Articles | Volume 24, issue 4
https://doi.org/10.5194/hess-24-1831-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-1831-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface water and groundwater: unifying conceptualization and quantification of the two “water worlds”
Brian Berkowitz
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, Rehovot 7610001, Israel
Erwin Zehe
CORRESPONDING AUTHOR
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Related authors
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Brian Berkowitz
Hydrol. Earth Syst. Sci., 26, 2161–2180, https://doi.org/10.5194/hess-26-2161-2022, https://doi.org/10.5194/hess-26-2161-2022, 2022
Short summary
Short summary
Extensive efforts have focused on quantifying conservative chemical transport in geological formations. We assert that an explicit accounting of temporal information, under uncertainty, in addition to spatial information, is fundamental to an effective modeling formulation. We further assert that efforts to apply chemical transport equations at large length scales, based on measurements and model parameter values relevant to significantly smaller length scales, are an unattainable
holy grail.
Alexander Sternagel, Ralf Loritz, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 1615–1629, https://doi.org/10.5194/hess-26-1615-2022, https://doi.org/10.5194/hess-26-1615-2022, 2022
Short summary
Short summary
We present a (physically based) Lagrangian approach to simulate diffusive mixing processes on the pore scale beyond perfectly mixed conditions. Results show the feasibility of the approach for reproducing measured mixing times and concentrations of isotopes over pore sizes and that typical shapes of breakthrough curves (normally associated with non-uniform transport in heterogeneous soils) may also occur as a result of imperfect subscale mixing in a macroscopically homogeneous soil matrix.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Alexander Sternagel, Ralf Loritz, Julian Klaus, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 1483–1508, https://doi.org/10.5194/hess-25-1483-2021, https://doi.org/10.5194/hess-25-1483-2021, 2021
Short summary
Short summary
The key innovation of the study is a method to simulate reactive solute transport in the vadose zone within a Lagrangian framework. We extend the LAST-Model with a method to account for non-linear sorption and first-order degradation processes during unsaturated transport of reactive substances in the matrix and macropores. Model evaluations using bromide and pesticide data from irrigation experiments under different flow conditions on various timescales show the feasibility of the method.
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-259, https://doi.org/10.5194/essd-2024-259, 2024
Preprint under review for ESSD
Short summary
Short summary
Our study monitored groundwater in a Luxembourg forest over a year to understand water and chemical changes. We found seasonal variations in water chemistry, influenced by rainfall and soil interactions. This data helps predict environmental responses and manage water resources better. By measuring key parameters like pH and dissolved oxygen, our research provides valuable insights into groundwater behavior and serves as a resource for future environmental studies.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024, https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Short summary
We studied a tree–crop ecosystem consisting of a blackberry field and an alder windbreak. In the water-scarce region, irrigation provides sufficient water for plant growth. The windbreak lowers the irrigation amount by reducing wind speed and therefore water transport into the atmosphere. These ecosystems could provide sustainable use of water-scarce landscapes, and we studied the complex interactions by observing several aspects (e.g. soil, nutrients, carbon assimilation, water).
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023, https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183, https://doi.org/10.5194/hess-26-6163-2022, https://doi.org/10.5194/hess-26-6163-2022, 2022
Short summary
Short summary
We identified and analysed the major atmospheric components of rain-intense thunderstorms that can eventually lead to flash floods: high atmospheric moisture, sufficient latent instability, and weak thunderstorm cell motion. Between 1981 and 2020, atmospheric conditions became likelier to support strong thunderstorms. However, the occurrence of extreme rainfall events as well as their rainfall intensity remained mostly unchanged.
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022, https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
Brian Berkowitz
Hydrol. Earth Syst. Sci., 26, 2161–2180, https://doi.org/10.5194/hess-26-2161-2022, https://doi.org/10.5194/hess-26-2161-2022, 2022
Short summary
Short summary
Extensive efforts have focused on quantifying conservative chemical transport in geological formations. We assert that an explicit accounting of temporal information, under uncertainty, in addition to spatial information, is fundamental to an effective modeling formulation. We further assert that efforts to apply chemical transport equations at large length scales, based on measurements and model parameter values relevant to significantly smaller length scales, are an unattainable
holy grail.
Alexander Sternagel, Ralf Loritz, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 1615–1629, https://doi.org/10.5194/hess-26-1615-2022, https://doi.org/10.5194/hess-26-1615-2022, 2022
Short summary
Short summary
We present a (physically based) Lagrangian approach to simulate diffusive mixing processes on the pore scale beyond perfectly mixed conditions. Results show the feasibility of the approach for reproducing measured mixing times and concentrations of isotopes over pore sizes and that typical shapes of breakthrough curves (normally associated with non-uniform transport in heterogeneous soils) may also occur as a result of imperfect subscale mixing in a macroscopically homogeneous soil matrix.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Jan Bondy, Jan Wienhöfer, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-174, https://doi.org/10.5194/hess-2021-174, 2021
Manuscript not accepted for further review
Short summary
Short summary
The Budyko curve is a widely-used and simple framework to predict the mean water balance of river catchments. While many catchments are in close accordance with the Budyko curve, others show more or less significant deviations. Our study aims at better understanding the role of soil storage characteristics in the mean water balance and offsets from the Budyko curve. Soil storage proved to be a very sensitive property and potentially explains significant deviations from the curve.
Alexander Sternagel, Ralf Loritz, Julian Klaus, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 1483–1508, https://doi.org/10.5194/hess-25-1483-2021, https://doi.org/10.5194/hess-25-1483-2021, 2021
Short summary
Short summary
The key innovation of the study is a method to simulate reactive solute transport in the vadose zone within a Lagrangian framework. We extend the LAST-Model with a method to account for non-linear sorption and first-order degradation processes during unsaturated transport of reactive substances in the matrix and macropores. Model evaluations using bromide and pesticide data from irrigation experiments under different flow conditions on various timescales show the feasibility of the method.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-79, https://doi.org/10.5194/hess-2021-79, 2021
Manuscript not accepted for further review
Short summary
Short summary
In this study we ask the basic question why surface runoff forms drainage networks and confluences at all and how structural macro form and micro topography is a result of thermodynamic laws. We find that on a macro level hillslopes should tend from negative exponential towards exponential forms and that on a micro level the formation of rills goes hand in hand with drainage network formation of river basins. We hypothesize that we can learn more about erosion processes if we extend this theory.
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021, https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021, https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Short summary
This study investigates the role and value of distributed rainfall in the runoff generation of a mesoscale catchment. We compare the performance of different hydrological models at different periods and show that a distributed model driven by distributed rainfall yields improved performances only during certain periods. We then step beyond this finding and develop a spatially adaptive model that is capable of dynamically adjusting its spatial model structure in time.
Conrad Jackisch, Samuel Knoblauch, Theresa Blume, Erwin Zehe, and Sibylle K. Hassler
Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, https://doi.org/10.5194/bg-17-5787-2020, 2020
Short summary
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 4389–4411, https://doi.org/10.5194/hess-24-4389-2020, https://doi.org/10.5194/hess-24-4389-2020, 2020
Short summary
Short summary
In this paper we propose adaptive clustering as a new method for reducing the computational efforts of distributed modelling. It consists of identifying similar-acting model elements during the runtime, clustering them, running the model for just a few representatives per cluster, and mapping their results to the remaining model elements in the cluster. With the example of a hydrological model, we show that this saves considerable computation time, while largely maintaining the output quality.
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020, https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
Short summary
We could show that distributed soil moisture time series bear a considerable amount of information about dynamic changes in soil moisture. We developed a new method to describe spatial patterns and analyze their persistency. By combining uncertainty propagation with information theory, we were able to calculate the information content of spatial similarity with respect to measurement uncertainty. This does help to understand when and why the soil is drying in an organized manner.
Alexander Sternagel, Ralf Loritz, Wolfgang Wilcke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 4249–4267, https://doi.org/10.5194/hess-23-4249-2019, https://doi.org/10.5194/hess-23-4249-2019, 2019
Short summary
Short summary
We present our hydrological LAST-Model to simulate preferential soil water flow and tracer transport in macroporous soils. It relies on a Lagrangian perspective of the movement of discrete water particles carrying tracer masses through the subsoil and is hence an alternative approach to common models. Sensitivity analyses reveal the physical validity of the model concept and evaluation tests show that LAST can depict well observed tracer mass profiles with fingerprints of preferential flow.
