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Abstract. Uncertainty in hydrological modeling is of signif-
icant concern due to its effects on prediction and subsequent
application in watershed management. Similar to other dis-
tributed hydrological models, model uncertainty is an issue
in applying the Soil and Water Assessment Tool (SWAT).
Previous research has shown how SWAT predictions are af-
fected by uncertainty in parameter estimation and input data
resolution. Nevertheless, little information is available on
how parameter uncertainty and output uncertainty are af-
fected by input data of varying complexity. In this study,
SWAT-Hillslope (SWAT-HS), a modified version of SWAT
capable of predicting saturation-excess runoff, was applied
to assess the effects of input data with varying degrees of
complexity on parameter uncertainty and output uncertainty.
Four digital elevation model (DEM) resolutions (1, 3, 10 and
30 m) were tested for their ability to predict streamflow and
saturated areas. In a second analysis, three soil maps and
three land use maps were used to build nine SWAT-HS setups
from simple to complex (fewer to more soil types/land use
classes), which were then compared to study the effect of in-
put data complexity on model prediction/output uncertainty.
The case study was the Town Brook watershed in the upper
reaches of the West Branch Delaware River in the Catskill
region, New York, USA. Results show that DEM resolution
did not impact parameter uncertainty or affect the simula-
tion of streamflow at the watershed outlet but significantly
affected the spatial pattern of saturated areas, with 10m be-
ing the most appropriate grid size to use for our application.
The comparison of nine model setups revealed that input

data complexity did not affect parameter uncertainty. Model
setups using intermediate soil/land use specifications were
slightly better than the ones using simple information, while
the most complex setup did not show any improvement from
the intermediate ones. We conclude that improving input res-
olution and complexity may not necessarily improve model
performance or reduce parameter and output uncertainty, but
using multiple temporal and spatial observations can aid in
finding the appropriate parameter sets and in reducing pre-
diction/output uncertainty.

1 Introduction

Uncertainty in hydrological modeling is of significant con-
cern due to its effects on prediction and subsequent decision-
making (Van Griensven et al., 2008; Sudheer et al., 2011).
The uncertainty of a model can be associated with dif-
ferent components: (i) model structure, (ii) input data and
(iii) model parameters (Lindenschmidt et al., 2007). Uncer-
tainty due to model structure results from assumptions or
simplifications made in the formulation of the model and in
application of the model under conditions that are not con-
sistent with those assumptions or simplifications (Tripp and
Niemann, 2008). Input data uncertainty is caused by changes
in natural conditions, limitations of measurement and lack
of data (Beck, 1987). Parameter uncertainty results from the
nonlinear response of predictions to parameter changes and
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parameter interdependence, leading to the possibility that
changes in some parameters may be compensated for by
changes in others, so that different parameter sets may pro-
duce the same simulated results (Bárdossy and Singh, 2008).
This so-called equifinality is very common in hydrological
models and is one of the main causes for uncertainties in
model predictions (Beven and Freer, 2001).

SWAT-Hillslope (SWAT-HS) (Hoang et al., 2017) is
a modified version of the Soil and Water Assessment
Tool (SWAT) (Arnold et al., 1998) that improves the simu-
lation of saturation-excess runoff and creates interaction in
flow and substance transport between the upland areas and
the valley bottom. Initial testing of SWAT-HS was carried
out in the Town Brook watershed, a 37 km2 headwater water-
shed in the upper reaches of the West Branch Delaware River
in the Catskill Mountains of New York. The West Branch
Delaware River drains into the Cannonsville Reservoir, part
the New York City (NYC) water supply system, which sup-
plies high-quality drinking water to over 9 million people
in NYC and nearby communities. In this region, rainfall in-
tensities rarely exceed infiltration rates and saturation-excess
runoff is common (Walter et al., 2003). Results showed good
agreement between measured and modeled streamflow at
both daily and monthly time steps. More importantly, the
model predicted correctly the occurrence of saturated areas
on specific days for which observations are available, which
was not achieved with application of the standard SWAT
model. Consequently, SWAT-HS performs well for our study
region and shows promise as a good model for humid vege-
tated areas where saturation-excess runoff is dominant. The
model modification is relatively new, and research into its
proper application is ongoing. Here SWAT-HS is applied to
evaluate the effect of complexity of input data on parameter
uncertainty and model prediction/output uncertainty.

In previous SWAT studies, parameter uncertainty has re-
ceived the most attention among the three types of model
uncertainty (Shen et al., 2008; Cibin et al., 2010; Shen et
al., 2010; Sexton et al., 2011). These studies confirmed lim-
ited identifiability of SWAT parameters and equifinality in
calibrating discharge at the outlet of the watershed. Sexton
et al. (2011) found that the model output uncertainty is not
only caused by uncertainty of sensitive parameters but also
contributed by non-sensitive parameters and, thus, suggested
considering non-sensitive parameters in calibration and un-
certainty analysis. Parameter uncertainty caused the least un-
certainty for runoff (Shen et al., 2008, 2010) and greatest un-
certainty for sediment (Sexton et al., 2011) among stream-
flow, sediment, nitrogen and phosphorus outputs. Moreover,
the effect of parameter uncertainty can be temporally and
spatially different. Temporally, parameter uncertainty causes
higher output uncertainty in high-flow periods (Shen et al.,
2008, 2012; Sexton et al., 2011). Spatially, SWAT generally
predicted streamflow with less uncertainty in watersheds in
humid climates relative to arid or semi-arid climates (Veith et
al., 2010). The source of uncertainty is mainly influenced by

parameters associated with runoff (Shen et al., 2008). How-
ever, soil properties can also contribute to uncertainty (Shen
et al., 2010).

Effects of input data uncertainty have been evaluated in
several SWAT applications by exploring the sensitivity of re-
quired input data for SWAT model setup – including the dig-
ital elevation model (DEM), soil and land use – on model
outputs. While most studies have focused on the sensitiv-
ity of predictions to DEM resolution, a few studies have
focused on the effects of soil and land use with varying
spatial scales. Cotter et al. (2003) found that DEM reso-
lution is the most sensitive input variable, while soil and
land use resolution have insignificant impacts on the simu-
lation of streamflow, sediment, nitrate and total phosphorus.
They suggested that the minimum DEM resolution should
range from 30 to 300 m, and minimum land use and soil
data resolution should range from 300 to 500 m. Chaubey et
al. (2005) showed the significant impact of DEM resolution
not only on watershed delineation, stream network and sub-
basin classification, but also on streamflow and nitrate load
predictions. Based on SWAT application to a 21.8 km2 wa-
tershed in Lower Walnut Creek, central Iowa, USA, Chap-
lot (2005) proposed an upper limit of 50 m for the DEM
for watershed simulation, after determining that coarser grid
sizes do not substantially affect runoff but result in signifi-
cant errors for nitrogen and sediment yields. Geza and Mc-
Cray (2008) and Mukundan et al. (2010) compared SWAT
streamflow simulations using a low-resolution State Soil Ge-
ographic database (STATSGO) and a high-resolution Soil
Survey Geographic database (SSURGO). While Geza and
McCray (2008) found that STATSGO performed better than
SSURGO before calibration and the opposite was observed
after calibration, Mukundan et al. (2010) found insignificant
differences between the two data sets in simulating stream-
flow.

