Articles | Volume 22, issue 7
https://doi.org/10.5194/hess-22-3701-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-3701-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of long-term changes in canopy structure on rainfall interception loss: a case study in Speulderbos, the Netherlands
César Cisneros Vaca
CORRESPONDING AUTHOR
Faculty of Geo-information and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
Christiaan van der Tol
Faculty of Geo-information and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
Chandra Prasad Ghimire
Faculty of Geo-information and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
Related authors
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Bart Schilperoort, Miriam Coenders-Gerrits, Willem Luxemburg, César Jiménez Rodríguez, César Cisneros Vaca, and Hubert Savenije
Hydrol. Earth Syst. Sci., 22, 819–830, https://doi.org/10.5194/hess-22-819-2018, https://doi.org/10.5194/hess-22-819-2018, 2018
Short summary
Short summary
Using the
DTStechnology, we measured the evaporation of a forest using fibre optic cables. The cables work like long thermometers, with a measurement every 12.5 cm. We placed the cables vertically along the tower, one cable being dry, the other kept wet. By looking at the dry and wet cable temperatures over the height we are able to study heat storage and the amount of water the forest is evaporating. These results can be used to better understand the storage and heat exchange of forests.
Enting Tang, Yijian Zeng, Yunfei Wang, Zengjing Song, Danyang Yu, Hongyue Wu, Chenglong Qiao, Christiaan van der Tol, Lingtong Du, and Zhongbo Su
Biogeosciences, 21, 893–909, https://doi.org/10.5194/bg-21-893-2024, https://doi.org/10.5194/bg-21-893-2024, 2024
Short summary
Short summary
Our study shows that planting shrubs in a semiarid grassland reduced the soil moisture and increased plant water uptake and transpiration. Notably, the water used by the ecosystem exceeded the rainfall received during the growing seasons, indicating an imbalance in the water cycle. The findings demonstrate the effectiveness of the STEMMUS–SCOPE model as a tool to represent ecohydrological processes and highlight the need to consider energy and water budgets for future revegetation projects.
Alby Duarte Rocha, Stenka Vulova, Christiaan van der Tol, Michael Förster, and Birgit Kleinschmit
Hydrol. Earth Syst. Sci., 26, 1111–1129, https://doi.org/10.5194/hess-26-1111-2022, https://doi.org/10.5194/hess-26-1111-2022, 2022
Short summary
Short summary
Evapotranspiration (ET) is a sum of soil evaporation and plant transpiration. ET produces a cooling effect to mitigate heat waves in urban areas. Our method uses a physical model with remote sensing and meteorological data to predict hourly ET. Designed for uniform vegetation, it overestimated urban ET. To correct it, we create a factor using vegetation fraction that proved efficient for reducing bias and improving accuracy. This approach was tested on two Berlin sites and can be used to map ET.
P. E. K. Campbell, K. F. Huemmrich, E. M. Middleton, J. Alfieri, C. van der Tol, and C. S. R. Neigh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 1–8, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-1-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-1-2022, 2022
Peiqi Yang, Egor Prikaziuk, Wout Verhoef, and Christiaan van der Tol
Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021, https://doi.org/10.5194/gmd-14-4697-2021, 2021
Short summary
Short summary
Since the first publication 12 years ago, the SCOPE model has been applied in remote sensing studies of solar-induced chlorophyll fluorescence (SIF), energy balance fluxes, gross primary productivity (GPP), and directional thermal signals. Here, we present a thoroughly revised version, SCOPE 2.0, which features a number of new elements.
Jan G. Hofste, Rogier van der Velde, Jun Wen, Xin Wang, Zuoliang Wang, Donghai Zheng, Christiaan van der Tol, and Zhongbo Su
Earth Syst. Sci. Data, 13, 2819–2856, https://doi.org/10.5194/essd-13-2819-2021, https://doi.org/10.5194/essd-13-2819-2021, 2021
Short summary
Short summary
The dataset reported in this paper concerns the measurement of microwave reflections from an alpine meadow over the Tibetan Plateau. These microwave reflections were measured continuously over 1 year. With it, variations in soil water content due to evaporation, precipitation, drainage, and soil freezing/thawing can be seen. A better understanding of the effects aforementioned processes have on microwave reflections may improve methods for estimating soil water content used by satellites.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Yunfei Wang, Yijian Zeng, Lianyu Yu, Peiqi Yang, Christiaan Van der Tol, Qiang Yu, Xiaoliang Lü, Huanjie Cai, and Zhongbo Su
Geosci. Model Dev., 14, 1379–1407, https://doi.org/10.5194/gmd-14-1379-2021, https://doi.org/10.5194/gmd-14-1379-2021, 2021
Short summary
Short summary
This study integrates photosynthesis and transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum system, via a simplified 1D root growth model. The results indicated that the simulation of land surface fluxes was significantly improved by considering the root water uptake, especially when vegetation was experiencing severe water stress. This finding highlights the importance of enhanced soil heat and moisture transfer in simulating ecosystem functioning.
Peiqi Yang, Christiaan van der Tol, Petya K. E. Campbell, and Elizabeth M. Middleton
Biogeosciences, 18, 441–465, https://doi.org/10.5194/bg-18-441-2021, https://doi.org/10.5194/bg-18-441-2021, 2021
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) has the potential to facilitate the monitoring of photosynthesis from space. This study presents a systematic analysis of the physical and physiological meaning of the relationship between fluorescence and photosynthesis at both leaf and canopy levels. We unravel the individual effects of incoming light, vegetation structure and leaf physiology and highlight their joint effects on the relationship between canopy fluorescence and photosynthesis.
Bart Schilperoort, Miriam Coenders-Gerrits, César Jiménez Rodríguez, Christiaan van der Tol, Bas van de Wiel, and Hubert Savenije
Biogeosciences, 17, 6423–6439, https://doi.org/10.5194/bg-17-6423-2020, https://doi.org/10.5194/bg-17-6423-2020, 2020
Short summary
Short summary
With distributed temperature sensing (DTS) we measured a vertical temperature profile in a forest, from the forest floor to above the treetops. Using this temperature profile we can see which parts of the forest canopy are colder (thus more dense) or warmer (and less dense) and study the effect this has on the suppression of turbulent mixing. This can be used to improve our knowledge of the interaction between the atmosphere and forests and improve carbon dioxide flux measurements over forests.
Javier Pacheco-Labrador, Tarek S. El-Madany, M. Pilar Martin, Rosario Gonzalez-Cascon, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Tiana Hammer, Heiko Moossen, Kathrin Henkel, Olaf Kolle, David Martini, Vicente Burchard, Christiaan van der Tol, Karl Segl, Markus Reichstein, and Mirco Migliavacca
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-501, https://doi.org/10.5194/bg-2019-501, 2020
Revised manuscript not accepted
Short summary
Short summary
The new generation of sensors on-board satellites have the potential to provide richer information about the function of vegetation than before. This information, nowadays missing, is fundamental to improve our understanding and prediction of carbon and water cycles, and therefore to anticipate effects and responses to Climate Change. In this manuscript we propose a method to exploit the data provided by these satellites to successfully obtain this information key to face Climate Change.
Debsunder Dutta, David S. Schimel, Ying Sun, Christiaan van der Tol, and Christian Frankenberg
Biogeosciences, 16, 77–103, https://doi.org/10.5194/bg-16-77-2019, https://doi.org/10.5194/bg-16-77-2019, 2019
Short summary
Short summary
Canopy structural and leaf photosynthesis parameterizations are often fixed over time in Earth system models and represent large sources of uncertainty in predictions of carbon and water fluxes. We develop a moving window nonlinear optimal parameter inversion framework using constraining flux and satellite reflectance observations. The results demonstrate the applicability of the approach for error reduction and capturing the seasonal variability of key ecosystem parameters.