Axel Kleidon, Erwin Zehe, and Ralf Loritz
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-52, https://doi.org/10.5194/esd-2019-52, 2019
Manuscript not accepted for further review
Short summary
Short summary
Many fluxes in Earth systems are not homogeneously distributed across space, but occur highly concentrated in structures, such as turbulent eddies, river networks, vascular networks of plants, or human-made infrastructures. Yet, the highly-organized nature of these fluxes is typically only described at a rudimentary level, if at all. We propose that it requires a novel approach to describe these structures that focuses on the work done to build and maintain these structures, and the feedbacks.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Martijn Westhoff, Axel Kleidon, Stan Schymanski, Benjamin Dewals, Femke Nijsse, Maik Renner, Henk Dijkstra, Hisashi Ozawa, Hubert Savenije, Han Dolman, Antoon Meesters, and Erwin Zehe
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-6, https://doi.org/10.5194/esd-2019-6, 2019
Publication in ESD not foreseen
Short summary
Short summary
Even models relying on physical laws have parameters that need to be measured or estimated. Thermodynamic optimality principles potentially offer a way to reduce the number of estimated parameters by stating that a system evolves to an optimum state. These principles have been applied successfully within the Earth system, but it is often unclear what to optimize and how. In this review paper we identify commonalities between different successful applications as well as some doubtful applications.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Mirko Mälicke, Sibylle K. Hassler, Markus Weiler, Theresa Blume, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-396, https://doi.org/10.5194/hess-2018-396, 2018
Manuscript not accepted for further review
Short summary
Short summary
In this study we use time dependent variograms to identify periods of organized soil moisture during drying. We could identify emerging spatial patterns which imply periods of terrestrial control on soil moisture organization. The coupling of time dependent variograms with density based clustering is a new approach to detect similarity in spatial patterns. The presented method is useful to describe states of organization and improve kriging workflows by extending their prerequisites.
Ralf Loritz, Hoshin Gupta, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Uwe Ehret, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, https://doi.org/10.5194/hess-22-3663-2018, 2018
Short summary
Short summary
In this study we explore the role of spatially distributed information on hydrological modeling. For that, we develop and test an approach which draws upon information theory and thermodynamic reasoning. We show that the proposed set of methods provide a powerful framework for understanding and diagnosing how and when process organization and functional similarity of hydrological systems emerge in time and, hence, when which landscape characteristic is important in a model application.
Conrad Jackisch and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3639–3662, https://doi.org/10.5194/hess-22-3639-2018, https://doi.org/10.5194/hess-22-3639-2018, 2018
Short summary
Short summary
We present a Lagrangian model for non-uniform soil water dynamics. It handles 2-D diffusion (based on a spatial random walk and implicit pore space redistribution) and 1-D advection in representative macropores (as film flow with dynamic interaction with the soil matrix). The interplay between the domains is calculated based on an energy-balance approach which does not require any additional parameterisation. Model tests give insight into the evolution of the non-uniform infiltration patterns.
Simon Höllering, Jan Wienhöfer, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 203–220, https://doi.org/10.5194/hess-22-203-2018, https://doi.org/10.5194/hess-22-203-2018, 2018
Short summary
Short summary
Hydrological fingerprints are introduced as response targets for sensitivity analysis and combined with a conventional approach using streamflow data for a temporally resolved sensitivity analysis. The joint benefit of both approaches is presented for several headwater catchments. The approach allows discerning a clarified pattern for parameter influences pinpointed to diverse response characteristics and detecting even slight regional differences.
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Short summary
This study investigates the temporal dynamics and response velocities of lateral preferential flow at the hillslope. The results are compared to catchment response behavior to infer the large-scale implications of the observed processes. A large portion of mobile water flows through preferential flow paths in the structured soils, causing an immediate discharge response. The study presents a methodological approach to cover the spatial and temporal domain of these highly heterogeneous processes.
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary
Short summary
Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. We present its in situ exploration through local measurements and irrigation experiments. Special emphasis is given to a coherent combination of hydrological and geophysical methods. The study highlights that form and function operate as conjugated pairs. Dynamic imaging through time-lapse GPR was key to observing both and to identifying hydrologically relevant structures.
Simon Paul Seibert, Conrad Jackisch, Uwe Ehret, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 2817–2841, https://doi.org/10.5194/hess-21-2817-2017, https://doi.org/10.5194/hess-21-2817-2017, 2017
Short summary
Short summary
Runoff production mechanisms and their corresponding physiographic controls continue to pose major research challenges in catchment hydrology. We propose innovative data-driven diagnostic signatures for overcoming the prevailing status quo in inter-comparison studies. Specifically, we present dimensionless double mass curves which allow us to infer information on runoff generation at the seasonal and annual timescales. The method is based on commonly available data.
Ralf Loritz, Sibylle K. Hassler, Conrad Jackisch, Niklas Allroggen, Loes van Schaik, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 1225–1249, https://doi.org/10.5194/hess-21-1225-2017, https://doi.org/10.5194/hess-21-1225-2017, 2017
Short summary
Short summary
In this study we examine whether we can step beyond the qualitative character of perceptual models by using them as a blueprint for setting up representative hillslope models. Thereby we test the hypothesis of whether a single hillslope can represent the functioning of an entire lower mesoscale catchment in a spatially aggregated way.
Simon Paul Seibert, Uwe Ehret, and Erwin Zehe
Hydrol. Earth Syst. Sci., 20, 3745–3763, https://doi.org/10.5194/hess-20-3745-2016, https://doi.org/10.5194/hess-20-3745-2016, 2016
Short summary
Short summary
While the assessment of "vertical" (magnitude) errors of streamflow simulations is standard practice, "horizontal" (timing) errors are rarely considered. To assess their role, we propose a method to quantify both errors simultaneously which closely resembles visual hydrograph comparison. Our results reveal differences in time–magnitude error statistics for different flow conditions. The proposed method thus offers novel perspectives for model diagnostics and evaluation.
Erwin Zehe and Conrad Jackisch
Hydrol. Earth Syst. Sci., 20, 3511–3526, https://doi.org/10.5194/hess-20-3511-2016, https://doi.org/10.5194/hess-20-3511-2016, 2016
Simon Höllering, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-249, https://doi.org/10.5194/hess-2016-249, 2016
Preprint withdrawn
M. Westhoff, E. Zehe, P. Archambeau, and B. Dewals
Hydrol. Earth Syst. Sci., 20, 479–486, https://doi.org/10.5194/hess-20-479-2016, https://doi.org/10.5194/hess-20-479-2016, 2016
Short summary
Short summary
We derived mathematical formulations of relations between relative wetness and gradients driving run-off and evaporation for a one-box model such that, when conductances are optimized with the maximum power principle, the model leads exactly to a point on the Budyko curve.
With dry spells and dynamics in actual evaporation added, the model compared well with catchment observations without calibrating any parameter.
The maximum-power principle may thus be used to derive the Budyko curve.
U. Scherer and E. Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-3527-2015, https://doi.org/10.5194/hessd-12-3527-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
This paper presents the development, parameterization and verification of a process-based soil erosion model for the catchment scale, which balances necessary complexity with greatest possible simplicity. We used the hydrologic model CATFLOW as a platform and further developed it to CATFLOW-SED by integrating approaches to simulate soil erosion. The model was validated on a hierarchy of scales which is characteristic for the governing processes.
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
J. Wienhöfer and E. Zehe
Hydrol. Earth Syst. Sci., 18, 121–138, https://doi.org/10.5194/hess-18-121-2014, https://doi.org/10.5194/hess-18-121-2014, 2014
M. Liu, A. Bárdossy, and E. Zehe
Hydrol. Earth Syst. Sci., 17, 4685–4699, https://doi.org/10.5194/hess-17-4685-2013, https://doi.org/10.5194/hess-17-4685-2013, 2013
E. Zehe, U. Ehret, T. Blume, A. Kleidon, U. Scherer, and M. Westhoff
Hydrol. Earth Syst. Sci., 17, 4297–4322, https://doi.org/10.5194/hess-17-4297-2013, https://doi.org/10.5194/hess-17-4297-2013, 2013
M. C. Westhoff and E. Zehe
Hydrol. Earth Syst. Sci., 17, 3141–3157, https://doi.org/10.5194/hess-17-3141-2013, https://doi.org/10.5194/hess-17-3141-2013, 2013
A. Kleidon, E. Zehe, U. Ehret, and U. Scherer
Hydrol. Earth Syst. Sci., 17, 225–251, https://doi.org/10.5194/hess-17-225-2013, https://doi.org/10.5194/hess-17-225-2013, 2013
J. Wienhöfer, K. Germer, F. Lindenmaier, A. Färber, and E. Zehe
Hydrol. Earth Syst. Sci., 13, 1145–1161, https://doi.org/10.5194/hess-13-1145-2009, https://doi.org/10.5194/hess-13-1145-2009, 2009
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
A network approach for multiscale catchment classification using traits
Multi-model approach in a variable spatial framework for streamflow simulation
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Toward interpretable LSTM-based modeling of hydrological systems
Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model
What controls the tail behaviour of flood series: rainfall or runoff generation?
