Articles | Volume 23, issue 9
https://doi.org/10.5194/hess-23-3997-2019
https://doi.org/10.5194/hess-23-3997-2019
Research article
 | 
27 Sep 2019
Research article |  | 27 Sep 2019

Real-time monitoring of nitrate in soils as a key for optimization of agricultural productivity and prevention of groundwater pollution

Elad Yeshno, Shlomi Arnon, and Ofer Dahan

Related authors

A novel analytical approach for the simultaneous measurement of nitrate and dissolved organic carbon in soil water
Elad Yeshno, Ofer Dahan, Shoshana Bernstain, and Shlomi Arnon
Hydrol. Earth Syst. Sci., 25, 2159–2168, https://doi.org/10.5194/hess-25-2159-2021,https://doi.org/10.5194/hess-25-2159-2021, 2021
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Instruments and observation techniques
High-resolution operational soil moisture monitoring for forests in central Germany
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, and Rainer Petzold
Hydrol. Earth Syst. Sci., 28, 3567–3595, https://doi.org/10.5194/hess-28-3567-2024,https://doi.org/10.5194/hess-28-3567-2024, 2024
Short summary
Technical Note: Revisiting the general calibration of cosmic-ray neutron sensors to estimate soil water content
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 28, 989–1000, https://doi.org/10.5194/hess-28-989-2024,https://doi.org/10.5194/hess-28-989-2024, 2024
Short summary
Coupled hydrogeophysical inversion of an artificial infiltration experiment monitored with ground-penetrating radar: synthetic demonstration
Rohianuu Moua, Nolwenn Lesparre, Jean-François Girard, Benjamin Belfort, François Lehmann, and Anis Younes
Hydrol. Earth Syst. Sci., 27, 4317–4334, https://doi.org/10.5194/hess-27-4317-2023,https://doi.org/10.5194/hess-27-4317-2023, 2023
Short summary
Technical note: Discrete in situ vapor sampling for subsequent lab-based water stable isotope analysis
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023,https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
A change in perspective: downhole cosmic-ray neutron sensing for the estimation of soil moisture
Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli, Markus Morgner, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 27, 3059–3082, https://doi.org/10.5194/hess-27-3059-2023,https://doi.org/10.5194/hess-27-3059-2023, 2023
Short summary

Cited articles

Abdulkareem, J., Abdulkadir, A., and Abdu, N.: A Review of Different Types of Lysimeter Used in Solute Transport Studies, Int. J. Plant Soil Sci., 8, 1–14, https://doi.org/10.9734/IJPSS/2015/18098, 2015. 
Anderson, D. M., Glibert, P. M., and Burkholder, J. M.: Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences, Estuaries, 25, 704–726, https://doi.org/10.1007/BF02804901, 2002. 
Armstrong, F. A. J.: Determination of Nitrate in Water by Ultraviolet Spectrophotometry, Anal. Chem., 35, 1292–1294, https://doi.org/10.1021/ac60202a036, 1963. 
Burow, K. R., Nolan, B. T., Rupert, M. G., and Dubrovsky, N. M.: Nitrate in groundwater of the United States, 1991–2003, Environ. Sci. Technol., 44, 4988–4997, https://doi.org/10.1021/es100546y, 2010. 
Causse, J., Thomas, O., Jung, A. V., and Thomas, M. F.: Direct DOC and nitrate determination in water using dual pathlength and second derivative UV spectrophotometry, Water Res., 108, 312–319, https://doi.org/10.1016/j.watres.2016.11.010, 2017. 
Short summary
Lack of adequate instrumentation for monitoring nutrient availability in agricultural soils leads in most cases to over-application of fertilizers, often resulting in groundwater pollution. This research presents a novel approach for real-time, in situ monitoring of nitrate in soils using absorption spectroscopy techniques while preventing interference from dissolved organic carbon. Column experiments with this system resulted in accurate nitrate measurements in three different soil types.