Bart Schilperoort, Miriam Coenders-Gerrits, Willem Luxemburg, César Jiménez Rodríguez, César Cisneros Vaca, and Hubert Savenije
Hydrol. Earth Syst. Sci., 22, 819–830, https://doi.org/10.5194/hess-22-819-2018, https://doi.org/10.5194/hess-22-819-2018, 2018
Short summary
Short summary
Using the
DTStechnology, we measured the evaporation of a forest using fibre optic cables. The cables work like long thermometers, with a measurement every 12.5 cm. We placed the cables vertically along the tower, one cable being dry, the other kept wet. By looking at the dry and wet cable temperatures over the height we are able to study heat storage and the amount of water the forest is evaporating. These results can be used to better understand the storage and heat exchange of forests.
Rahul Raj, Christiaan van der Tol, Nicholas Alexander Samuel Hamm, and Alfred Stein
Geosci. Model Dev., 11, 83–101, https://doi.org/10.5194/gmd-11-83-2018, https://doi.org/10.5194/gmd-11-83-2018, 2018
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Mathematical applications
Using statistical models to depict the response of multi-timescale drought to forest cover change across climate zones
Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations
The most extreme rainfall erosivity event ever recorded in China up to 2022: the 7.20 storm in Henan Province
The role of atmospheric rivers in the distribution of heavy precipitation events over North America
Study on a mother wavelet optimization framework based on change-point detection of hydrological time series
Projected changes in droughts and extreme droughts in Great Britain strongly influenced by the choice of drought index
Atmospheric water transport connectivity within and between ocean basins and land
Technical Note: Space–time statistical quality control of extreme precipitation observations
The relative importance of antecedent soil moisture and precipitation in flood generation in the middle and lower Yangtze River basin
Rainfall pattern analysis in 24 East Asian megacities using a complex network
Comparison between canonical vine copulas and a meta-Gaussian model for forecasting agricultural drought over China
Analysis of flash droughts in China using machine learning
Performance-based comparison of regionalization methods to improve the at-site estimates of daily precipitation
The use of personal weather station observations to improve precipitation estimation and interpolation
The 2018 northern European hydrological drought and its drivers in a historical perspective
Assimilating shallow soil moisture observations into land models with a water budget constraint
Emerging climate signals in the Lena River catchment: a non-parametric statistical approach
Near-0 °C surface temperature and precipitation type patterns across Canada
A universal multifractal approach to assessment of spatiotemporal extreme precipitation over the Loess Plateau of China
Significant spatial patterns from the GCM seasonal forecasts of global precipitation
Bayesian performance evaluation of evapotranspiration models based on eddy covariance systems in an arid region
Technical note: An improved Grassberger–Procaccia algorithm for analysis of climate system complexity
Geostatistical assessment of warm-season precipitation observations in Korea based on the composite precipitation and satellite water vapor data
Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets
Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale
Assessment of an ensemble seasonal streamflow forecasting system for Australia
Technical note: Combining quantile forecasts and predictive distributions of streamflows
Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes
Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē–Atbara river basin, Ethiopia
Seasonal streamflow forecasting by conditioning climatology with precipitation indices
Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts
Flood triggering in Switzerland: the role of daily to monthly preceding precipitation
Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China
Explaining and forecasting interannual variability in the flow of the Nile River
Drought severity–duration–frequency curves: a foundation for risk assessment and planning tool for ecosystem establishment in post-mining landscapes
Characterising the space–time structure of rainfall in the Sahel with a view to estimating IDAF curves
Spatial analysis of precipitation in a high-mountain region: exploring methods with multi-scale topographic predictors and circulation types
Variability of extreme precipitation over Europe and its relationships with teleconnection patterns
Drought evolution characteristics and precipitation intensity changes during alternating dry–wet changes in the Huang–Huai–Hai River basin
Structural break or long memory: an empirical survey on daily rainfall data sets across Malaysia
Calibration of aerodynamic roughness over the Tibetan Plateau with Ensemble Kalman Filter analysed heat flux
Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods
Spectral representation of the annual cycle in the climate change signal
Simultaneous estimation of land surface scheme states and parameters using the ensemble Kalman filter: identical twin experiments
Downscaling of surface moisture flux and precipitation in the Ebro Valley (Spain) using analogues and analogues followed by random forests and multiple linear regression
Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland
El Niño-Southern Oscillation and water resources in the headwaters region of the Yellow River: links and potential for forecasting
A summer climate regime over Europe modulated by the North Atlantic Oscillation
Introducing a rainfall compound distribution model based on weather patterns sub-sampling
Yan Li, Bo Huang, and Henning W. Rust
Hydrol. Earth Syst. Sci., 28, 321–339, https://doi.org/10.5194/hess-28-321-2024, https://doi.org/10.5194/hess-28-321-2024, 2024
Short summary
Short summary
The inconsistent changes in temperature and precipitation induced by forest cover change are very likely to affect drought condition. We use a set of statistical models to explore the relationship between forest cover change and drought change in different timescales and climate zones. We find that the influence of forest cover on droughts varies under different precipitation and temperature quantiles. Forest cover also could modulate the impacts of precipitation and temperature on drought.
Magdalena Uber, Michael Haller, Christoph Brendel, Gudrun Hillebrand, and Thomas Hoffmann
Hydrol. Earth Syst. Sci., 28, 87–102, https://doi.org/10.5194/hess-28-87-2024, https://doi.org/10.5194/hess-28-87-2024, 2024
Short summary
Short summary
We calculated past, present and future rainfall erosivity in central Europe from high-resolution precipitation data (3 km and 1 h) generated by the COSMO-CLM convection-permitting climate model. Future rainfall erosivity can be up to 84 % higher than it was in the past. Such increases are much higher than estimated previously from regional climate model output. Convection-permitting simulations have an enormous and, to date, unexploited potential for the calculation of future rainfall erosivity.
Yuanyuan Xiao, Shuiqing Yin, Bofu Yu, Conghui Fan, Wenting Wang, and Yun Xie
Hydrol. Earth Syst. Sci., 27, 4563–4577, https://doi.org/10.5194/hess-27-4563-2023, https://doi.org/10.5194/hess-27-4563-2023, 2023
Short summary
Short summary
An exceptionally heavy rainfall event occurred on 20 July 2021 in central China (the 7.20 storm). The storm presents a rare opportunity to examine the extreme rainfall erosivity. The storm, with an average recurrence interval of at least 10 000 years, was the largest in terms of its rainfall erosivity on record over the past 70 years in China. The study suggests that extreme erosive events can occur anywhere in eastern China and are not necessarily concentrated in low latitudes.
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023, https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Short summary
Employing event synchronization and complex networks analysis, we reveal a cascade of heavy rainfall events, related to intense atmospheric rivers (ARs): heavy precipitation events (HPEs) in western North America (NA) that occur in the aftermath of land-falling ARs are synchronized with HPEs in central and eastern Canada with a delay of up to 12 d. Understanding the effects of ARs in the rainfall over NA will lead to better anticipating the evolution of the climate dynamics in the region.
