Articles | Volume 22, issue 4
https://doi.org/10.5194/hess-22-2091-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-2091-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrological assessment of atmospheric forcing uncertainty in the Euro-Mediterranean area using a land surface model
Emiliano Gelati
CNRM, UMR3589 (Météo-France, CNRS), Toulouse, France
now at: Joint Research Centre, European Commission, Ispra, Italy
Bertrand Decharme
CNRM, UMR3589 (Météo-France, CNRS), Toulouse, France
Jean-Christophe Calvet
CORRESPONDING AUTHOR
CNRM, UMR3589 (Météo-France, CNRS), Toulouse, France
Marie Minvielle
CNRM, UMR3589 (Météo-France, CNRS), Toulouse, France
Jan Polcher
Laboratoire de Météorologie Dynamique du CNRS, UMR8539 (IPSL,
CNRS), Paris, France
David Fairbairn
CNRM, UMR3589 (Météo-France, CNRS), Toulouse, France
now at: European Centre for Medium Range Weather Forecasts, Reading, UK
Graham P. Weedon
Met Office, Joint Centre for Hydrometeorological Research,
Wallingford, UK
Related authors
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
Emiliano Gelati, Zuzanna Zajac, Andrej Ceglar, Simona Bassu, Bernard Bisselink, Marko Adamovic, Jeroen Bernhard, Anna Malagó, Marco Pastori, Fayçal Bouraoui, and Ad de Roo
Adv. Sci. Res., 17, 227–253, https://doi.org/10.5194/asr-17-227-2020, https://doi.org/10.5194/asr-17-227-2020, 2020
Short summary
Short summary
In this modelling study, we conclude that groundwater is used unsustainably for irrigation in several areas of the
Euro-Mediterranean region. In the southern Iberian Peninsula, we estimate the potential effects of reducing irrigation groundwater abstractions to sustainable amounts to prevent long-term decline of groundwater storage. These restrictions may cause crop production losses but halt groundwater depletion and increase river flow during dry periods which is beneficial for ecosystems.
Tim Busker, Ad de Roo, Emiliano Gelati, Christian Schwatke, Marko Adamovic, Berny Bisselink, Jean-Francois Pekel, and Andrew Cottam
Hydrol. Earth Syst. Sci., 23, 669–690, https://doi.org/10.5194/hess-23-669-2019, https://doi.org/10.5194/hess-23-669-2019, 2019
Short summary
Short summary
This paper estimates lake and reservoir volume variations over all continents from 1984 to 2015 using remote sensing alone. This study improves on previous methodologies by using the Global Surface Water dataset developed by the Joint Research Centre, which allowed for volume calculations on a global scale, a high resolution (30 m) and back to 1984 using very detailed lake area dynamics. Using 18 in situ volume time series as validation, our volume estimates showed a high accuracy.
Clément Albergel, Simon Munier, Delphine Jennifer Leroux, Hélène Dewaele, David Fairbairn, Alina Lavinia Barbu, Emiliano Gelati, Wouter Dorigo, Stéphanie Faroux, Catherine Meurey, Patrick Le Moigne, Bertrand Decharme, Jean-Francois Mahfouf, and Jean-Christophe Calvet
Geosci. Model Dev., 10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, https://doi.org/10.5194/gmd-10-3889-2017, 2017
Short summary
Short summary
LDAS-Monde, a global land data assimilation system, is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. It is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the ISBA land surface model coupled with the CTRIP continental hydrological system. Assimilation of SSM and LAI leads to a better representation of evapotranspiration and gross primary production.
Anaïs Barella-Ortiz, Jan Polcher, Patricia de Rosnay, Maria Piles, and Emiliano Gelati
Hydrol. Earth Syst. Sci., 21, 357–375, https://doi.org/10.5194/hess-21-357-2017, https://doi.org/10.5194/hess-21-357-2017, 2017
Short summary
Short summary
L-band radiometry is considered to be one of the most suitable techniques for estimating surface soil moisture (SSM) by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm which yields SSM. This paper compares brightness temperatures measured by the SMOS mission to two different sets of modelled ones. It shows that models and remote-sensed values agree well in temporal variability, but not in their spatial structures.