Most previous SWAT studies have focused on how SWAT
predictions are affected by uncertainty of parameter estima-
tion and different input data. Limited information is available
on how parameter uncertainty and output uncertainty are af-
fected by different input data, with the exception of Kumar
and Merwade (2009), who tested the impact of watershed
subdivision and the use of two soil data sets (STATSGO and
SSURGO) on streamflow calibration and parameter uncer-
tainty. Although there have been numerous studies on the
effect of DEM resolution on SWAT predictions, none have
discussed its effects on model uncertainty and specifically on
parameter uncertainty. Moreover, these studies on model un-
certainty used an integrated response of the watershed (i.e.,
discharge at the outlet) for assessing complex processes in-
side the watershed and have not used additional spatial data
sets that may reduce model uncertainty.

The two main objectives of this paper are to evaluate (i) the
effect of DEMs of various spatial resolutions (1, 3, 10 and
30 m) on the uncertainty of streamflow and saturated-area
predictions, and (ii) the impact of combinations of soil and
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Figure 1. Town Brook watershed, Delaware County, New York.

land use data with various degrees of complexity on the un-
certainty in model simulation. In both analyses, we not only
investigate the effect on model prediction/output uncertainty
but also discuss their effect on the uncertainty in parameter
estimation. Through this study we seek to answer specific
questions, including identifying the suitable DEM resolution
for good model performance and the appropriate complexity
of the distributed input data. Answers to these research ques-
tions will be the basis for reducing decision uncertainty on
model input selection in our future applications of SWAT-HS
in the NYC water supply system.

2 Material and methods

2.1 Study area: Town Brook watershed, New York

The 37 km2 Town Brook watershed is located in the Catskill
Mountains, Delaware County, New York State (Fig. 1), and
is the headwater of the Cannonsville Reservoir watershed,
which is one of four reservoir watersheds in New York City’s
Delaware system. Elevation ranges from 493 to 989 m. The
area is humid with an average temperature of 8 ◦C and av-
erage annual precipitation of 1123 mm yr−1. Approximately
one-third of the total precipitation in the region falls as snow
(Pradhanang et al., 2011). Most soils are either silt loam
or silty clay loam. The upper terrain of the watershed has
shallow soils (average thickness: 80 cm) overlaying frac-
tured bedrock and steep slopes (average slope: 29 %), while
deeper soils (average thickness: 180 cm) underlain by a dense
fragipan-restricting layer and gentler slope (average slope:
14 %) are common in the lower terrain. Deciduous and mixed
forests predominate in the upper terrain, covering more than
half of the land area. In the lowland area, the principle land
uses are agriculture (32 %), which includes dairy and beef

farms with cropland and pastures; brushland (9 %); and resi-
dential areas (4 %).

2.2 Brief description of SWAT-HS

SWAT-HS is a modified version of the SWAT model
version 2012 (SWAT2012) that is capable of predicting
saturation-excess runoff. Two main modifications made in
SWAT-HS include (i) adding information on topography and
soil water storage capacity to the modeling unit of SWAT,
i.e., hydrological response unit (HRU), and (ii) introducing
a surface aquifer that allows lateral exchange of subsurface
water from upslope to downslope areas.

Similar to SWAT, SWAT-HS divides the watershed into
sub-basins. Additionally, the watershed is divided into a
maximum of 10 wetness classes, each of which consists of
areas in the sub-basin with similar topographic indices. Sub-
sequently, the sub-basin is further divided into HRUs that
are unique combinations of soil, land use and slope as in
SWAT, with an additional component: wetness class. The to-
pographic index (TI) is defined as

TI= ln
(

α

tan(β)KsD

)
, (1)

where TI is the soil topographic index (with units of ln;
day m−1), α is the upslope contributing area per unit con-
tour length (m), tan(β) is the local surface topographic slope,
Ks is the mean saturated hydraulic conductivity of the soil
(m day−1) and D is the soil depth (m).

The soil water storage capacity of the wetness classes is
defined as the amount of water in the root zone between field
capacity and saturation. This was assumed to vary across the
soil wetness classes following a Pareto distribution (Hoang
et al., 2017). Wetness classes that are located in the downs-
lope areas have lower storage capacities, which means they
are “wetter” than wetness classes in the upslope areas with
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smaller TI values and higher storage capacities. The wetter
the wetness class, the faster the runoff response is during a
rainstorm.

A surface aquifer is introduced to connect all wetness
classes across the hillslope and transmits subsurface flow
that is generated from this aquifer (known as lateral flow in
SWAT) laterally through the hillslope from “drier” (upslope)
to “wetter” (downslope) wetness classes.

SWAT-HS removes the original curve number method of
SWAT in predicting total surface runoff. Instead, it simu-
lates infiltration-excess runoff and saturation-excess runoff
separately with different methods. Infiltration-excess runoff
is predicted using the Green–Ampt method built into SWAT.
Saturation-excess runoff in SWAT-HS is generated in the
wetter (downslope) wetness classes by two processes: (i) rain
falls in wet areas with limited storage capacities where the
excess water becomes runoff, and (ii) water from the upland
areas is transported laterally to the lowland areas and the wa-
ter exceeding soil storage capacity becomes runoff (see Sup-
plement for more details).

2.3 Methodology

2.3.1 Effect of DEM resolution

Four DEMs from fine to coarse resolution were used to
set up the SWAT-HS model for the Town Brook watershed.
The resolutions employed were 1, 3, 10 and 30 m. The 1 m
DEM (DEM1m) was derived from 2009 aerial lidar data ac-
quired by the New York City Department of Environmen-
tal Protection (RACNE, 2011). This was resampled to cre-
ate 3, 10 and 30 m resolution DEMs (DEM3m, DEM10m
and DEM30m).