Jiqing Li, Jing Huang, Lei Zheng, and Wei Zheng
Hydrol. Earth Syst. Sci., 27, 2325–2339, https://doi.org/10.5194/hess-27-2325-2023, https://doi.org/10.5194/hess-27-2325-2023, 2023
Short summary
Short summary
Under the joint action of climate–human activities the use of runoff data whose mathematical properties have changed has become the key to watershed management. To determine whether the data have been changed, the number and the location of changes, we proposed a change-point detection framework. The problem of determining the parameters of wavelet transform has been solved by comparing the accuracy of identifying change points. This study helps traditional models adapt to environmental changes.
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-2023, https://doi.org/10.5194/hess-27-1151-2023, 2023
Short summary
Short summary
In an analysis of future drought projections for Great Britain based on the Standardised Precipitation Index and the Standardised Precipitation Evapotranspiration Index, we show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought characteristics, although both result in increased drying. This highlights the need to understand the interplay between increasing atmospheric evaporative demand and drought impacts under a changing climate.
Dipanjan Dey, Aitor Aldama Campino, and Kristofer Döös
Hydrol. Earth Syst. Sci., 27, 481–493, https://doi.org/10.5194/hess-27-481-2023, https://doi.org/10.5194/hess-27-481-2023, 2023
Short summary
Short summary
One of the most striking and robust features of climate change is the acceleration of the atmospheric water cycle branch. Earlier studies were able to provide a quantification of the global atmospheric water cycle, but they missed addressing the atmospheric water transport connectivity within and between ocean basins and land. These shortcomings were overcome in the present study and presented a complete synthesised and quantitative view of the atmospheric water cycle.
Abbas El Hachem, Jochen Seidel, Florian Imbery, Thomas Junghänel, and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 6137–6146, https://doi.org/10.5194/hess-26-6137-2022, https://doi.org/10.5194/hess-26-6137-2022, 2022
Short summary
Short summary
Through this work, a methodology to identify outliers in intense precipitation data was presented. The results show the presence of several suspicious observations that strongly differ from their surroundings. Many identified outliers did not have unusually high values but disagreed with their neighboring values at the corresponding time steps. Weather radar and discharge data were used to distinguish between single events and false observations.
Qihua Ran, Jin Wang, Xiuxiu Chen, Lin Liu, Jiyu Li, and Sheng Ye
Hydrol. Earth Syst. Sci., 26, 4919–4931, https://doi.org/10.5194/hess-26-4919-2022, https://doi.org/10.5194/hess-26-4919-2022, 2022
Short summary
Short summary
This study aims to further evaluate the relative importance of antecedent soil moisture and rainfall on flood generation and the controlling factors. The relative importance of antecedent soil moisture and daily rainfall present a significant correlation with drainage area; the larger the watershed, and the more essential the antecedent soil saturation rate is in flood generation, the less important daily rainfall will be.
Kyunghun Kim, Jaewon Jung, Hung Soo Kim, Masahiko Haraguchi, and Soojun Kim
Hydrol. Earth Syst. Sci., 26, 4823–4836, https://doi.org/10.5194/hess-26-4823-2022, https://doi.org/10.5194/hess-26-4823-2022, 2022
Short summary
Short summary
This study applied a new methodology (complex network), instead of using classic methods, to establish the relationships between rainfall events in large East Asian cities. The relationships show that western China and Southeast Asia have a lot of influence on each other. Moreover, it is confirmed that the relationships arise from the effect of the East Asian monsoon. In future, complex network may be able to be applied to analyze the concurrent relationships between extreme rainfall events.
Haijiang Wu, Xiaoling Su, Vijay P. Singh, Te Zhang, Jixia Qi, and Shengzhi Huang
Hydrol. Earth Syst. Sci., 26, 3847–3861, https://doi.org/10.5194/hess-26-3847-2022, https://doi.org/10.5194/hess-26-3847-2022, 2022
Short summary
Short summary
Agricultural drought forecasting lies at the core of overall drought risk management and is critical for food security and drought early warning. Using three-dimensional scenarios, we attempted to compare the agricultural drought forecast performance of a canonical vine copula (3C-vine) model and meta-Gaussian (MG) model over China. The findings show that the 3C-vine model exhibits more skill than the MG model when using 1– to 3-month lead times for forecasting agricultural drought.
Linqi Zhang, Yi Liu, Liliang Ren, Adriaan J. Teuling, Ye Zhu, Linyong Wei, Linyan Zhang, Shanhu Jiang, Xiaoli Yang, Xiuqin Fang, and Hang Yin
Hydrol. Earth Syst. Sci., 26, 3241–3261, https://doi.org/10.5194/hess-26-3241-2022, https://doi.org/10.5194/hess-26-3241-2022, 2022
Short summary
Short summary
In this study, three machine learning methods displayed a good detection capacity of flash droughts. The RF model was recommended to estimate the depletion rate of soil moisture and simulate flash drought by considering the multiple meteorological variable anomalies in the adjacent time to drought onset. The anomalies of precipitation and potential evapotranspiration exhibited a stronger synergistic but asymmetrical effect on flash droughts compared to slowly developing droughts.
Abubakar Haruna, Juliette Blanchet, and Anne-Catherine Favre
Hydrol. Earth Syst. Sci., 26, 2797–2811, https://doi.org/10.5194/hess-26-2797-2022, https://doi.org/10.5194/hess-26-2797-2022, 2022
Short summary
Short summary
Reliable prediction of floods depends on the quality of the input data such as precipitation. However, estimation of precipitation from the local measurements is known to be difficult, especially for extremes. Regionalization improves the estimates by increasing the quantity of data available for estimation. Here, we compare three regionalization methods based on their robustness and reliability. We apply the comparison to a dense network of daily stations within and outside Switzerland.
András Bárdossy, Jochen Seidel, and Abbas El Hachem
Hydrol. Earth Syst. Sci., 25, 583–601, https://doi.org/10.5194/hess-25-583-2021, https://doi.org/10.5194/hess-25-583-2021, 2021
Short summary
Short summary
In this study, the applicability of data from private weather stations (PWS) for precipitation interpolation was investigated. Due to unknown errors and biases in these observations, a two-step filter was developed that uses indicator correlations and event-based spatial precipitation patterns. The procedure was tested and cross validated for the state of Baden-Württemberg (Germany). The biggest improvement is achieved for the shortest time aggregations.
Sigrid J. Bakke, Monica Ionita, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, https://doi.org/10.5194/hess-24-5621-2020, 2020
Short summary
Short summary
This study provides an in-depth analysis of the 2018 northern European drought. Large parts of the region experienced 60-year record-breaking temperatures, linked to high-pressure systems and warm surrounding seas. Meteorological drought developed from May and, depending on local conditions, led to extreme low flows and groundwater drought in the following months. The 2018 event was unique in that it affected most of Fennoscandia as compared to previous droughts.
Bo Dan, Xiaogu Zheng, Guocan Wu, and Tao Li
Hydrol. Earth Syst. Sci., 24, 5187–5201, https://doi.org/10.5194/hess-24-5187-2020, https://doi.org/10.5194/hess-24-5187-2020, 2020
Short summary
Short summary
Data assimilation is a procedure to generate an optimal combination of the state variable in geoscience, based on the model outputs and observations. The ensemble Kalman filter (EnKF) scheme is a widely used assimilation method in soil moisture estimation. This study proposed several modifications of EnKF for improving this assimilation. The study shows that the quality of the assimilation result is improved, while the degree of water budget imbalance is reduced.
