrol. Earth Syst. Sci., 24, 3015–3031, https://doi.org/10.5194/hess-24-3015-2020,https://doi.org/10.5194/hess-24-3015-2020, 2020
Short summary
Explainable AI for Knowledge Acquisition in Hydrochemical Time Series V1.0.0
Michael C. Thrun, Alfred Ultsch, and Lutz Breuer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-87,https://doi.org/10.5194/gmd-2020-87, 2020
Revised manuscript not accepted
Short summary
Using hydrological and climatic catchment clusters to explore drivers of catchment behavior
Florian U. Jehn, Konrad Bestian, Lutz Breuer, Philipp Kraft, and Tobias Houska
Hydrol. Earth Syst. Sci., 24, 1081–1100, https://doi.org/10.5194/hess-24-1081-2020,https://doi.org/10.5194/hess-24-1081-2020, 2020
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Streamflow estimation at partially gaged sites using multiple-dependence conditions via vine copulas
Kuk-Hyun Ahn
Hydrol. Earth Syst. Sci., 25, 4319–4333, https://doi.org/10.5194/hess-25-4319-2021,https://doi.org/10.5194/hess-25-4319-2021, 2021
Short summary
Water resources management and dynamic changes in water politics in the transboundary river basins of Central Asia
Xuanxuan Wang, Yaning Chen, Zhi Li, Gonghuan Fang, Fei Wang, and Haichao Hao
Hydrol. Earth Syst. Sci., 25, 3281–3299, https://doi.org/10.5194/hess-25-3281-2021,https://doi.org/10.5194/hess-25-3281-2021, 2021
Short summary
Assessing interannual variability in nitrogen sourcing and retention through hybrid Bayesian watershed modeling
Jonathan W. Miller, Kimia Karimi, Arumugam Sankarasubramanian, and Daniel R. Obenour
Hydrol. Earth Syst. Sci., 25, 2789–2804, https://doi.org/10.5194/hess-25-2789-2021,https://doi.org/10.5194/hess-25-2789-2021, 2021
Short summary
Minimizing the impact of vacating instream storage of a multi-reservoir system: a trade-off study of water supply and empty flushing
Chia-Wen Wu, Frederick N.-F. Chou, and Fong-Zuo Lee
Hydrol. Earth Syst. Sci., 25, 2063–2087, https://doi.org/10.5194/hess-25-2063-2021,https://doi.org/10.5194/hess-25-2063-2021, 2021
Short summary
Global cotton production under climate change – Implications for yield and water consumption
Yvonne Jans, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Hydrol. Earth Syst. Sci., 25, 2027–2044, https://doi.org/10.5194/hess-25-2027-2021,https://doi.org/10.5194/hess-25-2027-2021, 2021
Short summary

Cited articles

Abdi, R. and Yasi, M.: Evaluation of environmental flow requirements using eco-hydrologic–hydraulic methods in perennial rivers, Water Sci. Technol., 72, 354–363, https://doi.org/10.2166/wst.2015.200, 2015.  
Abe, C. A., Lobo, F. L., Dibike, Y. B., Costa, M. P. F., Dos Santos, V., and Novo, E. M. L. M.: Modelling the effects of historical and future land cover changes on the hydrology of an Amazonian Basin, Water, 10, 932, https://doi.org/10.3390/w10070932, 2018. 
Alkimim, A., Sparovek, G., and Clarke, K. C.: Converting Brazil's pastures to cropland: an alternative way to meet sugarcane demand and to spare forestlands, Appl. Geogr., 62, 75–84, https://doi.org/10.1016/j.apgeog.2015.04.008, 2015. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Food and Agriculture Organization of the United Nations, Rome, Italy, 1998. 
ANA: Conjuntura dos recursos hídricos no Brasil, Informe 2015, Agência Nacional de Águas, Brasília, Brazil, 88 pp., ISBN 978-85-8210-030-1, 2015. 
Download
Short summary
Expanding irrigation in agriculture is one of Brazil's strategies to increase production. In this study the amount of water required to grow the main crops has been calculated and compared to the water that is available in rivers at least 95 % of the time. Future decisions regarding expanding irrigated cropping areas must, while intensifying production practices, consider the likely regional effects on water scarcity levels, in order to reach sustainable agricultural production.