Articles | Volume 23, issue 8
https://doi.org/10.5194/hess-23-3319-2019
https://doi.org/10.5194/hess-23-3319-2019
Research article
 | 
13 Aug 2019
Research article |  | 13 Aug 2019

Assessing the influence of soil freeze–thaw cycles on catchment water storage–flux–age interactions using a tracer-aided ecohydrological model

Aaron Smith, Doerthe Tetzlaff, Hjalmar Laudon, Marco Maneta, and Chris Soulsby

Related authors

Modelling temporal variability of in situ soil water and vegetation isotopes reveals ecohydrological couplings in a riparian willow plot
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022,https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Xylem water in riparian willow trees (Salix alba) reveals shallow sources of root water uptake by in situ monitoring of stable water isotopes
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022,https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021,https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021,https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning
Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021,https://doi.org/10.5194/hess-25-927-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025,https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025,https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Lack of robustness of hydrological models: a large-sample diagnosis and an attempt to identify hydrological and climatic drivers
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025,https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025,https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025,https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary

Cited articles

Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.: Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model, Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, 2017. 
Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., Kormos, P., and Soulsby, C.: Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach, Water Resour. Res., 53, 5813–5830, https://doi.org/10.1002/2017WR020650, 2018. 
Ameli, A. A., Beven, K., Erlandsson, M., Creed, I. F., McDonnell, J. J., and Bishop, K.: Primary weathering rates, water transit times, and concentration–discharge relations: A theoretical analysis for the critical zone, Water Resour. Res., 53, 942–960, https://doi.org/10.1002/2016WR019448, 2017. 
Birkel, C. and Soulsby, C.: Advancing tracer-aided rainfall-runoff modelling: a review of progress, problems and unrealised potential, Hydrol. Process., 29, 5227–5240, https://doi.org/10.1002/hyp.10594, 2015. 
Botter, G., Bertuzzo, E., and Rinaldo, A.: Transport in the hydrologic response: Travel time distributions, soil moisture dynamics, and the old water paradox, Water Resour. Res., 46, W03514, https://doi.org/10.1029/2009WR008371, 2010. 
Download
Short summary
We adapted and used a spatially distributed eco-hydrological model, EcH2O-iso, to temporally evaluate the influence of soil freeze–thaw dynamics on evaporation and transpiration fluxes in a northern Swedish catchment. We used multi-criterion calibration over multiple years and found an early-season influence of soil frost on transpiration water ages. This work provides a framework for quantifying the current and future interactions of soil water, evaporation, and transpiration.
Share