D. Fairbairn, A. L. Barbu, J.-F. Mahfouf, J.-C. Calvet, and E. Gelati
Hydrol. Earth Syst. Sci., 19, 4811–4830, https://doi.org/10.5194/hess-19-4811-2015, https://doi.org/10.5194/hess-19-4811-2015, 2015
Short summary
Short summary
The ensemble Kalman filter (EnKF) and simplified extended Kalman filter (SEKF) root-zone soil moisture analyses are compared when assimilating in situ surface observations. In the synthetic experiments, the EnKF performs best because it can stochastically capture the errors in the precipitation. The two methods perform similarly in the real experiments. During the summer period, both methods perform poorly as a result of nonlinearities in the land surface model.
Laure Baratgin, Jan Polcher, Patrice Dumas, and Philippe Quirion
Hydrol. Earth Syst. Sci., 28, 5479–5509, https://doi.org/10.5194/hess-28-5479-2024, https://doi.org/10.5194/hess-28-5479-2024, 2024
Short summary
Short summary
Hydrological modeling is valuable for estimating the potential impact of climate change on hydropower generation. This study presents a comprehensive approach to modeling the management of hydroelectric reservoirs in hydrological models. The total power grid demand for hydropower is distributed to the various power plants to compute their release. The method is tested on the French national power grid, and it is demonstrated that it successfully reproduces the observed behavior of reservoirs.
Bertrand Decharme and Jeanne Colin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3091, https://doi.org/10.5194/egusphere-2024-3091, 2024
Short summary
Short summary
Our study uses a global climate model to investigate how groundwater and floodplains influence today's climate. We found that these continental water sources, often overlooked in climate models, can influence precipitation, temperature and land surface hydrology. This research contributes to a better understanding of the dynamics of the Earth system and highlights the importance of considering interactions between hydrology and the atmosphere.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
En Liu, Yonghua Zhu, Jean-Christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci., 28, 2375–2400, https://doi.org/10.5194/hess-28-2375-2024, https://doi.org/10.5194/hess-28-2375-2024, 2024
Short summary
Short summary
Overestimated root zone soil moisture (RZSM) based on land surface models (LSMs) is attributed to overestimated precipitation and an underestimated ratio of transpiration to total evapotranspiration and performs better in the wet season. Underestimated SMOS L3 surface SM triggers the underestimated SMOS L4 RZSM, which performs better in the dry season due to the attenuated radiation in the wet season. LSMs should reduce and increase the frequency of wet and dry soil moisture, respectively.
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1079, https://doi.org/10.5194/egusphere-2024-1079, 2024
Short summary
Short summary
A drought index is developed that quantifies drought on an annual scale for deciduous broadleaf vegetation, making it applicable to monitoring clay shrinkage damage to buildings, agriculture or forestry. It is found that significant soil moisture drought events occurred in France in 2003, 2018, 2019, 2020 and 2022. Particularly high index values are observed throughout the country in 2022. It is also found that droughts will become more severe in the future.
Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie
Nat. Hazards Earth Syst. Sci., 24, 999–1016, https://doi.org/10.5194/nhess-24-999-2024, https://doi.org/10.5194/nhess-24-999-2024, 2024
Short summary
Short summary
This work presents a drought index specifically adapted to subsidence, a seasonal phenomenon of soil shrinkage that occurs frequently in France and damages buildings. The index is computed from land surface model simulations and evaluated by a rank correlation test with insurance data. With its optimal configuration, the index is able to identify years of both zero and significant loss.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
Anthony Schrapffer, Jan Polcher, Anna Sörensson, and Lluís Fita
Geosci. Model Dev., 16, 5755–5782, https://doi.org/10.5194/gmd-16-5755-2023, https://doi.org/10.5194/gmd-16-5755-2023, 2023
Short summary
Short summary
The present paper introduces a floodplain scheme for a high-resolution land surface model river routing. It was developed and evaluated over one of the world’s largest floodplains: the Pantanal in South America. This shows the impact of tropical floodplains on land surface conditions (soil moisture, temperature) and on land–atmosphere fluxes and highlights the potential impact of floodplains on land–atmosphere interactions and the importance of integrating this module in coupled simulations.