Learning Landscape Features from Streamflow with Autoencoders
Seasonal prediction of end-of-dry-season watershed behavior in a highly interconnected alluvial watershed in northern California
Glaciers determine the sensitivity of hydrological processes to perturbed climate in a large mountainous basin on the Tibetan Plateau
Leveraging gauge networks and strategic discharge measurements to aid the development of continuous streamflow records
On the need for physical constraints in deep learning rainfall–runoff projections under climate change: a sensitivity analysis to warming and shifts in potential evapotranspiration
Evaluation of hydrological models on small mountainous catchments: impact of the meteorological forcings
Projecting sediment export from two highly glacierized alpine catchments under climate change: exploring non-parametric regression as an analysis tool
Simulation-Based Inference for Parameter Estimation of Complex Watershed Simulators
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+
On understanding mountainous carbonate basins of the Mediterranean using parsimonious modeling solutions
Comparing quantile regression forest and mixture density long short-term memory models for probabilistic post-processing of satellite precipitation-driven streamflow simulations
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024, https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary
Short summary
Mountain snowpack has been declining and more precipitation falls as rain than snow. Using stable isotopes, we found flows and flow duration in Yosemite Creek are most sensitive to climate warming due to strong evaporation of waterfalls, potentially lengthening the dry-up period of waterfalls in summer and negatively affecting tourism. Groundwater recharge in Yosemite Valley is primarily from the upper snow–rain transition (2000–2500 m) and very vulnerable to a reduction in the snow–rain ratio.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024, https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
Short summary
Input data, model and calibration strategy can affect the accuracy of flood event simulation and prediction. Satellite-based precipitation with different spatiotemporal resolutions is an important input source. Data-driven models are sometimes proven to be more accurate than hydrological models. Event-based calibration and conventional strategy are two options adopted for flood simulation. This study targets the three concerns for accurate flood event simulation and prediction.
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024, https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Short summary
We present a new method based on network science for unsupervised classification of large datasets and apply it to classify 9067 US catchments and 274 biophysical traits at multiple scales. We find that our trait-based approach produces catchment classes with distinct streamflow behavior and that spatial patterns emerge amongst pristine and human-impacted catchments. This method can be widely used beyond hydrology to identify patterns, reduce trait redundancy, and select representative sites.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024, https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary
Short summary
Hydrologists strive to “Be right for the right reasons” when modeling the hydrologic cycle; however, the datasets available to validate hydrological models are sparse, and in many cases, they comprise streamflow observations at the outlets of large catchments. In this work, we show that matching streamflow observations at the outlet of a large basin is not a reliable indicator of a correct description of the small-scale runoff processes.
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024, https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Short summary
This study examines the relationship between air and river temperatures in Washington's Snoqualmie and Wenatchee basins. We used classification and regression approaches to show that the sensitivity of river temperature to air temperature is variable across basins and controlled largely by geology and snowmelt. Findings can be used to inform strategies for river basin restoration and conservation, such as identifying climate-insensitive areas of the basin that should be preserved and protected.
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024, https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
Short summary
To determine if deep learning models are in general a viable alternative to traditional hydrologic modelling techniques in Australian catchments, a comparison of river–runoff predictions is made between traditional conceptual models and deep learning models in almost 500 catchments spread over the continent. It is found that the deep learning models match or outperform the traditional models in over two-thirds of the river catchments, indicating feasibility in a wide variety of conditions.
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024, https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Short summary
Calibrating hydrological models with multi-objective functions enhances model robustness. By using spatially distributed snow information in the calibration, the model performance can be enhanced without compromising the outputs. In this study the HYDROTEL model was calibrated in seven different experiments, incorporating the SPAEF (spatial efficiency) metric alongside Nash–Sutcliffe efficiency (NSE) and root-mean-square error (RMSE), with the aim of identifying the optimal calibration strategy.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024, https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-47, https://doi.org/10.5194/hess-2024-47, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature needed for challenging cases, associated with aridity and intermittent flow. Baseflow index, aridity, and soil/vegetation attributes strongly correlate with learned features, indicating their importance for streamflow prediction.
Claire Kouba and Thomas Harter
Hydrol. Earth Syst. Sci., 28, 691–718, https://doi.org/10.5194/hess-28-691-2024, https://doi.org/10.5194/hess-28-691-2024, 2024
Short summary
Short summary
In some watersheds, the severity of the dry season has a large impact on aquatic ecosystems. In this study, we design a way to predict, 5–6 months in advance, how severe the dry season will be in a rural watershed in northern California. This early warning can support seasonal adaptive management. To predict these two values, we assess data about snow, rain, groundwater, and river flows. We find that maximum snowpack and total wet season rainfall best predict dry season severity.
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024, https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary
Short summary
This paper utilized a tracer-aided model validated by multiple datasets in a large mountainous basin on the Tibetan Plateau to analyze hydrological sensitivity to climate change. The spatial pattern of the local hydrological sensitivities and the influence factors were analyzed in particular. The main finding of this paper is that the local hydrological sensitivity in mountainous basins is determined by the relationship between the glacier area ratio and the mean annual precipitation.
Michael J. Vlah, Matthew R. V. Ross, Spencer Rhea, and Emily S. Bernhardt
Hydrol. Earth Syst. Sci., 28, 545–573, https://doi.org/10.5194/hess-28-545-2024, https://doi.org/10.5194/hess-28-545-2024, 2024
Short summary
Short summary
Virtual stream gauging enables continuous streamflow estimation where a gauge might be difficult or impractical to install. We reconstructed flow at 27 gauges of the National Ecological Observatory Network (NEON), informing ~199 site-months of missing data in the official record and improving that accuracy of official estimates at 11 sites. This study shows that machine learning, but also routine regression methods, can be used to supplement existing gauge networks and reduce monitoring costs.
Sungwook Wi and Scott Steinschneider
Hydrol. Earth Syst. Sci., 28, 479–503, https://doi.org/10.5194/hess-28-479-2024, https://doi.org/10.5194/hess-28-479-2024, 2024
Short summary
Short summary
We investigate whether deep learning (DL) models can produce physically plausible streamflow projections under climate change. We address this question by focusing on modeled responses to increases in temperature and potential evapotranspiration and by employing three DL and three process-based hydrological models. The results suggest that physical constraints regarding model architecture and input are necessary to promote the physical realism of DL hydrological projections under climate change.
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, David Penot, Francois Colleoni, Alexandre Mas, Pierre-André Garambois, and Olivier Laurantin
Hydrol. Earth Syst. Sci., 28, 261–281, https://doi.org/10.5194/hess-28-261-2024, https://doi.org/10.5194/hess-28-261-2024, 2024
Short summary
Short summary
Hydrological modelling of mountainous catchments is challenging for many reasons, the main one being the temporal and spatial representation of precipitation forcings. This study presents an evaluation of the hydrological modelling of 55 small mountainous catchments of the northern French Alps, focusing on the influence of the type of precipitation reanalyses used as inputs. These evaluations emphasize the added value of radar measurements, in particular for the reproduction of flood events.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 139–161, https://doi.org/10.5194/hess-28-139-2024, https://doi.org/10.5194/hess-28-139-2024, 2024
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable as many interacting processes are involved, and appropriate physical models are lacking. We present the first study, to our knowledge, exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that peak sediment may have already passed.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-264, https://doi.org/10.5194/hess-2023-264, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Large-scale hydrologic a needed tool to explore complex watershed processes and how they may evolve under a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration with a set of experiments in the Upper Colorado River Basin.
Laia Estrada, Xavier Garcia, Joan Saló, Rafael Marcé, Antoni Munné, and Vicenç Acuña
EGUsphere, https://doi.org/10.5194/egusphere-2023-3007, https://doi.org/10.5194/egusphere-2023-3007, 2024
Short summary
Short summary
Hydrological modelling is a powerful tool to support decision-making. We assessed spatio-temporal patterns and trends of streamflow for 2001–2022 with a hydrological modelling integrating stakeholder expert knowledge on management operations. The results provide insight into how climate change and anthropogenic pressures affect water resources availability in regions vulnerable to water scarcity, thus raising the need for sustainable management practices and integrated hydrological modelling.
Salam A. Abbas, Ryan T. Bailey, Jeremy T. White, Jeffrey G. Arnold, Michael J. White, Natalja Čerkasova, and Jungang Gao
Hydrol. Earth Syst. Sci., 28, 21–48, https://doi.org/10.5194/hess-28-21-2024, https://doi.org/10.5194/hess-28-21-2024, 2024
Short summary
Short summary
Research highlights.
1. Implemented groundwater module (gwflow) into SWAT+ for four watersheds with different unique hydrologic features across the United States.
