Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.:
Using isotopes to constrain water flux and age estimates in snow-influenced
catchments using the STARR (Spatially distributed Tracer-Aided
Rainfall-Runoff) model, Hydrol. Earth Syst. Sci., 21, 5089–5110,
https://doi.org/10.5194/hess-21-5089-2017, 2017a.
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol.,
320, 18–36, 2006.
Birkel, C. and Soulsby, C.: Advancing tracer-aided rainfall-runoff
modelling: A review of progress, problems and unrealised potential, Hydrol.
Process., 29, 5227–5240, https://doi.org/10.1002/hyp.10594, 2015.
Birkel, C., Tetzlaff, D., Dunn, S. M., and Soulsby, C.: Towards a simple
dynamic process conceptualization in rainfall-runoff models using
multi-criteria calibration and tracers in temperate, upland catchments,
Hydrol. Process., 24, 260–275, https://doi.org/10.1002/hyp.7478, 2010.
Birkel, C., Tetzlaff, D., Dunn, S. M., and Soulsby, C.: Using time domain and
geographic source tracers to conceptualize streamflow generation processes
in lumped rainfall-runoff models, Water Resour. Res., 47, W02515,
https://doi.org/10.1029/2010WR009547, 2011.
Birkel, C., Soulsby, C., Tetzlaff, D., Dunn, S., and Spezia, L.:
High-frequency storm event isotope sampling reveals time-variant transit
time distributions and influence of diurnal cycles, Hydrol. Process., 26,
308–316, https://doi.org/10.1002/hyp.8210, 2012.
Birkel, C., Soulsby, C., and Tetzlaff, D.: Conceptual modelling to assess how
the interplay of hydrological connectivity, catchment storage and tracer
dynamics controls nonstationary water age estimates, Hydrol. Process.,
29, 2956–2969, https://doi.org/10.1002/hyp.10414, 2015.
Bonneau, J., Fletcher, T. D., Costelloe, J. F., and Burns, M. J.: Stormwater
infiltration and the “urban karst” – A review, J. Hydrol., 552, 141–150,
https://doi.org/10.1016/j.jhydrol.2017.06.043, 2017.
Charlier, J. B., Bertrand, C., and Mudry, J.: Conceptual hydrogeological
model of flow and transport of dissolved organic carbon in a small Jura
karst system, J. Hydrol., 460–461, 52–64,
https://doi.org/10.1016/j.jhydrol.2012.06.043, 2012.
Chen, X., Zhang, Z. C., Soulsby, C., Cheng, Q. B., Binley, A., Jiang, R., and
Tao, M.: Characterizing the heterogeneity of karst critical zone and its
hydrological function: an integrated approach, Hydrol. Process., 32, 1–15, https://doi.org/10.1002/hyp.13232, 2018.
Coplen, T. B., Neiman, P. J., White, A. B., Landwehr, J. M., Ralph, F. M.,
and Dettinger, M. D.: Extreme changes in stable hydrogen isotopes and
precipitation characteristics in a landfalling Pacific storm, Geophys. Res.
Lett., 35, L21808, https://doi.org/10.1029/2008GL035481, 2008.
Delbart, C., Valdes, D., Barbecot, F., Tognelli, A., Richon, P., and
Couchoux, L.: Temporal variability of karst aquifer response time
established by the sliding-windows cross-correlation method, J. Hydrol.,
511, 580–588, https://doi.org/10.1016/j.jhydrol.2014.02.008, 2014.
Dewaide, L., Bonniver, I., Rochez, G., and Hallet, V.: Solute transport in
heterogeneous karst systems: Dimensioning and estimation of the transport
parameters via multi-sampling tracer-tests modelling using the OTIS
(One-dimensional Transport with Inflow and Storage) program, J. Hydrol.,
534, 567–578, https://doi.org/10.1016/j.jhydrol.2016.01.049, 2016.
Field, M. S. and Pinsky, P. F.: A two-region nonequilibrium model for solute
transport in solution conduits in karstic aquifers, J. Contam. Hydrol.,
44, 329–351, https://doi.org/10.1016/S0169-7722(00)00099-1, 2000.
Fleury, P., Plagnes, V., and Bakalowicz, M.: Modelling of the functioning of
karst aquifers with a reservoir model: Application to Fontaine de Vaucluse
(South of France), J. Hydrol., 345, 38–49,
https://doi.org/10.1016/j.jhydrol.2007.07.014, 2007.
Ford, D. and Williams, P.: Karst Hydrogeology and Geomorphology, John Wiley & Sons Ltd,
https://doi.org/10.1002/9781118684986, 2013.
