Articles | Volume 24, issue 5
https://doi.org/10.5194/hess-24-2419-2020
https://doi.org/10.5194/hess-24-2419-2020
Research article
 | 
12 May 2020
Research article |  | 12 May 2020

Tracking the global flows of atmospheric moisture and associated uncertainties

Obbe A. Tuinenburg and Arie Staal

Related authors

Local moisture recycling across the globe
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023,https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
High-resolution global atmospheric moisture connections from evaporation to precipitation
Obbe A. Tuinenburg, Jolanda J. E. Theeuwen, and Arie Staal
Earth Syst. Sci. Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020,https://doi.org/10.5194/essd-12-3177-2020, 2020
Short summary
Towards understanding the pattern of glacier mass balances in High Mountain Asia using regional climatic modelling
Remco J. de Kok, Philip D. A. Kraaijenbrink, Obbe A. Tuinenburg, Pleun N. J. Bonekamp, and Walter W. Immerzeel
The Cryosphere, 14, 3215–3234, https://doi.org/10.5194/tc-14-3215-2020,https://doi.org/10.5194/tc-14-3215-2020, 2020
Short summary
The residence time of water in the atmosphere revisited
Ruud J. van der Ent and Obbe A. Tuinenburg
Hydrol. Earth Syst. Sci., 21, 779–790, https://doi.org/10.5194/hess-21-779-2017,https://doi.org/10.5194/hess-21-779-2017, 2017
Short summary
Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?
R. J. van der Ent, O. A. Tuinenburg, H.-R. Knoche, H. Kunstmann, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013,https://doi.org/10.5194/hess-17-4869-2013, 2013

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024,https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary
Mapping soil moisture across the UK: assimilating cosmic-ray neutron sensors, remotely sensed indices, rainfall radar and catchment water balance data in a Bayesian hierarchical model
Peter E. Levy and the COSMOS-UK team
Hydrol. Earth Syst. Sci., 28, 4819–4836, https://doi.org/10.5194/hess-28-4819-2024,https://doi.org/10.5194/hess-28-4819-2024, 2024
Short summary
Assessing rainfall radar errors with an inverse stochastic modelling framework
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024,https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France at high resolution
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024,https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024,https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary

Cited articles

Bosilovich, M. G.: On the vertical distribution of local and remote sources of water for precipitation, Meteorol. Atmos. Phys., 80, 31–41, https://doi.org/10.1007/s007030200012, 2002. 
Brubaker, K. L., Entekhabi, D., and Eagleson, P. S.: Estimation of continental precipitation recycling, J. Climate, 6, 1077–1089, https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2, 1993. 
Burde, G. I. and Zangvil, A.: The estimation of regional precipitation recycling. Part I: review of recycling models, J. Climate, 14, 2497–2508, https://doi.org/10.1175/1520-0442(2001)014<2497:TEORPR>2.0.CO;2, 2001. 
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), available at: https://cds.climate.copernicus.eu/cdsapp#!/home, last access: 11 May 2020. 
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., and Bauer, P.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. 
Download
Short summary
Several models exist to track water through the atmosphere from its evaporation location to the next rain location. These models are typically driven by atmospheric wind and humidity data. Recently, a new version of these driving data sets has become available, with a higher spatial resolution of about 25 km. Here, we test the assumptions of these atmospheric moisture tracking models, given the high-resolution forcing data and find that the vertical mixing assumptions are the most important.