2. Presented methods for sensitivity analysis, uncertainty analysis and parameter estimation for coupled models.
3. Sensitivity analysis for streamflow and groundwater head conducted using Morris method.
4. Uncertainty analysis and parameter estimation performed using an iterative ensemble smoother within the PEST framework.
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 27, 4485–4503, https://doi.org/10.5194/hess-27-4485-2023, https://doi.org/10.5194/hess-27-4485-2023, 2023
Short summary
Short summary
We analyzed the water budget of nested karst catchments using simple methods and modeling. By utilizing the available data on precipitation and discharge, we were able to determine the response lag-time by adopting new techniques. Additionally, we modeled snow cover dynamics and evapotranspiration with the use of Earth observations, providing a concise overview of the water budget for the basin and its subbasins. We have made the data, models, and workflows accessible for further study.
Yuhang Zhang, Aizhong Ye, Bita Analui, Phu Nguyen, Soroosh Sorooshian, Kuolin Hsu, and Yuxuan Wang
Hydrol. Earth Syst. Sci., 27, 4529–4550, https://doi.org/10.5194/hess-27-4529-2023, https://doi.org/10.5194/hess-27-4529-2023, 2023
Short summary
Short summary
Our study shows that while the quantile regression forest (QRF) and countable mixtures of asymmetric Laplacians long short-term memory (CMAL-LSTM) models demonstrate similar proficiency in multipoint probabilistic predictions, QRF excels in smaller watersheds and CMAL-LSTM in larger ones. CMAL-LSTM performs better in single-point deterministic predictions, whereas QRF model is more efficient overall.
Cited articles
Abramowitz, M. and Stegun, I.: Handbook of Mathematical Functions, Dover,
Mineola, NY, USA, 1970.
Aronofsky, J. S. and Heller, J. P.: A diffusion model to explain mixing of
flowing miscible fluids in porous media, T. Am. I. Min. Met. Eng., 210, 345–349, 1957.
Bardossy, A.: Copula-based geostatistical models for groundwater quality
parameters, Water Resour. Res., 42, W11416, https://doi.org/10.1029/2005wr004754, 2006.
Bárdossy, A.: Calibration of hydrological model parameters for ungauged catchments, Hydrol. Earth Syst. Sci., 11, 703–710, https://doi.org/10.5194/hess-11-703-2007, 2007.
Bárdossy, A. and Singh, S. K.: Robust estimation of hydrological model parameters, Hydrol. Earth Syst. Sci., 12, 1273–1283, https://doi.org/10.5194/hess-12-1273-2008, 2008.
Bejan, A., Lorente, S., and Lee, J.: Unifying constructal theory of tree
roots, canopies and forests, J. Theor. Biol., 254, 529–540,
https://doi.org/10.1016/j.jtbi.2008.06.026, 2008.
Benettin, P., Volkmann, T. H. M., von Freyberg, J., Frentress, J., Penna, D., Dawson, T. E., and Kirchner, J. W.: Effects of climatic seasonality on the isotopic composition of evaporating soil waters, Hydrol. Earth Syst. Sci., 22, 2881–2890, https://doi.org/10.5194/hess-22-2881-2018, 2018.
Ben-Zvi, R., Jiang, S., Scher, H., and Berkowitz, B.: Finite-Element Method
solution of non-Fickian transport in porous media: The CTRW-FEM package,
Groundwater, 57, 479–484, https://doi.org/10.1111/gwat.12813, 2019.
Berkowitz, B. and Scher, H.: Exploring the nature of non-Fickian transport
in laboratory experiments, Adv. Water Resour., 32, 750–755,
https://doi.org/10.1016/j.advwatres.2008.05.004, 2009.
Berkowitz, B., Cortis, A., Dentz, M., and Scher, H.: Modeling non-Fickian
transport in geological formations as a continuous time random walk, Rev.
Geophys., 44, RG2003, https://doi.org/10.1029/2005RG000178, 2006.
Berkowitz, B., Dror, I., Hansen, S. K., and Scher, H.: Measurements and
models of reactive transport in geological media, Rev. Geophys., 54,
930–986, https://doi.org/10.1002/2016RG000524, 2016.
Beven, K. and Binley, A.: The future of distributed models: Model
calibration and uncertainty prediction, Hydrol. Process., 6, 265–277,
https://doi.org/10.1002/hyp.3360060305, 1992.
Beven, K. and Germann, P.: Macropores and water flow in soils, Water Resour.
Res., 18, 1311–1325, https://doi.org/10.1029/WR018i005p01311, 1982.
Beven, K. and Germann, P.: Macropores and water flow in soils revisited,
Water Resour. Res., 49, 3071–3092, https://doi.org/10.1002/wrcr.20156, 2013.
Bianchi, M., Zheng, C., Wilson, C., Tick, G. R., Liu, G., and Gorelick, S.
M.: Spatial connectivity in a highly heterogeneous aquifer: From cores to
preferential flow paths, Water Resour. Res., 47, W05524,
https://doi.org/10.1029/2009WR008966, 2011.
Binet, F., Kersante, A., Munier-Lamy, C., Le Bayon, R. C., Belgy, M. J., and
Shipitalo, M. J.: Lumbricid macrofauna alter atrazine mineralization and
sorption in a silt loam soil, Soil Biol. Biochem., 38, 1255–1263,
https://doi.org/10.1016/j.soilbio.2005.09.018, 2006.
Bishop, J. M., Callaghan, M. V., Cey, E. E., and Bentley, L. R.: Measurement
and simulation of subsurface tracer migration to tile drains in low
permeability, macroporous soil, Water Resour. Res., 51, 3956–3981,
https://doi.org/10.1002/2014WR016310, 2015.
Blume, T., Zehe, E., and Bronstert, A.: Investigation of runoff generation
in a pristine, poorly gauged catchment in the Chilean Andes ii: Qualitative
and quantitative use of tracers at three spatial scales, Hydrol. Process., 22,
3676–3688, https://doi.org/10.1002/hyp.6970, 2008.
Blume, T., Zehe, E., and Bronstert, A.: Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes, Hydrol. Earth Syst. Sci., 13, 1215–1233, https://doi.org/10.5194/hess-13-1215-2009, 2009.
Boano, F., Packman, A. I., Cortis, A., Revelli, R., and Ridolfi, L.: A
continuous time random walk approach to the stream transport of solutes,
Water Resour. Res., 43, W10425, https://doi.org/10.1029/2007WR006062, 2007.
Bodin, J.: From analytical solutions of solute transport equations to
multidimensional time-domain random walk (TDRW) algorithms, Water Resour.
Res., 51, 1860–1871, https://doi.org/10.1002/2014WR015910, 2015.
Bolduan, R. and Zehe, E.: Degradation of isoproturon in earthworm macropores
and subsoil matrix – a field study, J. Plant Nutr. Soil Sc., 169,
87–94, https://doi.org/10.1002/jpln.200521754, 2006.
Bonell, M., Pearce, A. J., and Stewart, M. K.: The identification of
runoff-production mechanisms using environmental isotopes in a tussock
grassland catchment, eastern otago, new-zealand, Hydrol. Process., 4, 15–34,
https://doi.org/10.1002/hyp.3360040103, 1990.
Botter, G., Bertuzzo, E., and Rinaldo, A.: Transport in the hydrologic
response: Travel time distributions, soil moisture dynamics, and the old
water paradox, Water Resour. Res., 46, W03514, https://doi.org/10.1029/2009WR008371,
2010.
Botter, G., Bertuzzo, E., and Rinaldo, A.: Catchment residence and travel time
distributions: The master equation, Geophys. Res. Lett., 38, L11403,
https://doi.org/10.1029/2011GL047666, 2011.
Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media, Hydrology Paper, 3, 22–27, 1964.
Brooks, J. R., Barnard, H. R., Coulombe, R., and McDonnell, J. J.: Ecohydrologic separation of water between trees and streams in a Mediterranean climate, Nat. Geosci., 3, 100–104, https://doi.org/10.1038/ngeo722, 2010.
Bundt, M., Widmer, F., Pesaro, M., Zeyer, J., and Blaser, P.: Preferential
flow paths: Biological “hot spots” in soils, Soil Biol. Biochem., 33,
729–738, https://doi.org/10.1016/S0038-0717(00)00218-2, 2001.
Camporese, M., Paniconi, C., Putti, M., and Orlandini, S.:
Surface-subsurface flow modeling with path-based runoff routing, boundary
condition-based coupling, and assimilation of multisource observation data,
Water Resour. Res., 46, W0251210, https://doi.org/10.1029/2008WR007536, 2010.
Chabrier, G.: Galactic stellar and substellar initial mass function, Publ.