DEMs were used to delineate the watershed; calculate flow
paths, slopes and drainage areas; and compute gridded values
of TI. Based on TI values, the watershed was divided into
10 wetness classes (Fig. 4). Wetness class 1, covering a very
small fraction of the watershed (0.59 %), corresponds to the
perennial stream network and is the wettest wetness class.
We grouped 50 % of the watershed with the lowest TI val-
ues in the upland as the “driest” wetness class (wetness 10),
because saturated areas never exceeded 50 % of the water-
shed based on observations (Harpold et al., 2010) and predic-
tions by other watershed models like the Soil Moisture Rout-
ing model (Agnew et al., 2006), SWAT-VSA (Easton et al.,
2008) and SWAT-WB (White et al., 2011). Subsequently, we
divided the remaining areas into eight wetness classes (wet-
ness class 2–9) with approximately equal areas (∼ 6 % each)
based on TI values. Applying the same procedure of wetness
class division using four DEM resolutions, the four SWAT-
HS setups have a relatively similar areal percentage of each
wetness class.

HRUs were created based on 10 wetness classes, 17 soil
types and 11 land use types. A single time series of daily
precipitation and temperature data were interpolated from a

4 km× 4 km gridded PRISM climate data set (Daly et al.,
2008) using the inverse distance weighting method. Solar ra-
diation data were derived as the average of airport stations at
Albany and Binghamton supplied by the Northeast Regional
Climate Center. Relative humidity and wind speed were gen-
erated by the built-in weather generator in SWAT. The pro-
cedure outlined above is similar to the SWAT-HS setup used
by Hoang et al. (2017).

Four SWAT-HS setups were run on a daily time step
from 1998 to 2012. The first 3 years were used as the
warming-up period, and the model was calibrated and val-
idated for the periods 2001–2007 and 2008–2012, respec-
tively. We excluded the year 2011 from the validation period
because there were two extreme events (Hurricane Irene and
Tropical Storm Lee) in August and September 2011 that the
model could not capture well. The calibration was carried
out in two stages, i.e., snowmelt calibration and flow cali-
bration, and by applying the Monte Carlo sampling method.
Since the Town Brook watershed is located in a region that
is heavily impacted by snow, the prediction of snow storage
and snowmelt will significantly affect the timing and volume
of predicted streamflow in winter and early spring. Conse-
quently, we divided the calibration in two stages in order to
reduce the number of calibrated parameters involved in one
calibration and to focus on getting the right results for snow
processes before adjusting other processes.

For snowmelt calibration, we calibrated five snowmelt-
related parameters in group (i) (Table 1) by generating ran-
domly 10 000 parameter sets, running these sets using SWAT-
HS, comparing the streamflow predictions with observa-
tions and choosing the best parameter set with the best fit
to streamflow observations (highest value of daily Nash–
Sutcliffe efficiency – NSE) to use for the flow calibration
stage. For flow calibration, 10 000 parameter sets of nine flow
parameters in group (ii) (Table 1) were generated which were
then run with SWAT-HS. The simulations in the flow calibra-
tion stage were used for uncertainty analysis.

We evaluated the effect of DEM resolution on representing
topographical characteristics of the watershed by comparing
the statistical distributions of elevation, slope angle, upslope
contributing area and TI using DEMs with various spatial
resolutions (1, 3, 10 and 30 m). Subsequently, to evaluate
the effect of DEM resolution on model uncertainty, we com-
pared the four SWAT-HS setups with different DEM resolu-
tions based on (i) the uncertainty in streamflow predictions
using “good”-performance parameter sets, (ii) predictions
of saturated areas and their uncertainties, and (iii) uncer-
tainty in parameter estimation. We used the generalized like-
lihood uncertainty estimation (GLUE) approach (Beven and
Binley, 1992) to estimate the uncertainty in streamflow and
saturated-area predictions caused by parameter uncertainty.
For each model setup, good simulations were identified as
those with a NSE greater than 0.65 for use in uncertainty
estimation of streamflow. Our choice of NSE threshold at
0.65 is based on the guideline for model performance evalu-
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Table 1. SWAT-HS parameters for streamflow calibration.

Name Unit Definition Range

Group (i): snowmelt calibration

SFTMP ◦C Snowfall temperature −5 to 5
SMTMP ◦C Snowmelt temperature −5 to 5
SMFMX mm ◦C−1 Maximum snowmelt factor 5–10
SMFMN mm ◦C−1 Minimum snowmelt factor 0–5
TIMP – Snowpack temperature lag factor 0–1

Group (ii): flow calibration

RCHRG_PAF mm Fraction of root zone percolation that recharges the surface aquifer 0–1000
lata Linear coefficient of surface aquifer reservoir 0–1
latb Exponential coefficient of surface aquifer reservoir 1–3
ALPHA_BF days−1 Baseflow recession constant 0–1
EFFPORFACTOR Fraction of effective porosity that can hold water under saturated conditions 0–1
EPCO Plant water uptake compensation factor 0–1
ESCO Soil evaporation compensation factor 0–1
Smax mm Maximum soil water storage capacity in the watershed 100–400
b Shape parameter defining the distribution of soil water storage capacity 0.1–3

Figure 2. Soil and land use maps with increasing levels of complexity to build SWAT-HS model setups.

ation by Moriasi et al. (2007) that suggested good model per-
formance for streamflow as corresponding to monthly NSE
higher than 0.65. As NSE values at the monthly time step
are usually higher than the daily values, we believe that our

choice of NSE higher than 0.65 as good model performance
for a daily time step is a reasonable choice. Subsequently,
from these good simulations, we compared predictions of
saturated areas with our available field observations of satu-
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rated areas to re-select the good parameter sets for both sim-
ulated streamflow and saturated areas, to estimate the uncer-
tainty in predicted saturated areas. Six observations of satu-
rated areas (28–30 April 2006, 12 April 2007, 7 June 2007
and 2 August 2007) are available for small areas in the head-
waters of the Town Brook watershed.

2.3.2 Effect of soil and land use complexity

We built nine SWAT-HS setups ranging from simple (fewer
soil types/land use classes, fewer HRUs) to complex (more
soil types/land use classes, more HRUs) based on three soil
maps and three land use maps. In all nine setups, DEM10m
was used based on its performance as the best predictor of
saturated areas (see discussion).

Three soil maps were created with increasing levels of
complexity (Fig. 2). The simplest map (TBsoil_1) had a ho-
mogenous soil type, which was created using area-weighted
average soil data from the four dominant soil types (Hcc,
LhB, OeB, WmB) in Town Brook. The second soil map (TB-
soil_2) had a unique soil type for each wetness class and was
created by area-weighted averaging of dominant soil proper-
ties in the corresponding wetness class. The most complex
soil map TBsoil_3 consisted of all 17 soil types.