Eric Pohl, Christophe Grenier, Mathieu Vrac, and Masa Kageyama
Hydrol. Earth Syst. Sci., 24, 2817–2839, https://doi.org/10.5194/hess-24-2817-2020, https://doi.org/10.5194/hess-24-2817-2020, 2020
Short summary
Short summary
Existing approaches to quantify the emergence of climate change require several user choices that make these approaches less objective. We present an approach that uses a minimum number of choices and showcase its application in the extremely sensitive, permafrost-dominated region of eastern Siberia. Designed as a Python toolbox, it allows for incorporating climate model, reanalysis, and in situ data to make use of numerous existing data sources and reduce uncertainties in obtained estimates.
Eva Mekis, Ronald E. Stewart, Julie M. Theriault, Bohdan Kochtubajda, Barrie R. Bonsal, and Zhuo Liu
Hydrol. Earth Syst. Sci., 24, 1741–1761, https://doi.org/10.5194/hess-24-1741-2020, https://doi.org/10.5194/hess-24-1741-2020, 2020
Short summary
Short summary
This article provides a Canada-wide analysis of near-0°C temperature conditions (±2°C) using hourly surface temperature and precipitation type observations from 92 locations for the 1981–2011 period. Higher annual occurrences were found in Atlantic Canada, although high values also occur in other regions. Trends of most indicators show little or no change despite a systematic warming over Canada. A higher than expected tendency for near-0°C conditions was also found at some stations.
Jianjun Zhang, Guangyao Gao, Bojie Fu, Cong Wang, Hoshin V. Gupta, Xiaoping Zhang, and Rui Li
Hydrol. Earth Syst. Sci., 24, 809–826, https://doi.org/10.5194/hess-24-809-2020, https://doi.org/10.5194/hess-24-809-2020, 2020
Short summary
Short summary
We proposed an approach that integrates universal multifractals and a segmentation algorithm to precisely identify extreme precipitation (EP) and assess spatiotemporal EP variation over the Loess Plateau, using daily data. Our results explain how EP contributes to the widely distributed severe natural hazards. These findings are of great significance for ecological management in the Loess Plateau. Our approach is also helpful for spatiotemporal EP assessment at the regional scale.
Tongtiegang Zhao, Wei Zhang, Yongyong Zhang, Zhiyong Liu, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1–16, https://doi.org/10.5194/hess-24-1-2020, https://doi.org/10.5194/hess-24-1-2020, 2020
Guoxiao Wei, Xiaoying Zhang, Ming Ye, Ning Yue, and Fei Kan
Hydrol. Earth Syst. Sci., 23, 2877–2895, https://doi.org/10.5194/hess-23-2877-2019, https://doi.org/10.5194/hess-23-2877-2019, 2019
Short summary
Short summary
Accurately evaluating evapotranspiration (ET) is a critical challenge in improving hydrological process modeling. Here we evaluated four ET models (PM, SW, PT–FC, and AA) under the Bayesian framework. Our results reveal that the SW model has the best performance. This is in part because the SW model captures the main physical mechanism in ET; the other part is that the key parameters, such as the extinction factor, could be well constrained with observation data.
Chongli Di, Tiejun Wang, Xiaohua Yang, and Siliang Li
Hydrol. Earth Syst. Sci., 22, 5069–5079, https://doi.org/10.5194/hess-22-5069-2018, https://doi.org/10.5194/hess-22-5069-2018, 2018
Short summary
Short summary
The original Grassberger–Procaccia algorithm for complex analysis was modified by incorporating the normal-based K-means clustering technique and the RANSAC algorithm. The calculation accuracy of the proposed method was shown to outperform traditional algorithms. The proposed algorithm was used to diagnose climate system complexity in the Hai He basin. The spatial patterns of the complexity of precipitation and air temperature reflected the influence of the dominant climate system.
Sojung Park, Seon Ki Park, Jeung Whan Lee, and Yunho Park
Hydrol. Earth Syst. Sci., 22, 3435–3452, https://doi.org/10.5194/hess-22-3435-2018, https://doi.org/10.5194/hess-22-3435-2018, 2018
Short summary
Short summary
Understanding the precipitation characteristics is essential to design an optimal observation network. We studied the spatial and temporal characteristics of summertime precipitation systems in Korea via geostatistical analyses on the ground-based precipitation and satellite water vapor data. We found that, under a strict standard, an observation network with higher resolution is required in local areas with frequent heavy rainfalls, depending on directional features of precipitation systems.
Wenbin Liu, Fubao Sun, Yanzhong Li, Guoqing Zhang, Yan-Fang Sang, Wee Ho Lim, Jiahong Liu, Hong Wang, and Peng Bai
Hydrol. Earth Syst. Sci., 22, 351–371, https://doi.org/10.5194/hess-22-351-2018, https://doi.org/10.5194/hess-22-351-2018, 2018
Short summary
Short summary
The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of hydro-climatic observations. In this study, we investigate seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982–2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations).
Harsh Beria, Trushnamayee Nanda, Deepak Singh Bisht, and Chandranath Chatterjee
Hydrol. Earth Syst. Sci., 21, 6117–6134, https://doi.org/10.5194/hess-21-6117-2017, https://doi.org/10.5194/hess-21-6117-2017, 2017
Short summary
Short summary
High-quality satellite precipitation forcings have provided a viable alternative to hydrologic modeling in data-scarce regions. Ageing TRMM sensors have recently been upgraded to GPM, promising enhanced spatio-temporal resolutions. Statistical and hydrologic evaluation of GPM measurements across 86 Indian river basins revealed improved low rainfall estimates with reduced effects of climatology and topography.
James C. Bennett, Quan J. Wang, David E. Robertson, Andrew Schepen, Ming Li, and Kelvin Michael
Hydrol. Earth Syst. Sci., 21, 6007–6030, https://doi.org/10.5194/hess-21-6007-2017, https://doi.org/10.5194/hess-21-6007-2017, 2017
Short summary
Short summary
We assess a new streamflow forecasting system in Australia. The system is designed to meet the need of water agencies for 12-month forecasts. The forecasts perform well in a wide range of rivers. Forecasts for shorter periods (up to 6 months) are generally informative. Forecasts sometimes did not perform well in a few very dry rivers. We test several techniques for improving streamflow forecasts in drylands, with mixed success.
Konrad Bogner, Katharina Liechti, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 21, 5493–5502, https://doi.org/10.5194/hess-21-5493-2017, https://doi.org/10.5194/hess-21-5493-2017, 2017
Short summary
Short summary
The enhanced availability of many different weather prediction systems nowadays makes it very difficult for flood and water resource managers to choose the most reliable and accurate forecast. In order to circumvent this problem of choice, different approaches for combining this information have been applied at the Sihl River (CH) and the results have been verified. The outcome of this study highlights the importance of forecast combination in order to improve the quality of forecast systems.
Matthew B. Switanek, Peter A. Troch, Christopher L. Castro, Armin Leuprecht, Hsin-I Chang, Rajarshi Mukherjee, and Eleonora M. C. Demaria
Hydrol. Earth Syst. Sci., 21, 2649–2666, https://doi.org/10.5194/hess-21-2649-2017, https://doi.org/10.5194/hess-21-2649-2017, 2017
Short summary
Short summary
The commonly used bias correction method called quantile mapping assumes a constant function of error correction values between modeled and observed distributions. Our article finds that this function cannot be assumed to be constant. We propose a new bias correction method, called scaled distribution mapping, that does not rely on this assumption. Furthermore, the proposed method more explicitly accounts for the frequency of rain days and the likelihood of individual events.