Astron. Soc. Pac., 115, 763–795, https://doi.org/10.1086/376392, 2003.
Collins, R., Jenkins, A., and Harrow, M. A.: The contribution of old and new
water to a storm hydrograph determined by tracer addition to a whole
catchment, Hydrol. Processes, 14, 701–711,
https://doi.org/10.1002/(SICI)1099-1085(200003)14:4<701::AID-HYP967>3.0.CO;2-2, 2000.
Cortis, A. and Berkowitz, B.: Computing “anomalous” contaminant transport in
porous media: The CTRW MATLAB toolbox, Ground Water, 43, 947–950,
https://doi.org/10.1111/j.1745-6584.2005.00045.x, 2005.
Davies, J. and Beven, K.: Comparison of a multiple interacting pathways
model with a classical kinematic wave subsurface flow solution, Hydrolog. Sci.
J., 57, 203–216, https://doi.org/10.1080/02626667.2011.645476, 2012.
Davies, J., Beven, K., Rodhe, A., Nyberg, L., and Bishop, K.: Integrated
modeling of flow and residence times at the catchment scale with multiple
interacting pathways, Water Resour. Res., 49, 4738–4750,
https://doi.org/10.1002/wrcr.20377, 2013.
Dentz, M., and Berkowitz, B.: Transport behavior of a passive solute in
continuous time random walks and multirate mass transfer, Water Resour.
Res., 39, 1111, https://doi.org/10.1029/2001WR001163, 2003.
Dentz, M., Cortis, A., Scher, H., and Berkowitz, B.: Time behavior of solute
transport in heterogeneous media: Transition from anomalous to normal
transport, Adv. Water Resour., 27, 155–173,
https://doi.org/10.1016/j.advwatres.2003.11.002, 2004.
Dentz, M., Scher, H., Holder, D., and Berkowitz, B.: Transport behaviour of
coupled continuous-time random walks, Phys. Rev. E, 78, 41110,
https://doi.org/10.1103/PhysRevE.78.041110, 2008.
Dooge, J. C. I.: Looking for hydrological laws, Water Resour. Res., 22,
46S–58S, https://doi.org/10.1029/WR022i09Sp0046S, 1986.
Duan, Q. Y., Sorooshian, S., and Gupta, H.V.: Effective and efficient global
optimization for conceptual rainfall-runoff models, Water Resour. Res., 28,
1015–1031, https://doi.org/10.1029/91WR02985, 1992.
Ebel, B. A. and Loague, K.: Physics-based hydrologic-response simulation:
Seeing through the fog of equifinality, Hydrol. Process., 20, 2887–2900,
https://doi.org/10.1002/hyp.6388, 2006.
Edery, Y., Guadagnini, A., Scher, H., and Berkowitz, B.: Origins of
anomalous transport in disordered media: Structural and dynamic
controls, Water Resour. Res., 50, 1490–1505, https://doi.org/10.1002/2013WR015111, 2014.
Everett, M. E.: Near-Surface Applied Geophysics, Cambridge University Press,
Cambridge, UK, 2013.
Ewen, J.: “Samp” model for water and solute movement in unsaturated porous
media involving thermodynamic subsystems and moving packets 1. Theory, J.
Hydrol., 182, 175–194, https://doi.org/10.1016/0022-1694(95)02925-7, 1996a.
Ewen, J.: “Samp” model for water and solute movement in unsaturated porous
media involving thermodynamic subsystems and moving packets 2. Design and
application, J. Hydrol., 182, 195–207, https://doi.org/10.1016/0022-1694(95)02926-5,
1996b.
Faulkner, H.: Connectivity as a crucial determinant of badland morphology
and evolution, Geomorphology, 100, 91–103,
https://doi.org/10.1016/j.geomorph.2007.04.039, 2008.
Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister, L.: A comparison
of alternative multiobjective calibration strategies for hydrological
modelling, Water Resour. Res., 43, W03434, https://doi.org/10.1029/2006WR005098, 2007.
Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible
approach for conceptual hydrological modeling: 1. Motivation and theoretical
development, Water Resour. Res., 47, W11510, https://doi.org/10.1029/2010wr010174, 2011.
Fenicia, F., Kavetski, D., Savenije, H. H. G., Clark, M. P., Schoups, G.,
Pfister, L., and Freer, J.: Catchment properties, function, and conceptual
model representation: Is there a correspondence?, Hydrol. Process., 28,
2451–2467, https://doi.org/10.1002/hyp.9726, 2014.
Flügel, W. A.: Delineating hydrological response units by geographical
information system analyses for regional hydrological modelling using
PRMS/MMS in the drainage basin of the River Bröl, Germany, Hydrol.
Process., 9, 423–436, https://doi.org/10.1002/hyp.3360090313, 1995.
Flury, M.: Experimental evidence of transport of pesticides through field
soils – a review, J. Environ. Qual., 25, 25–45,
https://doi.org/10.2134/jeq1996.00472425002500010005x, 1996.
Flury, M., Flühler, H., Leuenberger, J., and Jury, W. A.: Susceptibility
of soils to preferential flow of water: A field study, Water Resour. Res.,
30, 1945–1954, https://doi.org/10.1029/94WR00871, 1994.
Flury, M., Leuenberger, J., Studer, B., and Flühler, H.: Transport of
anions and herbicides in a loamy and a sandy soil, Water Resour. Res., 31,
823–835, https://doi.org/10.1029/94WR02852, 1995.
Freeze, R. A. and Harlan, R. L.: Blueprint for a physically-based, digitally
simulated hydrologic response model, J. Hydrol., 9, 237–258,
https://doi.org/10.1016/0022-1694(69)90020-1, 1969.
Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., and Savenije, H. H. G.: Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China, Hydrol. Earth Syst. Sci., 18, 1895–1915, https://doi.org/10.5194/hess-18-1895-2014, 2014.
Germann, P.: Preferential flow: Stokes approach to infiltration and
drainage, Geographica Bernensia, G 88, 199 pp., https://doi.org/10.4480/GB2018.G88, 2018.
Gharari, S., Hrachowitz, M., Fenicia, F., and Savenije, H. H. G.: Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment, Hydrol. Earth Syst. Sci., 15, 3275–3291, https://doi.org/10.5194/hess-15-3275-2011, 2011.
Goldstein, H.: Classical Mechanics, Pearson Education Limited, Harlow, UK,
2013.
Gooseff, M. N., Wondzell, S. M., Haggerty, R., and Anderson, J.: Comparing
transient storage modeling and residence time distribution (RTD) analysis in
geomorphically varied reaches in the Lookout Creek basin, Oregon, USA, Adv.
Water Resour., 26, 925–937, https://doi.org/10.1016/S0309-1708(03)00105-2, 2003.
Gouet-Kaplan, M. and Berkowitz, B.: Measurements of interactions between
resident and infiltrating water in a lattice micromodel, Vadose Zone J., 10,
624–633, https://doi.org/10.2136/vzj2010.0103, 2011.
Grayson, R. B., Moore, I. D., and McMahon, T. A.: Physically based hydrologic
modeling: 2. Is the concept realistic?. Water Resour. Res., 28,
2659–2666, https://doi.org/10.1029/92WR01259, 1992.
Gupta, H. V., Clark, M. P., Vrugt, J. A., Abramowitz, G., and Ye, M.: Towards
a comprehensive assessment of model structural adequacy, Water Resour. Res.,
48, 1–16, https://doi.org/10.1029/2011WR011044, 2012.
Haggerty, R. and Gorelick S. M.: Multiple rate mass transfer for modeling
diffusion and surface reactions in media with pore-scale heterogeneity,
Water Resour. Res., 31, 2383–2400, https://doi.org/10.1029/95WR10583, 1995.
Haggerty, R., Wondzell, S. M., and Johnson, M. A.: Power-law residence time
distribution in the hyporheic zone of a 2nd-order mountain stream, Geophys.
Res. Lett., 29, 18-1–18-4, https://doi.org/10.1029/2002GL014743, 2002.
Haken, H.: Synergetics: An introduction; nonequilibrium phase transitions
and self-organization in physics, chemistry and biology, Springer Series in
Synergetics, Springer Berlin, Germany, 355 pp., 1983.
Harman, C. J.: Time-variable transit time distributions and transport:
Theory and application to storage-dependent transport of chloride in a
watershed, Water Resour. Res., 51, 1–30, https://doi.org/10.1002/2014wr015707, 2015.
He, Y., Bárdossy, A., and Zehe, E.: A review of regionalisation for continuous streamflow simulation, Hydrol. Earth Syst. Sci., 15, 3539–3553, https://doi.org/10.5194/hess-15-3539-2011, 2011a.