Three land use maps with increasing levels of complexity
were created (Fig. 2). The simplest land use map (TBlan-
duse_1) had agriculture as the representative land use for the
watershed because it is one of the dominant land uses and po-
tentially has a more significant impact on water quality than
other land use types. The more complex land use map (TB-
landuse_2) classifies Town Brook into three diverse land use
types: agriculture, forest and urban areas. The most complex
one (TBlanduse_3) contains all 11 land use types.

HRUs were generated based on a wetness map
(10 classes), soil map, land use and slope maps. We assumed
that slope does not have an impact on HRU discretization to
simplify the setup. We also set a threshold of 1 % for soil and
1 % for land use to eliminate minor soil types/land uses that
cover only less than 1 % of the sub-basin area.

The nine model setups are categorized in three groups:
(i) simple: the setups that use either the simplest soil or land
use (TB1–TB5), (ii) intermediate: the setups that use the av-
erage complexity for maps of either soil or land use (TB6–
TB8); and (iii) complex: the setup that uses the most complex
maps (TB9) (Table 2).

To evaluate the effect of soil and land use data complexity
on model uncertainty, we compared the nine SWAT-HS se-
tups using the same methodology used to evaluate the effect
of DEM resolution on model uncertainty that is described
above.

Figure 3. Difference in cumulative probability distribution of ele-
vation, slope, upslope contributing area and topographic index be-
tween different DEM resolutions.

3 Results

3.1 The effect of DEM resolution on model uncertainty

3.1.1 Effect on topographic characteristics

DEM resolution has varying effects on the distribution of el-
evation, slope angle, upslope contributing area and TI val-
ues. However, the distributions of elevation are similar us-
ing different DEMs, indicating no effect from DEM reso-
lution (Fig. 3a). The finer-resolution DEMs (DEM1m and
DEM3m) are able to give more precise slope values. There-
fore, coarser DEM resolutions produce slightly narrower
slope distributions, lower mean slope angles, lower probabil-
ity for steep slopes and higher probability for gentle slopes
than the finer DEM resolutions because of the smoothing of
topography and loss of topographic details (Fig. 3b). DEM
resolution has a significant effect on the calculated values
of upslope contributing areas (Fig. 3c). With the finer spatial
resolutions, grids in DEM1m and DEM3m have smaller con-
tributing areas than the ones in coarser-resolution DEM10m
and DEM30m. This results in substantial differences in the
distribution of TI in that the finer-resolution DEMs provide
lower values of TI (Fig. 3d). The impact of DEM grid size
on TI distribution is mainly due to its impact on upslope
contributing area rather than slope. Our results are consistent
with previous studies on the effect of DEM resolution on to-
pographic attributes and topographic wetness index (Zhang
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Table 2. SWAT-HS model setups with increasing levels of complexity.

SWAT-HS Wetness Soil Land use No. of Degree of
setups classes map map HRUs complexity

TB1 10 TBsoil_1 TBlanduse_1 10
TB2 10 TBsoil_2 TBlanduse_1 10
TB3 10 TBsoil_3 TBlanduse_1 26 Simple
TB4 10 TBsoil_1 TBlanduse_2 30
TB5 10 TBsoil_1 TBlanduse_3 60

TB6 10 TBsoil_2 TBlanduse_2 30
TB7 10 TBsoil_2 TBlanduse_3 60 Intermediate
TB8 10 TBsoil_3 TBlanduse_2 80

TB9 10 TBsoil_3 TBlanduse_3 146 Complex

TBsoil_1: homogeneous soil; TBsoil_2: 10 soil types (unique soil type for each wetness class);
TBsoil_3: 17 soil types; TBlanduse_1: homogenous land use (agriculture); TBlanduse_2: 3 land use
types (agriculture, forest and urban); TBlanduse_3: 11 land use types.

Figure 4. Wetness maps created from DEMs with different resolutions.

and Montgomery, 1994; Thompson et al., 2001; Sørensen
and Seibert, 2007; Gillin et al., 2015).

Depending on the DEM used, the four wetness maps
formed by grouping areas of similar TI into 10 wetness
classes show remarkable differences (Fig. 4). It should be
noted here that the differences are in the spatial distribution
of wetness classes, while the areal percentage of each wet-

ness class is relatively similar irrespective of the DEM used.
In Fig. 4, we show the wetness maps for the headwater area
where observations of saturated areas are available. It can
be clearly seen that the spatial patterns of wetness classes
in coarser-resolution DEMs (10 and 30 m) are quite similar
but are very different from the finer-resolution DEMs (1 and
3 m). DEM1m has a complex pattern with all wetness classes
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Figure 5. Box plots of NSE values in SWAT-HS setups with different DEM resolutions for calibration and validation periods (the number
above the box plot is the maximum NSE of each setup).

spread out, making it difficult to see their boundaries, while
the pattern becomes more coherent in coarser DEMs where
the boundaries of the wetness classes are easier to distin-
guish. Our results are consistent with previous studies on the
effect of grid size on spatial patterns of topographic wetness
index that have been reported by Thomas et al. (2017), Ersk-
ine et al. (2006), and Zhang and Montgomery (1994).

3.1.2 Effect on the prediction of streamflow

To evaluate the effect of DEM on the uncertainty of stream-
flow predictions, we compared streamflow outputs from
10 000 Monte Carlo simulations of four model setups with
DEMs of different resolutions (Fig. 5a). Subsequently, we
evaluated and compared streamflow estimates in the valida-
tion period based on only good parameter sets (Fig. 5b). Sta-
tistical criteria for evaluating uncertainty are shown in Ta-
ble 3. The comparison between observed flow and 90 % pre-
diction uncertainty measured between the 5th and 95th per-
centiles of predicted flows from good parameter sets is shown
in Fig. S3 in the Supplement. In all setups, more than
50 % of the parameter sets give “satisfactory” performances
(NSE≥ 0.5) (Fig. 5). Of the total randomly generated param-
eter sets, 14 %–23 % give good streamflow performance in
the four setups, with higher percentages in coarser-resolution
setups (DEM10m and DEM30m) (Table 3). For the cal-

ibration period, the maximum NSE, NSElog and Kling–
Gupta efficiency (KGE) values are equivalent (around 0.69,
0.82 and 0.81, respectively) in the four setups. However,
the median NSE, mean NSE, mean NSElog and mean KGE
are all higher in coarser-resolution setups (DEM10m and
DEM30m) than the higher-resolution ones (DEM1m and
DEM3m). In the finer-resolution setups, there are higher per-
centages of parameter setups that give poor fit to observed
streamflow (NSE is negative), which causes lower mean val-
ues of NSE as well as NSElog and KGE. The uncertainty
ranges of predicted flows, particularly intermediate flows, are
wider in the finer-resolution setups (Fig. S3), although un-
certainty bounds match observations very well in all four se-
tups. For the validation period, the good parameter sets all
give above-satisfactory to good fit to observations and rela-
tively similar performance to each other. Generally, there are
only slight differences in SWAT-HS performance on stream-
flow using different DEMs, implying the insignificant effect
of DEM resolution on streamflow simulation and the uncer-
tainty of streamflow outputs.