Tesfay G. Gebremicael, Yasir A. Mohamed, Pieter v. Zaag, and Eyasu Y. Hagos
Hydrol. Earth Syst. Sci., 21, 2127–2142, https://doi.org/10.5194/hess-21-2127-2017, https://doi.org/10.5194/hess-21-2127-2017, 2017
Short summary
Short summary
This study was conducted to understand the spatio-temporal variations of streamflow in the Tekezē basin. Results showed rainfall over the basin did not significantly change. However, streamflow experienced high variabilities at seasonal and annual scales. Further studies are needed to verify hydrological changes by identifying the physical mechanisms behind those changes. Findings are useful as prerequisite for studying the effects of catchment management dynamics on the hydrological processes.
Louise Crochemore, Maria-Helena Ramos, Florian Pappenberger, and Charles Perrin
Hydrol. Earth Syst. Sci., 21, 1573–1591, https://doi.org/10.5194/hess-21-1573-2017, https://doi.org/10.5194/hess-21-1573-2017, 2017
Short summary
Short summary
The use of general circulation model outputs for streamflow forecasting has developed in the last decade. In parallel, traditional streamflow forecasting is commonly based on historical data. This study investigates the impact of conditioning historical data based on circulation model precipitation forecasts on seasonal streamflow forecast quality. Results highlighted a trade-off between the sharpness and reliability of forecasts.
Louise Crochemore, Maria-Helena Ramos, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3601–3618, https://doi.org/10.5194/hess-20-3601-2016, https://doi.org/10.5194/hess-20-3601-2016, 2016
Short summary
Short summary
This study investigates the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. Eight variants of bias correction approaches based on the linear scaling and the distribution mapping methods are applied to the precipitation forecasts prior to generating the streamflow forecasts. One of the main results of the study is that distribution mapping of daily values is successful in improving forecast reliability.
P. Froidevaux, J. Schwanbeck, R. Weingartner, C. Chevalier, and O. Martius
Hydrol. Earth Syst. Sci., 19, 3903–3924, https://doi.org/10.5194/hess-19-3903-2015, https://doi.org/10.5194/hess-19-3903-2015, 2015
Short summary
Short summary
We investigate precipitation characteristics prior to 4000 annual floods in Switzerland since 1961. The floods were preceded by heavy precipitation, but in most catchments extreme precipitation occurred only during the last 3 days prior to the flood events. Precipitation sums for earlier time periods (like e.g. 4-14 days prior to floods) were mostly average and do not correlate with the return period of the floods.
G. H. Fang, J. Yang, Y. N. Chen, and C. Zammit
Hydrol. Earth Syst. Sci., 19, 2547–2559, https://doi.org/10.5194/hess-19-2547-2015, https://doi.org/10.5194/hess-19-2547-2015, 2015
Short summary
Short summary
This study compares the effects of five precipitation and three temperature correction methods on precipitation, temperature, and streamflow through loosely coupling RCM (RegCM) and a distributed hydrological model (SWAT) in terms of frequency-based indices and time-series-based indices. The methodology and results can be used for other regions and other RCM and hydrologic models, and for impact studies of climate change on water resources at a regional scale.
M. S. Siam and E. A. B. Eltahir
Hydrol. Earth Syst. Sci., 19, 1181–1192, https://doi.org/10.5194/hess-19-1181-2015, https://doi.org/10.5194/hess-19-1181-2015, 2015
Short summary
Short summary
This paper explains the different natural modes of interannual variability in the flow of the Nile River and also presents a new index based on the sea surface temperature (SST) over the southern Indian Ocean to forecast the flow of the Nile River. It also presents a new hybrid forecasting algorithm that can be used to predict the Nile flow based on indices of the SST in the eastern Pacific and southern Indian oceans.
D. Halwatura, A. M. Lechner, and S. Arnold
Hydrol. Earth Syst. Sci., 19, 1069–1091, https://doi.org/10.5194/hess-19-1069-2015, https://doi.org/10.5194/hess-19-1069-2015, 2015
G. Panthou, T. Vischel, T. Lebel, G. Quantin, and G. Molinié
Hydrol. Earth Syst. Sci., 18, 5093–5107, https://doi.org/10.5194/hess-18-5093-2014, https://doi.org/10.5194/hess-18-5093-2014, 2014
D. Masson and C. Frei
Hydrol. Earth Syst. Sci., 18, 4543–4563, https://doi.org/10.5194/hess-18-4543-2014, https://doi.org/10.5194/hess-18-4543-2014, 2014
Short summary
Short summary
The question of how to utilize information from the physiography/topography in the spatial interpolation of rainfall is a long-standing discussion in the literature. In this study we test ideas that go beyond the approach in popular interpolation schemes today. The key message of our study is that these ideas can at best marginally improve interpolation accuracy, even in a region where a clear benefit would intuitively be expected.
A. Casanueva, C. Rodríguez-Puebla, M. D. Frías, and N. González-Reviriego
Hydrol. Earth Syst. Sci., 18, 709–725, https://doi.org/10.5194/hess-18-709-2014, https://doi.org/10.5194/hess-18-709-2014, 2014
D. H. Yan, D. Wu, R. Huang, L. N. Wang, and G. Y. Yang
Hydrol. Earth Syst. Sci., 17, 2859–2871, https://doi.org/10.5194/hess-17-2859-2013, https://doi.org/10.5194/hess-17-2859-2013, 2013
F. Yusof, I. L. Kane, and Z. Yusop
Hydrol. Earth Syst. Sci., 17, 1311–1318, https://doi.org/10.5194/hess-17-1311-2013, https://doi.org/10.5194/hess-17-1311-2013, 2013
J. H. Lee, J. Timmermans, Z. Su, and M. Mancini
Hydrol. Earth Syst. Sci., 16, 4291–4302, https://doi.org/10.5194/hess-16-4291-2012, https://doi.org/10.5194/hess-16-4291-2012, 2012
L. Gudmundsson, J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen
Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, https://doi.org/10.5194/hess-16-3383-2012, 2012
T. Bosshard, S. Kotlarski, T. Ewen, and C. Schär
Hydrol. Earth Syst. Sci., 15, 2777–2788, https://doi.org/10.5194/hess-15-2777-2011, https://doi.org/10.5194/hess-15-2777-2011, 2011
S. Nie, J. Zhu, and Y. Luo
Hydrol. Earth Syst. Sci., 15, 2437–2457, https://doi.org/10.5194/hess-15-2437-2011, https://doi.org/10.5194/hess-15-2437-2011, 2011
G. Ibarra-Berastegi, J. Saénz, A. Ezcurra, A. Elías, J. Diaz Argandoña, and I. Errasti
Hydrol. Earth Syst. Sci., 15, 1895–1907, https://doi.org/10.5194/hess-15-1895-2011, https://doi.org/10.5194/hess-15-1895-2011, 2011
R. Schiemann, R. Erdin, M. Willi, C. Frei, M. Berenguer, and D. Sempere-Torres
Hydrol. Earth Syst. Sci., 15, 1515–1536, https://doi.org/10.5194/hess-15-1515-2011, https://doi.org/10.5194/hess-15-1515-2011, 2011
A. Lü, S. Jia, W. Zhu, H. Yan, S. Duan, and Z. Yao
Hydrol. Earth Syst. Sci., 15, 1273–1281, https://doi.org/10.5194/hess-15-1273-2011, https://doi.org/10.5194/hess-15-1273-2011, 2011
G. Wang, A. J. Dolman, and A. Alessandri
Hydrol. Earth Syst. Sci., 15, 57–64, https://doi.org/10.5194/hess-15-57-2011, https://doi.org/10.5194/hess-15-57-2011, 2011
F. Garavaglia, J. Gailhard, E. Paquet, M. Lang, R. Garçon, and P. Bernardara
Hydrol. Earth Syst. Sci., 14, 951–964, https://doi.org/10.5194/hess-14-951-2010, https://doi.org/10.5194/hess-14-951-2010, 2010
Cited articles
Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T.,
Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R.,
Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K.,
Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the
annual net carbon and water exchange of forests: the EUROFLUX methodology,
Adv. Ecol. Res., 30, 113–175, https://doi.org/10.1016/S0065-2504(08)60018-5, 2000.
