Articles | Volume 22, issue 11
Hydrol. Earth Syst. Sci., 22, 5947–5965, 2018
https://doi.org/10.5194/hess-22-5947-2018
Hydrol. Earth Syst. Sci., 22, 5947–5965, 2018
https://doi.org/10.5194/hess-22-5947-2018

Research article 22 Nov 2018

Research article | 22 Nov 2018

The effect of input data resolution and complexity on the uncertainty of hydrological predictions in a humid vegetated watershed

Linh Hoang et al.

Related authors

A field-validated surrogate crop model for predicting root-zone moisture and salt content in regions with shallow groundwater
Zhongyi Liu, Zailin Huo, Chaozi Wang, Limin Zhang, Xianghao Wang, Guanhua Huang, Xu Xu, and Tammo Siert Steenhuis
Hydrol. Earth Syst. Sci., 24, 4213–4237, https://doi.org/10.5194/hess-24-4213-2020,https://doi.org/10.5194/hess-24-4213-2020, 2020
Short summary
A unique vadose zone model for shallow aquifers: the Hetao irrigation district, China
Zhongyi Liu, Xingwang Wang, Zailin Huo, and Tammo Siert Steenhuis
Hydrol. Earth Syst. Sci., 23, 3097–3115, https://doi.org/10.5194/hess-23-3097-2019,https://doi.org/10.5194/hess-23-3097-2019, 2019
Short summary
Morphological dynamics of gully systems in the subhumid Ethiopian Highlands: the Debre Mawi watershed
Assefa D. Zegeye, Eddy J. Langendoen, Cathelijne R. Stoof, Seifu A. Tilahun, Dessalegn C. Dagnew, Fasikaw A. Zimale, Christian D. Guzman, Birru Yitaferu, and Tammo S. Steenhuis
SOIL, 2, 443–458, https://doi.org/10.5194/soil-2-443-2016,https://doi.org/10.5194/soil-2-443-2016, 2016
Short summary
Sediment concentration rating curves for a monsoonal climate: upper Blue Nile
Mamaru A. Moges, Fasikaw A. Zemale, Muluken L. Alemu, Getaneh K. Ayele, Dessalegn C. Dagnew, Seifu A. Tilahun, and Tammo S. Steenhuis
SOIL, 2, 337–349, https://doi.org/10.5194/soil-2-337-2016,https://doi.org/10.5194/soil-2-337-2016, 2016
Short summary
Effects of a deep-rooted crop and soil amended with charcoal on spatial and temporal runoff patterns in a degrading tropical highland watershed
Haimanote K. Bayabil, Tigist Y. Tebebu, Cathelijne R. Stoof, and Tammo S. Steenhuis
Hydrol. Earth Syst. Sci., 20, 875–885, https://doi.org/10.5194/hess-20-875-2016,https://doi.org/10.5194/hess-20-875-2016, 2016

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
Key challenges facing the application of the conductivity mass balance method: a case study of the Mississippi River basin
Hang Lyu, Chenxi Xia, Jinghan Zhang, and Bo Li
Hydrol. Earth Syst. Sci., 24, 6075–6090, https://doi.org/10.5194/hess-24-6075-2020,https://doi.org/10.5194/hess-24-6075-2020, 2020
Short summary
Coupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model
Aynom T. Teweldebrhan, Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020,https://doi.org/10.5194/hess-24-4641-2020, 2020
A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors – a case study for Kenya and Uganda
Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 24, 4463–4489, https://doi.org/10.5194/hess-24-4463-2020,https://doi.org/10.5194/hess-24-4463-2020, 2020
Short summary
Technical note: Uncertainty in multi-source partitioning using large tracer data sets
Alicia Correa, Diego Ochoa-Tocachi, and Christian Birkel
Hydrol. Earth Syst. Sci., 23, 5059–5068, https://doi.org/10.5194/hess-23-5059-2019,https://doi.org/10.5194/hess-23-5059-2019, 2019
Short summary
Assessment of climate change impact and difference on the river runoff in four basins in China under 1.5 and 2.0 °C global warming
Hongmei Xu, Lüliu Liu, Yong Wang, Sheng Wang, Ying Hao, Jingjin Ma, and Tong Jiang
Hydrol. Earth Syst. Sci., 23, 4219–4231, https://doi.org/10.5194/hess-23-4219-2019,https://doi.org/10.5194/hess-23-4219-2019, 2019
Short summary

Cited articles

Agnew, L. J., Lyon, S., Gérard-Marchant, P., Collins, V. B., Lembo, A. J., Steenhuis, T. S., and Walter, M. T.: Identifying hydrologically sensitive areas: Bridging the gap between science and application, J. Environ. Manage., 78, 63–76, https://doi.org/10.1016/j.jenvman.2005.04.021, 2006. 
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part 1: Model development, J. Am. Water Resour. Assoc., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998. 
Bárdossy, A. and Singh, S. K.: Robust estimation of hydrological model parameters, Hydrol. Earth Syst. Sci., 12, 1273–1283, https://doi.org/10.5194/hess-12-1273-2008, 2008. 
Beck, M. B.: Water quality modeling: a review of the analysis of uncertainty, Water Resour. Res., 23, 1393–1442, https://doi.org/10.1029/WR023i008p01393 1987. 
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992. 
Download
Short summary
The paper analyzes the effect of two input data (DEMs and the combination of soil and land use data) with different resolution and complexity on the uncertainty of model outputs (the predictions of streamflow and saturated areas) and parameter uncertainty using SWAT-HS. Results showed that DEM resolution has significant effect on the spatial pattern of saturated areas and using complex soil and land use data may not necessarily improve model performance or reduce model uncertainty.