Although the effect of DEMs on streamflow prediction
is minor, the setups using coarser-resolution DEM10m and
DEM30m are slightly better and preferred for application.
These two setups give higher NSE value ranges, and signif-
icantly higher mean NSE values resulted from all random
combinations of parameters than the finer-resolution setups.
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Table 3. Statistical criteria to compare the effect of DEM resolution on model uncertainty.

DEM1m DEM3m DEM10m DEM30m

Calibration period: based on 10 000 Monte Carlo parameter sets

Number of “good” parameter sets (%) for
1362 1890 2180 2293

streamflow
Number of “good” parameter sets (%) for

27 49 66 67
both streamflow and saturated areas

NSE
Max 0.69 0.69 0.69 0.69
Mean 0.09 0.05 0.33 0.34

NSElog
Max 0.82 0.82 0.82 0.83
Mean 0.43 0.41 0.56 0.59

KGE
Max 0.81 0.81 0.81 0.81
Mean 0.53 0.53 0.59 0.59

Validation period: based on “good” parameter sets from calibration

NSE
Max 0.66 0.66 0.66 0.66
Mean 0.60 0.62 0.62 0.62

NSElog
Max 0.82 0.82 0.82 0.82
Mean 0.70 0.70 0.69 0.71

KGE
Max 0.79 0.78 0.79 0.79
Mean 0.70 0.70 0.70 0.71

Figure 6. Probability of saturation of wetness classes in SWAT-HS setups with different DEM resolutions using good parameters for both
streamflow and saturated areas.

These two setups also have more good parameter sets, indi-
cating a higher probability of getting good representation of
the modeled watershed. This implies better streamflow pre-
diction by these two setups even without calibration.

3.1.3 Effect on the prediction of saturated areas

The probabilities of saturation in 10 wetness classes were
compared among four DEM resolution setups using only
good parameter sets for both streamflow and saturated-area
predictions (Fig. 6). The probability of saturation, which in-
dicates the number of days in the calibration period when

the wetness class is saturated, shows no significant differ-
ence among the four setups, indicating that DEM resolution
does not have an impact on the probability of saturation. It is
important to note that we tried to keep the areal percentage
of each wetness class approximately the same in the four se-
tups using different DEMs. The good parameter sets in four
setups should give comparable predictions of overall stream-
flow, percentage of watershed area that is saturated and the
time that each wetness class was saturated, which results
in similar probability of saturation. Wetness classes 7 to 10
are predicted to be mostly dry, implying that almost 70 % of
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the watershed is rarely saturated. Wetness class 1 has a high
probability of saturation (80 %–100 %) because its soil water
storage capacity is very low; i.e., the wetness class is prone
to saturation whenever there is precipitation. The probability
of saturation decreases in the more upslope wetness classes:
60 %–80 % in wetness class 2, 30 %–50 % in class 3, 5 %–
22 % in class 4, 1 %–9 % in class 5, 0 %–3 % in class 6, 0 %–
1 % in class 7, 0 %–0.3 % in class 8, 0 %–0.08 % in class 9
and 0 % in class 10. We also observed that the uncertainty of
saturation probability of the more upslope wetness classes is
lower because they only respond to high-rainfall events.

The results of the probability of saturation correspond well
with the uncertainty of percentage of saturated areas shown
in Fig. 7. The four model setups do not have significant dif-
ferences in the percentage of saturated areas in the water-
shed. The maximum, minimum and interquartile range in-
dicated by the top and bottom values of the four box plots
are slightly different because of minor differences in division
of wetness classes in the watershed. For the majority of the
time, no more than approximately 25 % of the total water-
shed area is saturated. The watershed can be saturated up to
more than 50 % in extreme events that are shown as outliers
in the box plots. The median percentage of saturated areas in
the watershed is only around 7 %–8 %.

Although the statistical distributions of saturated areas in
four DEM setups are relatively similar, the spatial distribu-
tions of saturated areas simulated in a small headwater area
(Fig. 1) on specific days (28–30 April 2006), when obser-
vations are available, appeared to be different as shown in
Fig. 8. In Fig. 8, the saturated areas simulated in four DEM
setups correspond to the saturation of wetness classes 1–3.
Saturated areas cover approximately equal areas of the wa-
tershed for the different DEM resolutions but differ signif-
icantly in spatial distribution. The saturated areas resulting
from DEM1m and DEM3m are scattered, not well connected
and broadly distributed. For coarser-resolution DEM10m and
DEM30m, saturated areas connect well with each other and
with the areas concentrated near streams. The percentages of
simulated saturated areas that intersect with observations in-
crease with coarser-resolution DEMs: 34 % (DEM1m), 53 %
(DEM3m), 85 % (DEM10m) and 90 % (DEM30m). There-
fore, based on visual comparison with observations and our
calculation, the coarser-resolution DEMs give better fits to
observed saturated areas than the higher-resolution DEMs.
Among the four DEMs, DEM10m provides the most real-
istic representation of saturated areas and reasonable fit to
observations.

3.1.4 Effect on parameter uncertainty

Figure 9 shows the comparison between the distribution of
good parameters for streamflow (in green) and the distribu-
tion of good parameters for both streamflow and saturated
areas (in blue) in four SWAT-HS model setups with different-
resolution DEMs. Only two parameter distributions (latb and

Figure 7. Percentage of saturated areas taking into account param-
eter uncertainty in the calibration period in SWAT-HS setups using
DEMs with different resolutions.

Smax) are plotted in Fig. 9 because they are the most sen-
sitive parameters (Hoang et al., 2017). Although the number
of good parameters for streamflow varies in four setups, the
ranges of good parameter values and the shape of their distri-
butions are alike for all calibrated parameters. Using multi-
ple observations (both streamflow and saturated areas) helps
to reduce a great number of good parameters in all four se-
tups but does not significantly narrow down the value ranges
of good parameters. The similarity in the distribution of good
parameters in four setups with different DEM resolutions im-
plies that DEM resolution has a negligible impact on param-
eter uncertainty for this watershed.