Bartelink, H. H.: Allometric relationships on biomass and needle area of
Douglas-fir, Forest Ecol. Manage., 86, 193–203, https://doi.org/10.1016/S0378-1127(96)03783-8, 1996.
Beven, K.: Prophecy, reality and uncertainty in distributed hydrological
modelling, Adv. Water Resour., 16, 41–51, https://doi.org/10.1016/0309-1708(93)90028-E, 1993.
Bormann, B. T., Darbyshire, R. L., Homann, P. S., Morrissette, B. A., and Little,
S. N.: Managing early succession for biodiversity and long-term productivity of
conifer forests in southwestern Oregon, Forest Ecol. Manage., 340, 114–125,
https://doi.org/10.1016/j.foreco.2014.12.016, 2015.
Bosveld, F. C. and Bouten, W.: Evaluation of transpiration models with
observations over a Douglas-fir forest, Agr. Forest Meteorol., 108, 247–264,
https://doi.org/10.1016/S0168-1923(01)00251-9, 2001.
Bouten, W., Swart, P. J. F., and De Water, E.: Microwave transmission, a new
tool in forest hydrological research, J. Hydrol., 124, 119–130, https://doi.org/10.1016/0022-1694(91)90009-7, 1991.
Bouten, W., Heimovaara, T., and Tiktak, A.: Spatial patterns of throughfall
and soil water dynamics in a Douglas fir stand, Water Resour. Res., 28,
3227–3233, https://doi.org/10.1029/92WR01764, 1992.
Bouten, W., Schaap, M. G., Aerts, J., and Vermetten, A. W. M.: Monitoring and
modelling canopy water storage amounts in support of atmospheric deposition
studies, J. Hydrol., 181, 305–321, https://doi.org/10.1016/0022-1694(95)02907-9, 1996.
Carlyle-Moses, D. E. and Gash, J.: Rainfall interception loss by forest canopies,
in: Forest Hydrology and Biogeochemistry, Ecological Studies, edited by: Levia,
D. F., Carlyle-Moses, D., and Tanaka, T., Springer, Dordrecht, 407–423, 2011.
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., and Perez, R.:
Error propagation and scaling for tropical forest biomass estimates, Philos. T.
Roy. Soc. B, 359, 409–420, 2004.
Cisneros Vaca, C.: Water and energy fluxes measurement in Speulderbos, Fac. Geo-information
Earth Obs. (ITC), Univ. Twente, https://doi.org/10.17026/dans-zvq-dq4w, 2018.
Cui, Y., Jia, L., Hu, G., and Zhou, J.: Mapping of interception loss of
vegetation in the Heihe River basin of China using remote sensing observations,
IEEE Geosci. Remote Sens. Lett., 12, 23–27, 2015.
Deguchi, A., Hattori, S., and Park, H.-T.: The influence of seasonal changes
in canopy structure on interception loss: Application of the revised Gash model,
J. Hydrol., 318, 80–102, https://doi.org/10.1016/j.jhydrol.2005.06.005, 2006.
Dolman, A. J.: Summer and winter rainfall interception in an oak forest.
Predictions with an analytical and a numerical simulation model, J. Hydrol.,
90, 1–9, https://doi.org/10.1016/0022-1694(87)90169-7, 1987.
Evers, P., Bouten, W., van Grinsven, J., and Steingrver, E.: CORRELACI,
Identification of traditional and air pollution related stress factors in a
Douglas fir ecosystem: the ACIFORN stands, Report, De Dorschkamp, Wageningen, 1991a.
Evers, P., Jans, W., and Steingroever, E.: Impact of air pollution on
ecophysiological relations in two Douglas fir stands in The Netherlands: final
report of the DAPV-ACIFORN projects 15, 105A and 105B “Ecophysiology of Douglas
fir”: Dutch programme on acidification, in: Rapport/De Dorschkamp; nr. 637,
De Dorschkamp, Research Institute for Forestry and Urban Ecology, Wageningen, 1991b.
Foken, T., Göockede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.:
Post-Field Data Quality Control, in: Handbook of Micrometeorology: A Guide for
Surface Flux Measurement and Analysis, edited by: Lee, X., Massman, W., and Law,
B., Springer Netherlands, Dordrecht, 181–208, 2005.
Franklin, J. F., Lindenmayer, D., Thornburgh, D., Van Pelt, R., Chen, J., Spies,
T., Carey, A. B., Shaw, D. C., Berg, D. R., Harmon, M. E., Keeton, W. S., and
Bible, K.: Disturbances and structural development of natural forest ecosystems
with silvicultural implications, using Douglas-fir forests as an example, Forest
Ecol. Manage., 155, 399–423, https://doi.org/10.1016/S0378-1127(01)00575-8, 2002.
Freund, J. A., Franklin, J. F., and Lutz, J. A.: Structure of early old-growth
Douglas-fir forests in the Pacific Northwest, Forest Ecol. Manage., 335, 11–25,
https://doi.org/10.1016/j.foreco.2014.08.023, 2015.
Garratt, J. R. and Francey, R. J.: Bulk characteristics of heat transfer in the
unstable, baroclinic atmospheric boundary layer, Bound.-Lay. Meteorol., 15,
399–421, https://doi.org/10.1007/bf00120603, 1978.
Gash, J. H. C.: An analytical model of rainfall interception by forests,
Q. J. Roy. Meteorol. Soc., 105, 43–55, https://doi.org/10.1002/qj.49710544304, 1979.
Gash, J. H. C. and Morton, A. J.: An application of the Rutter model to the
estimation of the interception loss from Thetford Forest, J. Hydrol., 38, 49–58,
https://doi.org/10.1016/0022-1694(78)90131-2, 1978.
Gash, J. H. C. and Shuttleworth, W. J.: Evaporation, IAHS Press, Wallingford, 2007.
Gash, J. H. C., Wright, I. R., and Lloyd, C. R.: Comparative estimates of
interception loss from three coniferous forests in Great Britain, J. Hydrol.,
48, 89–105, https://doi.org/10.1016/0022-1694(80)90068-2, 1980.
Gash, J. H. C., Lloyd, C. R., and Lachaud, G.: Estimating sparse forest rainfall
interception with an analytical model, J. Hydrol., 170, 79–86, https://doi.org/10.1016/0022-1694(95)02697-N, 1995.
Gash, J. H. C., Valente, F., and David, J. S.: Estimates and measurements of
evaporation from wet, sparse pine forest in Portugal, Agr. Forest Meteorol.,
94, 149–158, https://doi.org/10.1016/S0168-1923(99)00008-8, 1999.
Hassan, S. M. T., Ghimire, C. P., and Lubczynski, M. W.: Remote sensing upscaling
of interception loss from isolated oaks: Sardon catchment case study, Spain,
J. Hydrol., 555, 489–505, https://doi.org/10.1016/j.jhydrol.2017.08.016, 2017.
Heij, G. and Schneider, T.: Acidification research in the Netherlands (final
report of the Dutch priority programme on acidification), in: Studies in
Environmental Science, Amsterdam, 1991.