Freer, J., Beven, K., and Ambroise, B.: Bayesian estimation of uncertainty in
runoff prediction and the value of data: An application of the GLUE
approach, Water Resour. Res., 32, 2161–2173, https://doi.org/10.1029/96WR03723,
1996.
Goldscheider, N., Meiman, J., Pronk, M., and Smart, C.: Tracer tests in karst
hydrogeology and speleology, Int. J. Speleol., 37, 27–40,
https://doi.org/10.5038/1827-806X.37.1.3, 2008.
Harman, C. J.: Time-variable transit time distributions and transport:
Theory and application to storage-dependent transport of chloride in a
watershed, Water Resour. Res., 51, 1–30, 2015.
Hartmann, A., Wagener, T., Rimmer, A., Lange, J., Brielmann, H., and Weiler,
M.: Testing the realism of model structures to identify karst system
processes using water quality and quantity signatures, Water Resour. Res.,
49, 3345–3358, https://doi.org/10.1002/wrcr.20229, 2013.
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M.: Karst
water resources in a changing world: Review of hydrological modeling
approaches, Rev. Geophys., 52, 218–242, https://doi.org/10.1002/2013RG000443, 2014.
Hartmann, A., Barberá, J. A., and Andreo, B.: On the value of water
quality data and informative flow states in karst modelling, Hydrol. Earth
Syst. Sci., 21, 5971–5985, https://doi.org/10.5194/hess-21-5971-2017, 2017.
Heidbüchel, I., Troch, P. A., Lyon, S. W., and Weiler, M.: The master
transit time distribution of variable flow systems, Water Resour. Res.,
48, W06520,
https://doi.org/10.1029/2011WR011293, 2012.
Jasechko, S., Kirchner, J. W., Welker, J. M., and McDonnell, J. J.:
Substantial proportion of global streamflow less than three months old, Nat.
Geosci., 9, 126–129, https://doi.org/10.1038/ngeo2636, 2016.
Jasechko, S., Perrone, D., Befus, K. M., Bayani Cardenas, M., Ferguson, G.,
Gleeson, T., Luijendijk, E., McDonnell, J. J., Taylor, R. G., Wada, Y., and
Kirchner, J. W.: Global aquifers dominated by fossil groundwaters but wells
vulnerable to modern contamination, Nat. Geosci., 10, 425–429,
https://doi.org/10.1038/ngeo2943, 2017.
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Bencala, K. E., and Wondzell,
S. M.: Hillslope hydrologic connectivity controls riparian groundwater
turnover: Implications of catchment structure for riparian buffering and
stream water sources, Water Resour. Res., 46, W10524, https://doi.org/10.1029/2009WR008818, 2010.
Jukic, D. and Denić-Jukić, V.: Groundwater balance estimation in
karst by using a conceptual rainfall – runoff model, J. Hydrol., 373,
302–315, https://doi.org/10.1016/j.jhydrol.2009.04.035, 2009.
Kirchner, J. W.: A double paradox in catchment hydrology and geochemistry,
Hydrol. Process., 17, 871–874, https://doi.org/10.1002/hyp.5108, 2003.
Kirchner, J. W., Feng, X., Neal, C., and Robson, A. J.: The fine structure of
water-quality dynamics: The (high-frequency) wave of the future, Hydrol.
Process., 18, 1353–1359, https://doi.org/10.1002/hyp.5537, 2004.
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol., 424–425,
264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012.
Kogovsek, J. and Petric, M.: Solute transport processes in a karst vadose
zone characterized by long-term tracer tests (the cave system of Postojnska
Jama, Slovenia), J. Hydrol., 519, 1205–1213,
https://doi.org/10.1016/j.jhydrol.2014.08.047, 2014.
Kübeck, C., Maloszewski, P. J., and Benischke, R.: Determination of the
conduit structure in a karst aquifer based on tracer data-Lurbach system,
Austria, Hydrol. Process., 27, 225–235, https://doi.org/10.1002/hyp.9221, 2013.
Kuppel, S., Tetzlaff, D., Maneta, M. P., and Soulsby, C.:
EcH2O-iso
1.0: water isotopes and age tracking in a process-based, distributed
ecohydrological model, Geosci. Model Dev., 11, 3045–3069,
https://doi.org/10.5194/gmd-11-3045-2018, 2018.
Labat, D. and Mangin, A.: Transfer function approach for artificial tracer
test interpretation in karstic systems, J. Hydrol., 529, 866–871,
https://doi.org/10.1016/j.jhydrol.2015.09.011, 2015.