3.2 Effect of soil and land use input complexity on
model uncertainty

3.2.1 Effect on uncertainty in streamflow predictions

All nine SWAT-HS setups with different degrees of com-
plexity are able to obtain good model performance and are
comparable to one another (Fig. 10 and Table 4). More than
50 % of the total simulations in each setup produce NSE
greater than 0.5, which corresponds to satisfactory perfor-
mance. All setups also have high percentages of good per-
formance (12.5 %–22.6 %), with TB1 and TB8 having the
lowest and highest percentages, respectively. The maximum
NSE, NSElog and KGE obtained from nine setups are rela-
tively equivalent. The mean values of the three metrics are
slightly different, except for the TB3 setup, with the low-
est mean values in all three metrics. This is also reflected
in Fig. S4, showing that all setups capture measured stream-
flow well within their uncertainty ranges, with TB3 being
the poorest setup with the widest uncertainty range. Ap-
plying only the good parameter sets in the validation pe-
riod, we observe insignificant differences among the nine se-
tups, but TB3 still performs the worst in low flow with the
lowest NSElog. All these good parameter sets give above-
satisfactory to good fit to observations in the validation pe-
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Figure 8. Simulated and observed saturated areas from four SWAT-HS setups using different DEMs, 28–30 April 2006.

Figure 9. Distribution of good parameters for streamflow (in green) and for both streamflow and saturated areas (in blue) with log y axis in
four SWAT-HS setups using different DEM resolutions.
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Table 4. Statistical criteria to compare the effect of input complexity on model uncertainty.

Statistical criteria/setup Simple Intermediate Complex

TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9

Calibration period: based on 10 000 Monte Carlo parameter sets

Number of “good” parameter sets (%) for streamflow 1254 1917 1510 1753 1722 2194 2144 2258 2180
Number of “good” parameter sets (%) for both

76 99 88 60 61 64 61 59 66
streamflow and saturated areas

NSE
Max 0.68 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Mean 0.26 0.30 −0.08 0.30 0.30 0.34 0.33 0.34 0.33

NSElog
Max 0.80 0.80 0.80 0.82 0.82 0.82 0.82 0.82 0.82
Mean 0.55 0.55 0.37 0.58 0.57 0.56 0.56 0.55 0.56

KGE
Max 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
Mean 0.59 0.59 0.51 0.59 0.59 0.59 0.59 0.59 0.59

Validation period: based on “good” parameter sets from calibration

NSE
Max 0.65 0.66 0.65 0.66 0.66 0.66 0.66 0.66 0.66
Mean 0.60 0.61 0.60 0.60 0.60 0.62 0.62 0.62 0.62

NSElog
Max 0.79 0.80 0.79 0.81 0.81 0.82 0.82 0.82 0.82
Mean 0.70 0.70 0.57 0.71 0.71 0.69 0.69 0.68 0.68

KGE
Max 0.77 0.78 0.78 0.79 0.79 0.78 0.78 0.78 0.79
Mean 0.72 0.71 0.72 0.72 0.72 0.71 0.70 0.70 0.70

Figure 10. Box plots of NSE values in SWAT-HS setups with different degrees of complexity for calibration and validation periods (the
number above the box plot is the maximum NSE of each setup).
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Figure 11. Distribution of good parameter values (parameter latb) for streamflow (in green) and for both streamflow and saturated areas (in
blue) with log y axis in nine SWAT-HS setups with different degrees of complexity.

riods, implying that all nine setups are reasonable to use
for flow predictions. In spite of minor differences, from all
the evaluation criteria, TB3 gives the poorest performance
among nine setups, followed by the simplest setup: TB1. Se-
tups TB6 to TB9 give equally good performance and are bet-
ter than the remaining ones.

Grouping the nine setups into three groups – (i) simple
(TB1–TB5), (2) intermediate (TB6–TB8) and (iii) complex
(TB9) – we observe that the model performance of setups
in intermediate groups are slightly better than the simple
one, although the differences are small. The intermediate
group has a higher number of good parameter sets, a higher
mean NSE in the calibration period and consistently bet-
ter performance in the validation period. The most complex
setup (TB9) gives equally good performance to setups in the
intermediate group with no improvement in any statistical
metric.

All nine setups use the same DEM with 10 m resolution
and have the same distribution of wetness classes; therefore,
the distributions of their predicted saturated areas are similar
and thus are not shown here.

3.2.2 Effect on parameter uncertainty

We tested the effect of soil and land use complexity on pa-
rameter uncertainty by comparing the distribution of good
parameters among nine setups with different degrees of com-
plexity, as in Fig. 11. We only showed the distribution of one

calibrated parameter (latb) as an example because we ob-
served the same behavior in the remaining calibrated param-
eters. Similar to the comparison of four setups using different
DEMs, the nine setups with different degrees of complexity
produce different numbers of good parameters for stream-
flow and saturated areas but are similar in the shape of their
distributions and value ranges. Accordingly, soil and land use
complexity have negligible effects on parameter uncertainty.

4 Discussion

The objective of this study is to estimate uncertainty in model
parameterization, and predictions of streamflow and satu-
rated areas due to the effects of DEM resolution and com-
plexity in model setup, specifically combinations of land use
and soils. The following sections discuss the proposed re-
search questions based on the results obtained.

4.1 What is the most suitable DEM resolution to use in
SWAT-HS?

Our results show that randomly generated parameter values
from coarser-resolution DEMs (DEM10m and DEM30m)
perform better for streamflow prediction. However, after cal-
ibration, the effect of DEM resolution on the uncertainty
of streamflow prediction is very minor. This result is in
agreement with Liu et al. (2005) using the WetSpa model
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Figure 12. Relationships of topographic index with slope, upslope contributing area and elevation with two different DEM resolutions: 1 and
10 m (red lines are used as reference to compare the two DEM resolutions).

with 50–800 m cell sizes, Molnar and Julien (2000) using
the CASC2D model with 127–914 m cell sizes and Chap-
lot (2005) using SWAT with 20–500 m DEMs. These stud-
ies found that discharge was simulated equally well irrespec-
tive of DEM resolution as long as parameters were calibrated
properly.

DEM resolution has very limited impact on probability of
saturation in wetness classes and percentage of saturated ar-
eas in the watershed but greatly influences the spatial distri-
bution of saturated areas. SWAT-HS simulates the saturation-
excess runoff coming from saturated areas based on a sta-
tistical soil water distribution assigned to wetness classes.
The wettest wetness classes downslope with lowest soil wa-
ter storage capacity are saturated first followed by drier ad-
jacent wetness classes located more upslope. Therefore, the
distribution of saturated areas follows the distribution of wet-
ness classes categorized by the values of TI. Accordingly, the
sensitivity of DEMs on saturated-area predictions can be ex-
plained by the effect of DEM resolution on TI.

