Articles | Volume 22, issue 4
https://doi.org/10.5194/hess-22-2607-2018
https://doi.org/10.5194/hess-22-2607-2018
Education and communication
 | 
02 May 2018
Education and communication |  | 02 May 2018

Demonstrating the “unit hydrograph” and flow routing processes involving active student participation – a university lecture experiment

Karsten Schulz, Reinhard Burgholzer, Daniel Klotz, Johannes Wesemann, and Mathew Herrnegger

Related authors

Soil moisture and precipitation intensity control the transit time distribution of quick flow in a flashy headwater catchment
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Karsten Schulz, Peter Strauss, Günter Blöschl, and Michael Stockinger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-359,https://doi.org/10.5194/hess-2024-359, 2024
Revised manuscript accepted for HESS
Short summary
Technical note: Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze
Christian Voigt, Karsten Schulz, Franziska Koch, Karl-Friedrich Wetzel, Ludger Timmen, Till Rehm, Hartmut Pflug, Nico Stolarczuk, Christoph Förste, and Frank Flechtner
Hydrol. Earth Syst. Sci., 25, 5047–5064, https://doi.org/10.5194/hess-25-5047-2021,https://doi.org/10.5194/hess-25-5047-2021, 2021
Short summary
LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe
Christoph Klingler, Karsten Schulz, and Mathew Herrnegger
Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021,https://doi.org/10.5194/essd-13-4529-2021, 2021
Short summary
Rosalia: an experimental research site to study hydrological processes in a forest catchment
Josef Fürst, Hans Peter Nachtnebel, Josef Gasch, Reinhard Nolz, Michael Paul Stockinger, Christine Stumpp, and Karsten Schulz
Earth Syst. Sci. Data, 13, 4019–4034, https://doi.org/10.5194/essd-13-4019-2021,https://doi.org/10.5194/essd-13-4019-2021, 2021
Short summary
Machine-learning methods for stream water temperature prediction
Moritz Feigl, Katharina Lebiedzinski, Mathew Herrnegger, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2951–2977, https://doi.org/10.5194/hess-25-2951-2021,https://doi.org/10.5194/hess-25-2951-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Predicting snow cover and frozen ground impacts on large basin runoff: developing appropriate model complexity
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, Qinuo Zhang, Xuejun Yi, Haijun Wang, Wei Liu, Wei Gao, and Jerker Jarsjö
Hydrol. Earth Syst. Sci., 29, 3703–3725, https://doi.org/10.5194/hess-29-3703-2025,https://doi.org/10.5194/hess-29-3703-2025, 2025
Short summary
A distributed hybrid physics–AI framework for learning corrections of internal hydrological fluxes and enhancing high-resolution regionalized flood modeling
Ngo Nghi Truyen Huynh, Pierre-André Garambois, Benjamin Renard, François Colleoni, Jérôme Monnier, and Hélène Roux
Hydrol. Earth Syst. Sci., 29, 3589–3613, https://doi.org/10.5194/hess-29-3589-2025,https://doi.org/10.5194/hess-29-3589-2025, 2025
Short summary
Adaptation of root zone storage capacity to climate change and its effects on future streamflow in Alpine catchments: towards non-stationary model parameters
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 3545–3568, https://doi.org/10.5194/hess-29-3545-2025,https://doi.org/10.5194/hess-29-3545-2025, 2025
Short summary
Finding process-behavioural parameterisations of a hydrological model using a multi-step process-based calibration and evaluation scheme
Moritz M. Heuer, Hadysa Mohajerani, and Markus C. Casper
Hydrol. Earth Syst. Sci., 29, 3503–3525, https://doi.org/10.5194/hess-29-3503-2025,https://doi.org/10.5194/hess-29-3503-2025, 2025
Short summary
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025,https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary

Cited articles

Baumgartner, A. and Liebscher, H. J.: Lehrbuch der Hydrologie, Band 1: Allgemeine Hydrologie – Quantitative Hydrologie, 2nd Edn., Gebrüder Bornträger, Berlin, Stuttgart, 1996. 
Beven, K.: Rainfall–runoff Modelling: The Primer, 2nd Edn., J. Wiley &  Sons, Ltd., Chichester, West Sussex, UK, 2012. 
Biswas, A. K.: History of hydrology, North-Holland Publishing Company, Amsterdam, London, 1970. 
Horton, R. E.: The role of infiltration in the hydrologic cycle, Trans. Am. Geophys. Union, 14, 446–460, 1933. 
Hromadka, T. V. and Whitley, R. J.: The Rational Method for Peak Flow-Rate Estimation, Water Resour. Bull., 30, 1001–1009, 1994. 
Download
Short summary
The unit hydrograph has been one of the most widely employed modelling techniques to predict rainfall-runoff behaviour of hydrological catchments. We developed a lecture theatre experiment including some student involvement to illustrate the principles behind this modelling technique. The experiment only uses very simple and cheap material including a set of plastic balls (representing rainfall), magnetic stripes (tacking the balls to the white board) and sieves (for ball/water gauging).
Share