Herbst, M., Rosier, P. T. W., McNeil, D. D., Harding, R. J., and Gowing, D. J.:
Seasonal variability of interception evaporation from the canopy of a mixed
deciduous forest, Agr. Forest Meteorol., 148, 1655–1667, https://doi.org/10.1016/j.agrformet.2008.05.011, 2008.
Holwerda, F., Bruijnzeel, L. A., Scatena, F. N., Vugts, H. F., and Meesters, A.
G. C. A.: Wet canopy evaporation from a Puerto Rican lower montane rain forest:
The importance of realistically estimated aerodynamic conductance, J. Hydrol.,
414–415, 1–15, https://doi.org/10.1016/j.jhydrol.2011.07.033, 2012.
Horton, R. E.: Rainfall Interception, Mon. Weather Rev., 47, 603–623,
https://doi.org/10.1175/1520-0493(1919)47<603:RI>2.0.CO;2, 1919.
Iida, S. i., Levia, D. F., Shimizu, A., Shimizu, T., Tamai, K., Nobuhiro, T.,
Kabeya, N., Noguchi, S., Sawano, S., and Araki, M.: Intrastorm scale rainfall
interception dynamics in a mature coniferous forest stand, J. Hydrol., 548,
770–783, https://doi.org/10.1016/j.jhydrol.2017.03.009, 2017.
Keim, R. F., Skaugset, A. E., and Weiler, M.: Temporal persistence of spatial
patterns in throughfall, J. Hydrol., 314, 263–274, https://doi.org/10.1016/j.jhydrol.2005.03.021, 2005.
Klaassen, W.: Evaporation From rain-wetted forest in relation to canopy wetness,
canopy cover, and net radiation, Water Resour. Res., 37, 3227–3236,
https://doi.org/10.1029/2001WR000480, 2001.
Klaassen, W., Bosveld, F., and de Water, E.: Water storage and evaporation as
constituents of rainfall interception, J. Hydrol., 212, 36–50, https://doi.org/10.1016/S0022-1694(98)00200-5, 1998.
KNMI: Climatology, http://www.knmi.nl/nederland-nu/klimatologie/ (last
access: 1 May 2017), 2015.
Lankreijer, H. J. M., Hendriks, M. J., and Klaassen, W.: A comparison of models
simulating rainfall interception of forests, Agr. Forest Meteorol., 64, 187–199,
https://doi.org/10.1016/0168-1923(93)90028-G, 1993.
Lankreijer, H. J. M., Lundberg, A., Grelle, A., Lindroth, A., and Seibert, J.:
Evaporation and storage of intercepted rain analysed by comparing two models
applied to a boreal forest, Agr. Forest Meteorol., 98–99, 595–604,
https://doi.org/10.1016/S0168-1923(99)00126-4, 1999.
Levia, D. F., and Germer, S.: A review of stemflow generation dynamics and
stemflow-environment interactions in forests and shrublands, Rev. Geophys., 53,
673–714, https://doi.org/10.1002/2015RG000479, 2015.
Link, T. E., Unsworth, M., and Marks, D.: The dynamics of rainfall interception
by a seasonal temperate rainforest, Agr. Forest Meteorol., 124, 171–191,
https://doi.org/10.1016/j.agrformet.2004.01.010, 2004.
Liu, H., Peters, G., and Foken, T.: New equations for sonic temperature variance
and buoyancy heat flux with an omnidirectional sonic anemometer, Bound.-Lay.
Meteorol., 100, 459–468, https://doi.org/10.1023/a:1019207031397, 2001.
Llorens, P. and Domingo, F.: Rainfall partitioning by vegetation under
Mediterranean conditions. A review of studies in Europe, J. Hydrol., 335, 37–54,
https://doi.org/10.1016/j.jhydrol.2006.10.032, 2007.
Loustau, D., Berbigier, P., Granier, A., and Moussa, F. E. H.: Interception
loss, throughfall and stemflow in a maritime pine stand. I. Variability of
throughfall and stemflow beneath the pine canopy, J. Hydrol., 138, 449–467,
https://doi.org/10.1016/0022-1694(92)90130-N, 1992.
McCaughey, J. H.: Energy balance storage terms in a mature mixed forest at
Petawawa, Ontario – A case study, Bound.-Lay. Meteorol., 31, 89–101,
https://doi.org/10.1007/BF00120036, 1985.
Meesters, A. G. C. A. and Vugts, H. F.: Calculation of heat storage in stems,
Agr. Forest Meteorol., 78, 181–202, https://doi.org/10.1016/0168-1923(95)02251-1, 1996.
Michiles, A. A. D. S. and Gielow, R.: Above-ground thermal energy storage rates,
trunk heat fluxes and surface energy balance in a central Amazonian rainforest,
Agr. Forest Meteorol., 148, 917–930, https://doi.org/10.1016/j.agrformet.2008.01.001, 2008.
Miralles, D. G., Gash, J. H., Holmes, T. R. H., de Jeu, R. A. M., and Dolman,
A. J.: Global canopy interception from satellite observations, J. Geophys.
Res.-Atmos., 115, D16122, https://doi.org/10.1029/2009JD013530, 2010.
Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T.,
Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: A system
to measure surface fluxes of momentum, sensible heat, water vapour and carbon
dioxide, J. Hydrol., 188, 589–611, https://doi.org/10.1016/S0022-1694(96)03194-0, 1997.
Moors, E.: Water use of forests in the Netherlands, de Vrije Universiteit, Amsterdam, 2012.
Murakami, S.: A proposal for a new forest canopy interception mechanism: Splash
droplet evaporation, J. Hydrol., 319, 72–82, https://doi.org/10.1016/j.jhydrol.2005.07.002, 2006.
Muzylo, A., Llorens, P., Valente, F., Keizer, J. J., Domingo, F., and Gash, J.
H. C.: A review of rainfall interception modelling, J. Hydrol., 370, 191–206,
https://doi.org/10.1016/j.jhydrol.2009.02.058, 2009.
Muzylo, A., Valente, F., Domingo, F., and Llorens, P.: Modelling rainfall
partitioning with sparse Gash and Rutter models in a downy oak stand in leafed
and leafless periods, Hydrol. Process., 26, 3161–3173, https://doi.org/10.1002/hyp.8401, 2012.
Nord-Larsen, T. and Nielsen, A. T.: Biomass, stem basic density and expansion
factor functions for five exotic conifers grown in Denmark, Scand. J. Forest
Res., 30, 135–153, https://doi.org/10.1080/02827581.2014.986519, 2015.
Oliphant, A. J., Grimmond, C. S. B., Zutter, H. N., Schmid, H. P., Su, H. B.,
Scott, S. L., Offerle, B., Randolph, J. C., and Ehman, J.: Heat storage and
energy balance fluxes for a temperate deciduous forest, Agr. Forest Meteorol.,
126, 185–201, https://doi.org/10.1016/j.agrformet.2004.07.003, 2004.
Paulson, C. A.: The Mathematical Representation of Wind Speed and Temperature
Profiles in the Unstable Atmospheric Surface Layer, J. Appl. Meteorol., 9,
857–861, https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2, 1970.
Price, A. G. and Carlyle-Moses, D. E.: Measurement and modelling of growing-season
canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario,
Canada, Agr. Forest Meteorol., 119, 69–85, https://doi.org/10.1016/S0168-1923(03)00117-5, 2003.
Pypker, T. G., Bond, B. J., Link, T. E., Marks, D., and Unsworth, M. H.: The
importance of canopy structure in controlling the interception loss of rainfall:
Examples from a young and an old-growth Douglas-fir forest, Agr. Forest Meteorol.,
130, 113–129, https://doi.org/10.1016/j.agrformet.2005.03.003, 2005.