Figure 12 shows the relationships of TI with slope an-
gle, upslope contributing area and elevation using two rep-
resentative DEM resolutions: 1 and 10 m. It is evident that
DEM1m can capture a significantly wider range of slopes
than DEM10m because of its finer resolution. Also, the per-

centage of grids that have low values of TI is significantly
higher in DEM1m than in DEM10m (Fig. 12 uses red lines
for reference), which also can be seen in Fig. 3d. Low TI val-
ues are usually found in grids with steep slopes or with
low upslope contributing areas (according to Eq. 1). Because
DEM1m captures steep slopes at a local scale and has a high
number of grids with low upslope contributing area (Fig. 3c),
the percentage of low TI values in DEM1m is much higher.
If we look at the relationship between TI and elevation, we
can see that the distribution of TI values in DEM1m spread
out wider than in DEM10m at all elevations. This explains
why the distribution of TI values in DEM1m has a more
complex pattern while DEM10m has a more coherent pat-
tern with high TI grids well matched to the stream network
(Fig. 13). Because of that, in this case study, the coarser
DEMs (DEM10m and 30 m) give a more suitable represen-
tation of the landscape than the finer DEMs (DEM1m and
3 m). This is possibly the reason why the coarser DEM se-
tups have higher probabilities for good performance (i.e., a
higher number of good parameter sets) and have better per-
formance in all aspects as compared with the finer DEMs.

Our findings are in agreement with Lane et al. (2004), who
used a 2 m high-resolution lidar DEM with TOPMODEL
(TOPography-based hydrological MODEL), which simu-
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Figure 13. Distribution of topographic index values using different
DEMs.

lates hydrology based on TI. TOPMODEL predicted the
widespread existence of disconnected saturated zones that
expanded within an individual storm event but which did not
necessarily connect with the drainage network. They found
that, when using the lidar DEM 2 m, TI has a complex pat-
tern, associated with small areas of both low and high values
of the TI, leading to the appearance of disconnected saturated
areas. After remapping the topographic data at progressively
coarser resolutions by spatial averaging of elevations within
each cell, they found that, as the topographic resolution was
coarsened, the number and extent of unconnected saturated
areas were reduced, and the catchments displayed more co-
herent patterns, with saturated areas more effectively con-
nected to the channel network. Moreover, Quinn et al. (1995)
showed how progressively refining model resolution from
50 to 5 m reduces the kurtosis in the distribution of TI val-
ues and increases quite substantially the number of very low
index values.

For the Town Brook watershed, DEM10m is the best
choice among four DEMs tested because of its slightly better
performance for streamflow and, more importantly, its good
fit to observations of saturated areas. Although DEM30m
also gives very good results for streamflow and distribution
of saturated areas, we did not choose DEM30m because its
coarse cell size may overestimate the extent of actual satu-
rated areas. Therefore, DEM10m is the preferred choice for

scaling up the application of SWAT-HS to larger watersheds
in the New York City water supply system for future appli-
cations. Our choice of DEM10m is in agreement with Kuo
et al. (1999), who evaluated the effect of DEM grid sizes
ranging from 10 to 400 m on runoff and soil moisture for
a variable-source-area hydrology model and observed that
when using the 10 m× 10 m grid cells the overall pattern of
simulated wet areas showed a close correspondence with the
poorly drained areas defined in the soil survey. Zhang and
Montgomery (1994), in a study that evaluated grid size ef-
fect using TOPMODEL, also suggested that a 10 m grid size
presents a rational compromise between increasing resolu-
tion and data volume for simulating geomorphic and hydro-
logical processes. In contrast, Thomas et al. (2017) indicated
that lidar DEM 1–2 m is optimal for modeling hydrologically
sensitive (runoff-generating) areas and is far better than the
radar-based DEM5m. However, their case study is a com-
plex agricultural catchment dominated by micro-topographic
features, which can only be captured using high-resolution
DEMs. Our choice of DEM10m is in contrast to Buchanan et
al. (2014), who preferred DEM3m rather than DEM10m be-
cause of the better fit with the observed patterns of soil mois-
ture collected at five different agricultural field sites. The
difference in scale of case studies (field scale vs. watershed
scale) and characteristics of case studies (agricultural fields
vs. a mixture of forest and agriculture) between Buchanan
et al. (2014) and our study may have resulted in different
conclusions on choice of the appropriate DEM resolution.
Therefore, the sensitivity of DEM resolution may depend on
the scale and characteristics of the watershed. The dominant
hydrological process in the watershed may have a big im-
pact on the sensitivity of DEM on hydrological prediction.
In the Town Brook watershed, lateral flow is a dominant flow
component and saturation-excess runoff is a dominant type
of surface runoff; thus, topography is the most important fac-
tor. Consequently, DEM10m that represents a realistic dis-
tribution of TI, with high-TI area compatible with the main
stream network, gave a better model performance. In a field-
scale watershed, finer DEM resolution is probably better be-
cause it can capture a more detailed and realistic representa-
tion of TI distribution. In an agricultural area dominated by
subsurface tile drainage, DEM resolution may not be sensi-
tive.

It should be noted here that all four DEMs in this study are
derived from the same source of 2009 aerial lidar data with
1 m resolution. The coarser DEMs (DEM3m, DEM10m and
DEM30m) are resampled products from DEM1m. There-
fore, the four different DEM resolutions carry similar infor-
mation but differ in topographic smoothing. A comparison
of various-resolution DEMs from different sources may not
yield the same results.
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4.2 What is the appropriate complexity of the
distributed soil and land use inputs?

From our comparison of nine SWAT-HS setups in three
groups of complexity (simple, intermediate and complex),
we found that with all randomly generated parameter val-
ues the intermediate and complex groups are better than the
simple group based on slightly higher mean NSE values and
a higher probability of good performance based on randomly
generated parameter values. The TB3 setup, which was built
from the most complex soil map (17 soil types) and the sim-
plest land use map (1 land use) and the simplest setup TB1
are the two poorest setups in the simple group. Additionally,
compared to the intermediate group, the complex group does
not gain any improvement from using inputs that are more
detailed. However, with proper calibration, all nine models
are able to provide good performances, and their good pa-
rameter sets continue to perform equally well in the valida-
tion period. In addition to streamflow, all nine setups are able
to capture saturated areas correctly on specific days where
observations are available. We conclude that increasing spa-
tial input details does not necessarily give better results for
streamflow simulation as long as the model is properly cal-
ibrated. However, oversimplification like the simple setups
TB1 and TB3 with only one land use type may have greater
impacts on water quality modeling. We recommend using
intermediate inputs for the SWAT-HS setup that adequately
represent the spatial distribution of dominant soils and land
use types.