He, Y., Bardossy, A., and Zehe, E.: A catchment classification scheme using
local variance reduction method, J. Hydrol., 411, 140–154,
https://doi.org/10.1016/j.jhydrol.2011.09.042, 2011b.
Hoffman, F., Ronen, D., and Pearl, Z.: Evaluation of flow characteristics of a
sand column using magnetic resonance imaging, J. Contam. Hydrol., 22,
95–107, https://doi.org/10.1016/0169-7722(95)00079-8, 1996.
Hopp, L. and McDonnell, J. J.: Connectivity at the hillslope scale:
Identifying interactions between storm size, bedrock permeability, slope
angle and soil depth, J. Hydrol., 376, 378–391,
https://doi.org/10.1016/j.jhydrol.2009.07.047, 2009.
Howard, A. D.: Theoretical model of optimal drainage networks, Water Resour.
Res., 26, 2107–2117, https://doi.org/10.1029/WR026i009p02107, 1990.
Hrachowitz, M. and Clark, M. P.: HESS Opinions: The complementary merits of competing modelling philosophies in hydrology, Hydrol. Earth Syst. Sci., 21, 3953–3973, https://doi.org/10.5194/hess-21-3953-2017, 2017.
Hrachowitz, M., Soulsby, C., Tetzlaff, D., Malcolm, I. A., and Schoups, G.:
Gamma distribution models for transit time estimation in catchments:
Physical interpretation of parameters and implications for time-variant
transit time assessment, Water Resour. Res., 46, W10536,
https://doi.org/10.1029/2010WR009148, 2010.
Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D., and Soulsby, C.: What can flux tracking teach us about water age distribution patterns and their temporal dynamics?, Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, 2013.
Hrachowitz, M., Fovet, O., Ruiz, L., and Savenije, H. H.: Transit time
distributions, legacy contamination and variability in biogeochemical 1/f
scaling: how are hydrological response dynamics linked to water quality at
the catchment scale?, Hydrol. Process., 29, 5241–5256, 2015.
Hrachowitz, M., Benettin, P., van Breukelen, B. M., Fovet, O., Howden, N. J.
K., Ruiz, L., van der Velde, Y., and Wade, A. J.: Transit times – the link
between hydrology and water quality at the catchment scale, Wiley
Interdisciplinary Reviews – Water, 3, 629–657, https://doi.org/10.1002/wat2.1155, 2016.
Hundecha, Y. and Bardossy, A.: Modeling of the effect of land use changes on
the runoff generation of a river basin through parameter regionalization of
a watershed model, J. Hydrol., 292, 281–295,
https://doi.org/10.1016/j.jhydrol.2004.01.002, 2004.
Jackisch, C.: Linking structure and functioning of hydrological systems, PhD Thesis, Karlsruhe Institute of Technology, 171 pp., https://doi.org/10.5445/IR/1000051494, 2015.
Jackisch, C. and Zehe, E.: Ecohydrological particle model based on representative domains, Hydrol. Earth Syst. Sci., 22, 3639–3662, https://doi.org/10.5194/hess-22-3639-2018, 2018.
Jury, W. A. and Sposito, G.: A transfer function model of solute transport through soil: 1. Fundamental concepts, Water Resour. Res., 22, 243–247, 1986.
Kapetas, L., Dror, I., and Berkowitz, B.: Evidence of preferential path
formation and path memory effect during successive infiltration and drainage
cycles in uniform sand columns, J. Contam. Hydrol., 165, 1–10,
https://doi.org/10.1016/j.jconhyd.2014.06.016, 2014.
Kirchner, J. W.: A double paradox in catchment hydrology and geochemistry,
Hydrol. Process., 17, 871–874, https://doi.org/10.1002/hyp.5108, 2003.
Kirchner, J. W.: Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments, Hydrol. Earth Syst. Sci., 20, 279–297, https://doi.org/10.5194/hess-20-279-2016, 2016.
Kirchner, J. W., Feng, X., and Neal, C.: Fractal stream chemistry and its
implications for contaminant transport in catchments, Nature, 403, 524–527,
https://doi.org/10.1038/35000537, 2000.
Klaus, J. and Zehe, E.: Modelling rapid flow response of a tile drained
field site using a 2D-physically based model: Assessment of “equifinal”
model setups, Hydrol. Process., 24, 1595–1609, https://doi.org/10.1002/hyp.7687, 2010.
Klaus, J. and Zehe, E.: A novel explicit approach to model bromide and pesticide transport in connected soil structures, Hydrol. Earth Syst. Sci., 15, 2127–2144, https://doi.org/10.5194/hess-15-2127-2011, 2011.
Klaus, J., Zehe, E., Elsner, M., Külls, C., and McDonnell, J. J.: Macropore flow of old water revisited: experimental insights from a tile-drained hillslope, Hydrol. Earth Syst. Sci., 17, 103–118, https://doi.org/10.5194/hess-17-103-2013, 2013.
Klaus, J., Zehe, E., Elsner, M., Palm, J., Schneider, D., Schroeder, B.,
Steinbeiss, S., van Schaik, L., and West, S.: Controls of event-based
pesticide leaching in natural soils: A systematic study based on replicated
field scale irrigation experiments, J. Hydrol., 512, 528–539,
https://doi.org/10.1016/j.jhydrol.2014.03.020, 2014.
Klaus, J., Chun, K. P., McGuire, K. J., and McDonnell, J. J.: Temporal
dynamics of catchment transit times from stable isotope data, Water Resour.
Res., 51, 4208–4223, https://doi.org/10.1002/2014wr016247, 2015.
Kleidon, A.: How does the earth system generate and maintain thermodynamic
disequilibrium and what does it imply for the future of the planet?, Philos.
T. Roy. Soc. A, 370, 1012–1040,
https://doi.org/10.1098/rsta.2011.0316, 2012.
Kleidon, A., Zehe, E., and Lin, H.: Thermodynamic limits of the critical
zone and their relevance to hydropedology, in: Hydropedology: Synergistic
Integration of Soil Science and Hydrology, Elsevier, Amsterdam, the Netherlands, 854 pp.,
p. 243, 2012.
Kleidon, A., Zehe, E., Ehret, U., and Scherer, U.: Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale, Hydrol. Earth Syst. Sci., 17, 225–251, https://doi.org/10.5194/hess-17-225-2013, 2013.
Knudsen, J., Thomsen, A., and Refsgaard, J. C.: WATBAL, Hydrol. Res., 17,
347–362, doi.org/10.2166/nh.1986.0026, 1986.
Koehler, B., Zehe, E., Corre, M. D., and Veldkamp, E.: An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils, Biogeosciences, 7, 2311–2325, https://doi.org/10.5194/bg-7-2311-2010, 2010.
Koehler, B., Corre, M. D., Steger, K., Well, R., Zehe, E., Sueta, J. P., and
Veldkamp, E.: An in-depth look into a tropical lowland forest soil:
Nitrogen-addition effects on the contents of N2O, CO2 and CH4
and N2O isotopic signatures down to 2-m depth, Biogeochemistry, 111,
695–713, https://doi.org/10.1007/s10533-012-9711-6, 2012.
Kondepudi, D. and Prigogine, I.: Modern thermodynamics: From heat engines
to dissipative structures, John Wiley, Chichester, UK, 1998.
Lehmann, P., Hinz, C., McGrath, G., Tromp-van Meerveld, H. J., and McDonnell, J. J.: Rainfall threshold for hillslope outflow: an emergent property of flow pathway connectivity, Hydrol. Earth Syst. Sci., 11, 1047–1063, https://doi.org/10.5194/hess-11-1047-2007, 2007.
Levy, M. and Berkowitz, B.: Measurement and analysis of non-Fickian
dispersion in heterogeneous porous media, J. Contam. Hydrol., 64,
203–226, https://doi.org/10.1016/S0169-7722(02)00204-8, 2003.
Loritz, R., Hassler, S. K., Jackisch, C., Allroggen, N., van Schaik, L., Wienhöfer, J., and Zehe, E.: Picturing and modeling catchments by representative hillslopes, Hydrol. Earth Syst. Sci., 21, 1225–1249, https://doi.org/10.5194/hess-21-1225-2017, 2017.
Loritz, R., Gupta, H., Jackisch, C., Westhoff, M., Kleidon, A., Ehret, U., and Zehe, E.: On the dynamic nature of hydrological similarity, Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, 2018.
Loritz, R., Kleidon, A., Jackisch, C., Westhoff, M., Ehret, U., Gupta, H., and Zehe, E.: A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation, Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, 2019.
McDonnell, J. J.: The two water worlds hypothesis: Ecohydrological
separation of water between streams and trees?, Wiley Interdisciplinary
Reviews – Water, 1, 323–329, https://doi.org/10.1002/wat2.1027, 2014.