Rannik, Ü. and Vesala, T.: Autoregressive filtering versus linear detrending
in estimation of fluxes by the eddy covariance method, Bound.-Lay. Meteorol.,
91, 259–280, https://doi.org/10.1023/A:1001840416858, 1999.
Ringgaard, R., Herbst, M., and Friborg, T.: Partitioning forest evapotranspiration:
Interception evaporation and the impact of canopy structure, local and regional
advection, J. Hydrol., 517, 677–690, https://doi.org/10.1016/j.jhydrol.2014.06.007, 2014.
Ritter, A. and Regalado, C. M.: Roving revisited, towards an optimum throughfall
sampling design, Hydrol. Process., 28, 123–133, https://doi.org/10.1002/hyp.9561, 2014.
Rutter, A. J., Kershaw, K. A., Robins, P. C., and Morton, A. J.: A predictive
model of rainfall interception in forests, 1. Derivation of the model from
observations in a plantation of Corsican pine, Agricult. Meteorol., 9, 367–384,
https://doi.org/10.1016/0002-1571(71)90034-3, 1971.
Rutter, A. J., Morton, A. J., and Robins, P. C.: predictive model of rainfall
interception in forests: II: generalization of the model and comparison with
observations in some coniferous and hardwood stands, J. Appl. Ecol., 12, 367–380, 1975.
Schellekens, J., Scatena, F. N., Bruijnzeel, L. A., and Wickel, A. J.: Modelling
rainfall interception by a lowland tropical rain forest in northeastern Puerto
Rico, J. Hydrol., 225, 168–184, https://doi.org/10.1016/S0022-1694(99)00157-2, 1999.
Schotanus, P., Nieuwstadt, F. T. M., and De Bruin, H. A. R.: Temperature
measurement with a sonic anemometer and its application to heat and moisture
fluxes, Bound.-Lay. Meteorol., 26, 81–93, https://doi.org/10.1007/bf00164332, 1983.
Shuttleworth, W. J. and Calder, I. R.: Has the Priestley-Taylor Equation Any
Relevance to Forest Evaporation?, J. Appl. Meteorol., 18, 639–646, 1979.
Soubie, R., Heinesch, B., Granier, A., Aubinet, M., and Vincke, C.:
Evapotranspiration assessment of a mixed temperate forest by four methods:
Eddy covariance, soil water budget, analytical and model, Agr. Forest Meteorol.,
228–229, 191–204, https://doi.org/10.1016/j.agrformet.2016.07.001, 2016.
Stewart, J. B.: Evaporation from the wet canopy of a pine forest, Water Resour.
Res., 13, 915–921, https://doi.org/10.1029/WR013i006p00915, 1977.
Stull, R. B.: Wet-Bulb Temperature from Relative Humidity and Air Temperature,
J. Appl. Meteorol. Clim., 50, 2267–2269, https://doi.org/10.1175/JAMC-D-11-0143.1, 2011.
Stull, R. B.: An introduction to boundary layer meteorology, Springer
Science & Business Media, Dordrecht, 2012.
Teklehaimanot, Z., Jarvis, P. G., and Ledger, D. C.: Rainfall interception and
boundary layer conductance in relation to tree spacing, J. Hydrol., 123,
261–278, https://doi.org/10.1016/0022-1694(91)90094-X, 1991.
Thom, A. S.: Momentum, mass and heat exchange of plant communities, in: v. 1,
Vegetation and atmosphere, edited by: Monteith, J. L., Academic Press, London, 57–109, 1975.
Thom, A. S., Stewart, J. B., Oliver, H. R., and Gash, J. H. C.: Comparison of
aerodynamic and energy budget estimates of fluxes over a pine forest, Q. J. Roy.
Meteorol. Soc., 101, 93–105, 1975.
Thom, D., Rammer, W., Dirnböck, T., Müller, J., Kobler, J., Katzensteiner,
K., Helm, N., and Seidl, R.: The impacts of climate change and disturbance on
spatio-temporal trajectories of biodiversity in a temperate forest landscape,
J. Appl. Ecol., 54, 28–38, https://doi.org/10.1111/1365-2664.12644, 2017.
Tiktak, A. and Bouten, W.: Monitoring of Hydrological Processes Under Douglas
Fir, in: Air Pollution and Ecosystems: Proceedings of an International
Symposium, 18–22 May 1987, Grenoble, France, edited by: Mathy, P., Springer
Netherlands, Dordrecht, 891–895, 1988.
Tiktak, A. and Bouten, W.: Soil water dynamics and long-term water balances of
a Douglas fir stand in the Netherlands, J. Hydrol., 156, 265–283,
https://doi.org/10.1016/0022-1694(94)90081-7, 1994.
Turner, J. and Lambert, M.: Forest water usage and interactions with nutrition
of Pinus radiata, Acta Oecologica Oecologia Plantarum, 8, 37–43, 1987.
van der Tol, C.: Validation of remote sensing of bare soil ground heat flux,
Remote Sens. Environ., 121, 275–286, https://doi.org/10.1016/j.rse.2012.02.009, 2012.
van der Tol, C., Gash, J. H. C., Grant, S. J., McNeil, D. D., and Robinson, M.:
Average wet canopy evaporation for a Sitka spruce forest derived using the eddy
correlation-energy balance technique, J. Hydrol., 276, 12–19, https://doi.org/10.1016/S0022-1694(03)00024-6, 2003.
van Dijk, A. I. J. M., Gash, J. H., van Gorsel, E., Blanken, P. D., Cescatti,
A., Emmel, C., Gielen, B., Harman, I. N., Kiely, G., Merbold, L., Montagnani,
L., Moors, E., Sottocornola, M., Varlagin, A., Williams, C. A., and Wohlfahrt,
G.: Rainfall interception and the coupled surface water and energy balance,
Agr. Forest Meteorol., 214–215, 402–415, https://doi.org/10.1016/j.agrformet.2015.09.006, 2015.
Verhoef, A., van den Hurk, B. J. J. M., Jacobs, A. F. G., and Heusinkveld, B. G.:
Thermal soil properties for vineyard (EFEDA-I) and savanna (HAPEX-Sahel) sites,
Agr. Forest Meteorol., 78, 1–18, https://doi.org/10.1016/0168-1923(95)02254-6, 1996.
Wallace, J. and McJannet, D.: Modelling interception in coastal and montane
rainforests in northern Queensland, Australia, J. Hydrol., 348, 480–495,
https://doi.org/10.1016/j.jhydrol.2007.10.019, 2008.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements
for density effects due to heat and water vapour transfer, Q. J. Roy. Meteorol.
Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980.
Weligepolage, K., Gieske, A. S. M., and Su, Z.: Surface roughness analysis of
a conifer forest canopy with airborne and terrestrial laser scanning techniques,
Int. J. Appl. Earth Obs. Geoinf., 14, 192–203, https://doi.org/10.1016/j.jag.2011.08.014, 2012.
Short summary
The influence of long-term changes in canopy structure on rainfall interception loss was studied in a 55-year old forest. Interception loss was similar at the same site (38 %), when the forest was 29 years old. In the past, the forest was denser and had a higher storage capacity, but the evaporation rates were lower. We emphasize the importance of quantifying downward sensible heat flux and heat release from canopy biomass in tall forest in order to improve the quantification of evaporation.
The influence of long-term changes in canopy structure on rainfall interception loss was studied...