Ladouche, B., Marechal, J. C., and Dorfliger, N.: Semi-distributed lumped
model of a karst system under active management, J. Hydrol., 509, 215–230,
https://doi.org/10.1016/j.jhydrol.2013.11.017, 2014.
Landwehr, J. and Coplen, T.: Line-conditioned excess: a new method for
characterizing stable hydrogen and oxygen isotope ratios in hydrologic
systems, in: Aquatic Forum 2004: International conference on isotopes in
environmental studies, 132–134,
2004.
Landwehr, J. M., Coplen, T. B., and Stewart, D. W.: Spatial, seasonal, and
source variability in the stable oxygen and hydrogen isotopic composition of
tap waters throughout the USA, Hydrol. Process., 28, 5382–5422,
https://doi.org/10.1002/hyp.10004, 2014.
Legout, A., Legout, C., Nys, C., and Dambrine, E.: Preferential flow and slow
convective chloride transport through the soil of a forested landscape
(Fougères, France), Geoderma, 151, 179–190,
https://doi.org/10.1016/j.geoderma.2009.04.002, 2009.
McCutcheon, R. J., McNamara, J. P., Kohn, M. J., and Evans, S. L.: An
evaluation of the ecohydrological separation hypothesis in a semiarid
catchment, Hydrol. Process., 31, 783–799, https://doi.org/10.1002/hyp.11052, 2017.
McDonnell, J. J. and Beven, K.: Debates – The future of hydrological
sciences: A (common) path forward? A call to action aimed at understanding
velocities, celerities and residence time distributions of the headwater
hydrograph, Water Resour. Res., 50, 5342–5350, https://doi.org/10.1002/2013WR015141,
2014.
McMillan, H., Tetzlaff, D., Clark, M., and Soulsby, C.: Do time-variable
tracers aid the evaluation of hydrological model structure? A multimodel
approach, Water Resour. Res., 48, W05501, https://doi.org/10.1029/2011WR011688, 2012.
Morales, T., Uriarte, J. A., Olazar, M., Antigüedad, I., and Angulo, B.:
Solute transport modelling in karst conduits with slow zones during different
hydrologic conditions, J. Hydrol., 390, 182–189,
https://doi.org/10.1016/j.jhydrol.2010.06.041, 2010.
Mudarra, M., Andreo, B., Marín, A. I., Vadillo, I., and Barberá, J.
A.: Combined use of natural and artificial tracers to determine the
hydrogeological functioning of a karst aquifer: the Villanueva del
Rosario
system (Andalusia, southern Spain), Hydrogeol. J., 22, 1027–1039,
https://doi.org/10.1007/s10040-014-1117-1, 2014.
Mueller, M. H., Weingartner, R., and Alewell, C.: Importance of vegetation,
topography and flow paths for water transit times of base flow in alpine
headwater catchments, Hydrol. Earth Syst. Sci., 17, 1661–1679,
https://doi.org/10.5194/hess-17-1661-2013, 2013.
Peng, T. and Wang, S.: Effects of land use, land cover and rainfall regimes
on the surface runoff and soil loss on karst slopes in southwest China,
Catena, 90, 53–62, https://doi.org/10.1016/j.catena.2011.11.001, 2012.
Perrin, C., Michel, C., and Andréassian, V.: Does a large number of
parameters enhance model performance? Comparative assessment of common
catchment model structures on 429 catchments, J. Hydrol., 242, 275–301,
https://doi.org/10.1016/S0022-1694(00)00393-0, 2001.
Rathay, S. Y., Allen, D. M., and Kirste, D.: Response of a fractured bedrock
aquifer to recharge from heavy rainfall events, J. Hydrol., 561, 1048–1062,
https://doi.org/10.1016/j.jhydrol.2017.07.042, 2017.
Reaney, S. M., Bracken, L. J., and Kirkby, M. J.: The importance of surface
controls on overland flow connectivity in semi-arid environments: Results
from a numerical experimental approach, Hydrol. Process., 28, 2116–2128, https://doi.org/10.1002/hyp.9769, 2014.
Rimmer, A. and Hartmann, A.: Simplified Conceptual Structures and Analytical
Solutions for Groundwater Discharge Using Reservoir Equations, Water Resour.
Manag. Model., 2, 217–238, https://doi.org/10.5772/34803, 2012.
Rimmer, A. and Salingar, Y.: Modelling precipitation-streamflow processes in
karst basin: The case of the Jordan River sources, Israel, J. Hydrol., 331,
524–542, https://doi.org/10.1016/j.jhydrol.2006.06.003, 2006.