McDonnell, J. J. and Beven, K.: Debates-the future of hydrological sciences:
A (common) path forward? A call to action aimed at understanding velocities,
celerities and residence time distributions of the headwater hydrograph,
Water Resour. Res., 50, 5342–5350, https://doi.org/10.1002/2013wr015141, 2014.
McGlynn, B. and Seibert, J.: Distributed assessment of contributing area and
riparian buffering along stream networks, Water Resour. Res., 39, WR001521,
https://doi.org/10.1029/2002WR001521, 2003.
McGlynn, B., McDonnell, J. J., Stewart, M., and Seibert, J.: On the
relationships between catchment scale and streamwater mean residence time,
Hydrol. Process., 17, 175–181, https://doi.org/10.1002/hyp.5085, 2002.
McGrath, G. S., Hinz, C., and Sivapalan, M.: Modelling the impact of
within-storm variability of rainfall on the loading of solutes to
preferential flow pathways, Eur. J. Soil Sci., 59, 24–33,
https://doi.org/10.1111/j.1365-2389.2007.00987.x, 2008.
McGrath, G. S., Hinz, C., Sivapalan, M., Dressel, J., Puetz, T., and
Vereecken, H.: Identifying a rainfall event threshold triggering herbicide
leaching by preferential flow, Water Resour. Res., 46, W02513,
https://doi.org/10.1029/2008wr007506, 2010.
Mertens, J., Madsen, H., Feyen, L., Jacques, D., and Feyen, J.: Including
prior information in the estimation of effective soil parameters in
unsaturated zone modelling, J. Hydrol., 294, 251–269,
https://doi.org/10.1016/j.jhydrol.2004.02.011, 2004.
Milne, G.: Normal erosion as a factor in soil profile development, Nature,
138, 548–549, https://doi.org/10.1038/138548c0, 1936.
Nash, J. E.: The form of the instantaneous unit hydrograph, International Association of Hydrological Sciences, 45, 114–121, 1957.
Niemi, A. J.: Residence time distribution of variable flow processes, Int.
J. Appl. Radiat. Is., 28, 855–860, https://doi.org/10.1016/0020-708X(77)90026-6, 1977.
Nissan, A. and Berkowitz, B.: Anomalous transport dependence on Péclet
number, porous medium heterogeneity, and a temporally varying velocity
field, Phys. Rev. E, 99, 033108, https://doi.org/10.1103/PhysRevE.99.033108, 2019.
Nissan, A., Dror, I., and Berkowitz, B.: Time-dependent velocity-field
controls on anomalous chemical transport in porous media, Water Resour.
Res., 53, 3760–3769, https://doi.org/10.1002/2016WR020143, 2017.
Oswald, S., Kinzelbach, W., Greiner, A., and Brix, G.: Observation of flow
and transport processes in artificial porous media via magnetic resonance
imaging in three dimensions, Geoderma, 80, 417–429,
https://doi.org/10.1016/S0016-7061(97)00064-5, 1997.
Paik, K. and Kumar, P.: Optimality approaches to describe characteristic
fluvial patterns on landscapes, Philos. T. Roy. Soc. B, 365,
1387–1395, https://doi.org/10.1098/rstb.2009.0303, 2010.
Pérez, A. J., Abrahao, R., Causape, J., Cirpka, O. A., and Burger, C. M.: Simulating the transition of a semi-arid rainfed catchment towards irrigation agriculture, J. Hydrol., 409, 663–681, https://doi.org/10.1016/j.jhydrol.2011.08.061, 2011.
Refsgaard, J. C. and Storm, B.: MikeShe, in: Computer models of watershed
hydrology, edited by: Singh, V. P., Water Resources Publications, Highland
Ranch, Colorado, USA, 809–846, 1995.
Reinhardt, L. and Ellis, M. A.: The emergence of topographic steady state
in a perpetually dynamic self organised critical landscape, Water Resour.
Res., 51, 4986–5003, https://doi.org/10.1002/2014WR016223, 2015.
Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire, K. J.,
van der Velde, Y., Bertuzzo, E., and Botter, G.: Storage selection
functions: A coherent framework for quantifying how catchments store and
release water and solutes, Water Resour. Res., 51, 4840–4847,
https://doi.org/10.1002/2015wr017273, 2015.
Rodriguez, N. B. and Klaus, J.: Catchment travel times from composite
storage selection functions representing the superposition of streamflow
generation processes, Water Resour. Res., 55, 9292–9314,
https://doi.org/10.1029/2019wr024973, 2019.
Rodriguez, N. B., McGuire, K. J., and Klaus, J.: Time-varying storage-water
age relationships in a catchment with a mediterranean climate, Water Resour.
Res., 54, 3988–4008, https://doi.org/10.1029/2017wr021964, 2018.
Rodriguez-Iturbe, I. and Rinaldo, A.: Fractal river basins: Chance and
self-organization, Cambridge Univ. Press, Cambridge UK, 2001.
Rodriguez-Iturbe, I., D'Odorico, P., Porporato, A., and Ridolfi, L.: On the
spatial and temporal links between vegetation, climate, and soil moisture,
Water Resour. Res., 35, 3709–3722, https://doi.org/10.1029/1999wr900255, 1999.
Roth, K. and Hammel, K.: Transport of conservative chemical through an
unsaturated two-dimensional Miller-similar medium with steady state flow,
Water Resour. Res., 32, 1653–1663, https://doi.org/10.1029/96WR00756, 1996.
Samaniego, L. and Bardossy, A.: Simulation of the impacts of land use/cover
and climatic changes on the runoff characteristics at the mesoscale, Ecol.
Model., 196, 45–61, https://doi.org/10.1016/j.ecolmodel.2006.01.005, 2006.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008wr007327, 2010.
Sander, T. and Gerke, H. H.: Modelling field-data of preferential flow in
paddy soil induced by earthworm burrows, J. Contam. Hydrol., 104, 126–136,
https://doi.org/10.1016/j.jconhyd.2008.11.003, 2009.
Savenije, H. H. G.: HESS Opinions “Topography driven conceptual modelling (FLEX-Topo)”, Hydrol. Earth Syst. Sci., 14, 2681–2692, https://doi.org/10.5194/hess-14-2681-2010, 2010.
Savenije, H. H. G. and Hrachowitz, M.: HESS Opinions “Catchments as meta-organisms – a new blueprint for hydrological modelling”, Hydrol. Earth Syst. Sci., 21, 1107–1116, https://doi.org/10.5194/hess-21-1107-2017, 2017.
Scheidegger, A. E.: An evaluation of the accuracy of the diffusivity
equation for describing miscible displacement in porous media, in: Proc. Theory
Fluid Flow Porous Media 2nd Conf., 1959, Univ. Oklahoma, Norman, Oklahoma, USA, 101–116, 1959.
Scher, H. and Montroll, E. W.: Anomalous transit time dispersion in
amorphous solids, Phys. Rev. B, 12, 2455–2477, https://doi.org/10.1103/PhysRevB.12.2455,
1975.
Scher, H., Margolin, G., Metzler, R., Klafter, J., and Berkowitz, B.: The
dynamical foundation of fractal stream chemistry: The origin of extremely
long retention times, Geophys. Res. Lett., 29, 1061, https://doi.org/10.1029/2001GL014123, 2002.
Shannon, C. E.: A mathematical theory of communication, Bell Syst. Tech. J.,
27, 379–423, https://doi.org/10.1145/584091.584093, 1948.
Sherman, L. K.: Streamflow from rainfall by the unit hydrograph method, Eng.
News-Rec., 180, 501–505, 1932.
Simmons, C. S.: A stochastic-convective transport representation of
dispersion in one dimensional porous media systems, Water Resour. Res., 18,
1193–1214, https://doi.org/10.1029/WR018i004p01193, 1982.
Šimunek, J., Jarvis, N. J., van Genuchten, M. T., and Gardenas, A.:
Review and comparison of models for describing non-equilibrium and
preferential flow and transport in the vadose zone, J. Hydrol., 272, 14–35,
https://doi.org/10.1016/S0022-1694(02)00252-4, 2003.
Singh, S. K., McMillan, H., Bardossy, A., and Fateh, C.: Nonparametric
catchment clustering using the data depth function, Hydrolog. Sci. J., 61, 2649–2667, https://doi.org/10.1080/02626667.2016.1168927, 2016.
Sivapalan, M.: From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science, Hydrol. Earth Syst. Sci., 22, 1665–1693, https://doi.org/10.5194/hess-22-1665-2018, 2018.
Sklash, M. G. and Farvolden, R. N.: The role of groundwater in storm
runoff, J. Hydrol., 43, 45–65, https://doi.org/10.1016/0022-1694(79)90164-1, 1979.