Our results are in agreement with previous studies on the
effect of model input complexity on streamflow simulation.
Using an urban hydrological distributed model in a small res-
idential area, Petrucci and Bonhomme (2014) showed that
the inclusion of some basic geographical information that
helps to correctly estimate impervious cover and identify
paths for surface water improves the model performance,
but further refinements are less effective. Finger et al. (2015)
compared different setups with increasing detail in input in-
formation using the HBV model and three observational data
sets. They found that enhanced model input complexity does
not lead to a significant increase in overall performance in
water quantity, but they suggested that the availability and
use of different data sets to calibrate hydrological models
might be more important than model input data complexity to
achieve realistic estimations of runoff composition. Muleta et
al. (2007) also showed that streamflow simulated by SWAT
is relatively insensitive to spatial scale when comparing mul-
tiple watershed delineations from different soil and land use
input data.

In comparison with the effect of DEM resolution, the im-
portance of soil and land use information is not as signifi-
cant in the prediction of both streamflow and saturated areas.
As our studied watershed is a rural area and dominated by
saturation-excess runoff, topography and the wetness condi-
tions of areas in the watershed are more important than land

use in water quantity modeling. Moreover, SWAT-HS uses TI
as the basis for hydrological modeling; thus, the effect of
DEM resolution on hydrological predictions is dominant.
Therefore, when the appropriate DEM resolution is used, soil
and land use information becomes less sensitive to hydrolog-
ical predictions. We think that this finding is applicable to
watersheds where application of SWAT-HS is suitable, i.e.,
watersheds dominated by saturation-excess runoff. This find-
ing may be also valid in applications of other topography-
based watershed models, including TOPMODEL (Beven and
Kirkby, 1979; Quinn and Beven, 1993), SWAT-VSA (Easton
et al., 2008) and SWAT-WB (White et al., 2011). These re-
sults may not be applicable in water quality modeling. Since
land use information controls the inputs of nutrients and in-
formation of other human activities that affect water quality,
the water quality prediction is expected to be very sensitive
to the details of land use.

4.3 How does input complexity affect parameter
uncertainty and model output uncertainty?

Our results show that, regardless of the level of detail of in-
put data, we obtained numerous sets of parameter values that
give equally good performance for streamflow and saturated-
area predictions. Modifying the level of detail in input data
changes the number of good parameter sets, but the ranges
of good parameter values and the shape of their distributions
remain the same. The number of randomly generated Monte
Carlo parameter sets is sufficiently high to give a good cov-
erage of parameter space. Although different inputs result
in varied numbers of good parameter sets, those numbers in
all setups are adequate to represent the distribution of good
parameters, which reflects their sensitivities to hydrological
prediction. Therefore, we conclude that for this case study
and the particular model SWAT-HS using higher-resolution
DEM or adding complex information on soil or land use
does not reduce parameter uncertainty or solve the equifinal-
ity problem. This statement may not be valid for other areas
that are characterized by numerous land uses and complex
variations in topography and soil types. This is also not valid
for physically based models which require detailed soil and
land use information and a minimum number of parameters
for calibration.

Combining different observations (temporal observations
of streamflow and spatial observations of saturated areas on
multiple days) in calibration will help to reduce the num-
ber of good parameter sets and choose the appropriate pa-
rameter sets that give good representation of hydrological
processes in the watershed. The importance of using mul-
tiple data sets has been addressed in Finger et al. (2015),
McMillan et al. (2011) and Kirchner (2006). Our study is not
aimed at solving the equifinality problem but rather reduces
the number of solutions considered when using SWAT-HS
to predict streamflow. The outcome of this study directly re-
duces the decision uncertainty with regard to selecting the
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optimum combination of input data sets for model setup that
gives the best model results both spatially and temporally.
This has implications for watershed modeling by reducing
model run time as we scale up the application of SWAT-HS
to other larger watersheds within the NYC water supply sys-
tem.

5 Summary and conclusions

This paper is a follow-up to our previous study using the
SWAT-HS model, investigating the effect of input data com-
plexity on the uncertainty in predictions of streamflow and
saturated areas. The input data include DEMs with different
resolutions and different combinations of simple to complex
soil and land use maps. The main objectives are to explore
whether using more complex spatial data yields better, more
robust results and to guide the selection of the most appro-
priate input data for future applications of SWAT-HS in other
watersheds or larger watersheds within the New York City
water supply system.

We chose DEM10m resampled from lidar DEM1m as the
most appropriate resolution because DEM10m gives a better
physical representation of the landscape and is a compromise
between the high-resolution DEM1m and DEM3m that pro-
vide too much spatial detail, which affects the calculation
of upslope contributing areas and TI, and coarse-resolution
DEM30m that averages out the essential details. We recom-
mend the use of an intermediate soil and land use map for
our future applications of SWAT-HS. Our results show that
streamflow is sensitive neither to DEM resolution nor to soil
and land use complexity as long as proper calibration is car-
ried out. However, DEM resolution has a significant impact
on the spatial distribution of predicted saturated areas due to
its substantial control on the distribution of TI values. The
effect from soil and land use inputs becomes minor when the
appropriate DEM resolution is used in the model setup.

For the New York City watershed region, our study will
provide guidance for choosing input data (DEM resolution
and the degree of complexity for soil and land use) to apply
SWAT-HS in a larger-scale watershed that requires division
into multiple sub-basins and a certain degree of complexity
for soil and land use information. Our results are particu-
larly informative when we use SWAT-HS to identify critical
runoff-generating areas and locations within the watershed
where management interventions for water quality improve-
ments (e.g., phosphorus load reduction) are most effective.
Besides New York City watersheds, our findings are appli-
cable to watersheds with similar land use, topography and
climate, but similar investigation is needed in other regions
using the methodology described in this paper.

From this study it can be inferred that hydrological predic-
tion is very sensitive to the choice of DEM (with greater ef-
fects on prediction of saturated areas than streamflow) when
using a hydrologic model that uses topographic index as the

basis for hydrological modeling in a watershed that is domi-
nated by saturation-excess runoff. With SWAT-HS and mod-
els that are based on TI such as TOPMODEL, SWAT-VSA
and SWAT-WB, DEM resolution is more influential than the
complexity of soil/land use information. When the appropri-
ate DEM resolution is used, soil and land use information
becomes less influential in hydrological predictions.

Regardless of the level of detail for input data, the equi-
finality problem can cause uncertainty in modeled results
when using different SWAT-HS setups. Increasing input data
complexity does not help to reduce parameter uncertainty
and the uncertainty of model predictions. However, using
multiple types of observed data sets such as spatial obser-
vations in addition to the conventional temporal observations
can eliminate a high number of unsuitable parameter sets and
guide selection of the appropriate parameter sets that give
good temporal and spatial predictions for streamflow and sat-
urated areas.
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