Seeger, S. and Weiler, M.: Reevaluation of transit time distributions, mean
transit times and their relation to catchment topography, Hydrol. Earth Syst.
Sci., 18, 4751–4771, https://doi.org/10.5194/hess-18-4751-2014,
2014.
Soulsby, C., Birkel, C., and Tetzlaff, D.: Assessing urbanization impacts on
catchment transit times, Geophys. Res. Lett., 41, 442–448,
https://doi.org/10.1002/2013GL058716, 2014.
Soulsby, C., Birkel, C., Geris, J., Dick, J., Tunaley, C., and Tetzlaff, D.:
Stream water age distributions controlled by storage dynamics and nonlinear
hydrologic connectivity: Modeling with high-resolution isotope data, Water
Resour. Res., 51, 7759–7776, https://doi.org/10.1002/2015WR017888, 2015.
Sprenger, M., Leistert, H., Gimbel, K., and Weiler, M.: Illuminating
hydrological processes at the soil-vegetation-atmosphere interface with water
stable isotopes, Rev. Geophys., 54, 674–704, https://doi.org/10.1002/2015RG000515, 2016.
Stets, E. G., Winter, T. C., Rosenberry, D. O., and Striegl, R. G.:
Quantification of surface water and groundwater flows to open – and
closed-basin lakes in a headwaters watershed using a descriptive oxygen
stable isotope model, Water Resour. Res., 46, W03515, https://doi.org/10.1029/2009WR007793, 2010.
Tetzlaff, D., Birkel, C., Dick, J., Geris, J., and Soulsby, C.: Storage
dynamics in hydropedological units control hillslope connectivity, runoff
generation, and the evolution of catchment transit time distributions, Water
Resour. Res., 50, 969–985, https://doi.org/10.1002/2013WR014147, 2014.
Tritz, S., Guinot, V., and Jourde, H.: Modelling the behaviour of a karst
system catchment using non-linear hysteretic conceptual model, J. Hydrol.,
397, 250–262, https://doi.org/10.1016/j.jhydrol.2010.12.001, 2011.
van Schaik, N. L. M. B., Schnabel, S., and Jetten, V. G.: The influence of
preferential flow on hillslope hydrology in a semi-arid watershed (in the
Spanish Dehesas), Hydrol. Process., 22, 3844–3855, https://doi.org/10.1002/hyp.6998,
2008.
White, W. B.: A brief history of karst hydrogeology: contributions of the
NSS, J. Cave Karst Stud., 69, 13–26, 2007.
Worthington, S. R. H.: Diagnostic hydrogeologic characteristics of a karst
aquifer (Kentucky, USA), Hydrogeol. J., 17, 1665–1678,
https://doi.org/10.1007/s10040-009-0489-0, 2009.
Worthington, S. R. H., Jeannin, P.-Y., Alexander, E. C., Davies, G. J., and
Schindel, G. M.: Contrasting definitions for the term “karst aquifer”,
Hydrogeol. J., 25, 1237–1240, https://doi.org/10.1007/s10040-017-1628-7, 2017.
Xie, Y., Cook, P. G., Simmons, C. T., Partington, D., Crosbie, R., and
Batelaan, O.: Uncertainty of groundwater recharge estimated from a water and
energy balance model, J. Hydrol., 561, 1081–1093, https://doi.org/10.1016/j.jhydrol.2017.08.010, 2017.
Zhang, Z., Chen, X., Ghadouani, A., and Shi, P.: Modelling hydrological
processes influenced by soil, rock and vegetation in a small karst basin of
southwest China, Hydrol. Process., 25, 2456–2470, https://doi.org/10.1002/hyp.8022,
2011.
Zhang, Z., Chen, X., Chen, X., and Shi, P.: Quantifying time lag of
epikarst-spring hydrograph response to rainfall using correlation and
spectral analyses, Hydrogeol. J., 21, 1619–1631,
https://doi.org/10.1007/s10040-013-1041-9, 2013.
Zhang, Z., Chen, X., and Soulsby C.: Catchment-scale conceptual modelling of
water and solute transport in the dual flow system of the karst critical
zone, Hydrol. Process., 31, 3421–3436, https://doi.org/10.1002/hyp.11268, 2017.
Zhang, Z. B., Peng, X., Zhou, H., Lin, H., and Sun, H.: Characterizing
preferential flow in cracked paddy soils using computed tomography and
breakthrough curve, Soil Till. Res., 146, 53–65, https://doi.org/10.1016/j.still.2014.05.016,
2015.