Sklash, M. G., Beven, K. J., Gilman, K., and Darling, W. G.: Isotope studies
of pipeflow at Plynlimon, Wales, UK, Hydrol. Process., 10, 921–944,
https://doi.org/10.1002/(SICI)1099-1085(199607)10:7<921::AID-HYP347>3.0.CO;2-B, 1996.
Sposito, G., Jury, W. A., and Gupta, V. K.: Fundamental problems in the
stochastic convection-dispersion model of solute transport in aquifers and
field soils, Water Resour. Res., 22, 77–88, 1986.
Sprenger, M., Tetzlaff, D., Buttle, J., Laudon, H., Leistert, H., Mitchell,
C. P. J., Snelgrove, J., Weiler, M., and Soulsby, C.: Measuring and modeling
stable isotopes of mobile and bulk soil water, Vadose Zone J., 17, 1–18,
https://doi.org/10.2136/vzj2017.08.0149, 2018.
Sternagel, A., Loritz, R., Wilcke, W., and Zehe, E.: Simulating preferential soil water flow and tracer transport using the Lagrangian Soil Water and Solute Transport Model, Hydrol. Earth Syst. Sci., 23, 4249–4267, https://doi.org/10.5194/hess-23-4249-2019, 2019.
Trefry, M. G., Ruan, F. P., and McLaughlin, D.: Numerical simulations of preasymptotic transport in heterogeneous porous media: Departures from the Gaussian limit, Water Resour. Res., 39, 1063, https://doi.org/10.1029/2001WR001101, 2003.
Tromp-van Meerveld, H. J. and McDonnell, J. J.: Threshold relations in
subsurface stormflow: 2. The fill and spill hypothesis, Water Resour. Res.,
42, W02411, https://doi.org/10.1029/2004wr003800, 2006.
Turton, D. J., Barnes, D. R., and de Jesus Navar, J.: Old and new water in
subsurface flow from a forest soil block, J. Environ. Qual., 24, 139–146,
https://doi.org/10.2134/jeq1995.00472425002400010020x, 1995.
van der Velde, Y., Torfs, P. J. J. F., van der Zee, S. E. A. T. M., and
Uijlenhoet, R.: Quantifying catchment scale mixing and its effect on time
varying travel time distributions. Water Resour. Res., 48, W06536,
https://doi.org/10.1029/2011WR011310, 2012.
van Schaik, L., Palm, J., Klaus, J., Zehe, E., and Schröder, B.: Linking
spatial earthworm distribution to macropore numbers and hydrological
effectiveness, Ecohydrology, 7, 401–408, https://doi.org/10.1002/eco.1358, 2014.
Vogel, H. J. and Roth, K.: Quantitative morphology and network
representation of soil pore structure, Adv. Water Resour., 24, 233–242,
https://doi.org/10.1016/S0309-1708(00)00055-5, 2001.
Vogel, H.-J., Cousin, I., Ippisch, O., and Bastian, P.: The dominant role of structure for solute transport in soil: experimental evidence and modelling of structure and transport in a field experiment, Hydrol. Earth Syst. Sci., 10, 495–506, https://doi.org/10.5194/hess-10-495-2006, 2006.
Vrugt, J. A. and Ter Braak, C. J. F.: DREAM(D): an adaptive Markov Chain Monte Carlo simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior parameter estimation problems, Hydrol. Earth Syst. Sci., 15, 3701–3713, https://doi.org/10.5194/hess-15-3701-2011, 2011.
Wagener, T. and Wheater, H. S.: Parameter estimation and regionalization
for continuous rainfall-runoff models including uncertainty, J. Hydrol.,
320, 132–154, 2006.
Weiler, M., McGlynn, B. L., McGuire, K. J., and McDonnell, J. J.: How does
rainfall become runoff? A combined tracer and runoff transfer function
approach, Water Resour. Res., 39, 1315, https://doi.org/10.1029/2003wr002331, 2003.
Weinberg, G. M.: An Introduction to General Systems Thinking, John Wiley & Sons, New York, USA, p. 279, 1975.
Westhoff, M., Zehe, E., Archambeau, P., and Dewals, B.: Does the Budyko curve reflect a maximum-power state of hydrological systems? A backward analysis, Hydrol. Earth Syst. Sci., 20, 479–486, https://doi.org/10.5194/hess-20-479-2016, 2016.
Westhoff, M. C. and Zehe, E.: Maximum entropy production: can it be used to constrain conceptual hydrological models?, Hydrol. Earth Syst. Sci., 17, 3141–3157, https://doi.org/10.5194/hess-17-3141-2013, 2013.
Wienhöfer, J. and Zehe, E.: Predicting subsurface stormflow response of a forested hillslope – the role of connected flow paths, Hydrol. Earth Syst. Sci., 18, 121–138, https://doi.org/10.5194/hess-18-121-2014, 2014.
Wienhöfer, J., Germer, K., Lindenmaier, F., Färber, A., and Zehe, E.: Applied tracers for the observation of subsurface stormflow at the hillslope scale, Hydrol. Earth Syst. Sci., 13, 1145–1161, https://doi.org/10.5194/hess-13-1145-2009, 2009.
Wilcke, W., Yasin, S., Valarezo, C., and Zech, W.: Change in water quality
during the passage through a tropical montane rain forest in Ecuador,
Biogeochemistry, 55, 45–72, https://doi.org/10.1023/A:1010631407270, 2001.
Winter, T. C.: The concept of hydrologic landscapes, J. Am. Water Resour.
Assoc., 37, 335–349, https://doi.org/10.1111/j.1752-1688.2001.tb00973.x,
2001.
Worthington, S. R. H. and Ford D. C.: Self-organised permeability in
carbonate aquifers, Groundwater, 47, 326–336,
https://doi.org/10.1111/j.1745-6584.2009.00551.x, 2009.
Wrede, S., Fenicia, F., Martinez-Carreras, N., Juilleret, J., Hissler, C.,
Krein, A., Savenije, H. H. G., Uhlenbrook, S., Kavetski, D., and Pfister,
L.: Towards more systematic perceptual model development: A case study using
3 Luxembourgish catchments, Hydrol. Process., 29, 2731–2750,
https://doi.org/10.1002/hyp.10393, 2015.
Zehe, E. and Blöschl, G.: Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions, Water Resour. Res., 40, W10202, https://doi.org/10.1029/2003wr002869, 2004.
Zehe, E. and Flühler, H.: Slope scale distribution of flow patterns in soil profiles, J. Hydrol., 247, 116–132, 2001.
Zehe, E. and Jackisch, C.: A Lagrangian model for soil water dynamics during rainfall-driven conditions, Hydrol. Earth Syst. Sci., 20, 3511–3526, https://doi.org/10.5194/hess-20-3511-2016, 2016.
Zehe, E., Blume, T., and Bloschl, G.: The principle of 'maximum energy
dissipation': A novel thermodynamic perspective on rapid water flow in
connected soil structures, Philos. T. Roy. Soc. B, 365,
1377–1386, https://doi.org/10.1098/rstb.2009.0308, 2010.
Zehe, E., Ehret, U., Blume, T., Kleidon, A., Scherer, U., and Westhoff, M.: A thermodynamic approach to link self-organization, preferential flow and rainfall–runoff behaviour, Hydrol. Earth Syst. Sci., 17, 4297–4322, https://doi.org/10.5194/hess-17-4297-2013, 2013.
Zehe, E., Ehret, U., Pfister, L., Blume, T., Schröder, B., Westhoff, M., Jackisch, C., Schymanski, S. J., Weiler, M., Schulz, K., Allroggen, N., Tronicke, J., van Schaik, L., Dietrich, P., Scherer, U., Eccard, J., Wulfmeyer, V., and Kleidon, A.: HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments, Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, 2014.
Zehe, E., Loritz, R., Jackisch, C., Westhoff, M., Kleidon, A., Blume, T., Hassler, S. K., and Savenije, H. H.: Energy states of soil water – a thermodynamic perspective on soil water dynamics and storage-controlled streamflow generation in different landscapes, Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, 2019.
Zhang, Y., Benson, D. A., and Reeves, D. M.: Time and space nonlocalities
underlying fractional-derivative models: Distinction and review of field
applications, Adv. Water Resour., 32, 561–581,
https://doi.org/10.1016/j.advwatres.2009.01.008, 2009.
Short summary
We present a
blueprintfor a unified modelling framework to quantify chemical transport in both surface water and groundwater systems. There has been extensive debate over recent decades, particularly in the surface water literature, about how to explain and account for long travel times of chemical species that are distinct from water flow (rainfall-runoff) travel times. We suggest a powerful modelling framework known to be robust and effective from the field of groundwater hydrology.
We present a
blueprintfor a unified modelling framework to quantify chemical transport in both...