Antoine Sobaga, Bertrand Decharme, Florence Habets, Christine Delire, Noële Enjelvin, Paul-Olivier Redon, Pierre Faure-Catteloin, and Patrick Le Moigne
Hydrol. Earth Syst. Sci., 27, 2437–2461, https://doi.org/10.5194/hess-27-2437-2023, https://doi.org/10.5194/hess-27-2437-2023, 2023
Short summary
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Four water potential and hydraulic conductivity closed-form equations, including one mixed form, are evaluated. One form is more relevant for simulating drainage, especially during intense drainage events. The soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.
Jan Polcher, Anthony Schrapffer, Eliott Dupont, Lucia Rinchiuso, Xudong Zhou, Olivier Boucher, Emmanuel Mouche, Catherine Ottlé, and Jérôme Servonnat
Geosci. Model Dev., 16, 2583–2606, https://doi.org/10.5194/gmd-16-2583-2023, https://doi.org/10.5194/gmd-16-2583-2023, 2023
Short summary
Short summary
The proposed graphs of hydrological sub-grid elements for atmospheric models allow us to integrate the topographical elements needed in land surface models for a realistic representation of horizontal water and energy transport. The study demonstrates the numerical properties of the automatically built graphs and the simulated water flows.
En Liu, Yonghua Zhu, Jean-christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-33, https://doi.org/10.5194/hess-2023-33, 2023
Manuscript not accepted for further review
Short summary
Short summary
Among the 8 considered products, GLDAS_CLSM product performs best. All RZSM products overestimate the in situ measurements which attributes to a wet bias of air temperature, precipitation amount and frequency except the underestimation of SMOS L4 RZSM related to the underestimation of SMOS L3 SSM. The higher R between SMPA L4 and MERRA-2 was attributed to they both use CLSM and meteorological forcing from GEOS-5 where precipitation was corrected with CPCU precipitation product.
Arsène Druel, Simon Munier, Anthony Mucia, Clément Albergel, and Jean-Christophe Calvet
Geosci. Model Dev., 15, 8453–8471, https://doi.org/10.5194/gmd-15-8453-2022, https://doi.org/10.5194/gmd-15-8453-2022, 2022
Short summary
Short summary
Crop phenology and irrigation is implemented into a land surface model able to work at a global scale. A case study is presented over Nebraska (USA). Simulations with and without the new scheme are compared to different satellite-based observations. The model is able to produce a realistic yearly irrigation water amount. The irrigation scheme improves the simulated leaf area index, gross primary productivity, evapotransipiration, and land surface temperature.
Anthony Mucia, Bertrand Bonan, Clément Albergel, Yongjun Zheng, and Jean-Christophe Calvet
Biogeosciences, 19, 2557–2581, https://doi.org/10.5194/bg-19-2557-2022, https://doi.org/10.5194/bg-19-2557-2022, 2022
Short summary
Short summary
For the first time, microwave vegetation optical depth data are assimilated in a land surface model in order to analyze leaf area index and root zone soil moisture. The advantage of microwave products is the higher observation frequency. A large variety of independent datasets are used to verify the added value of the assimilation. It is shown that the assimilation is able to improve the representation of soil moisture, vegetation conditions, and terrestrial water and carbon fluxes.
Antoine Sobaga, Bertrand Decharme, Florence Habets, Christine Delire, Noële Enjelvin, Paul-Olivier Redon, Pierre Faure-Catteloin, and Patrick Le Moigne
EGUsphere, https://doi.org/10.5194/egusphere-2022-274, https://doi.org/10.5194/egusphere-2022-274, 2022
Preprint archived
Short summary
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Three water potential and hydraulic conductivity closed-form equations including one mixed form are evaluated. The mixed form is more relevant to simulate drainage especially during intense drainage events. Soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.
Simon Munier and Bertrand Decharme
Earth Syst. Sci. Data, 14, 2239–2258, https://doi.org/10.5194/essd-14-2239-2022, https://doi.org/10.5194/essd-14-2239-2022, 2022
Short summary
Short summary
This paper presents a new global-scale river network at 1/12°, generated automatically and assessed over the 69 largest basins of the world. A set of hydro-geomorphological parameters are derived at the same spatial resolution, including a description of river stretches (length, slope, width, roughness, bankfull depth), floodplains (roughness, sub-grid topography) and aquifers (transmissivity, porosity, sub-grid topography). The dataset may be useful for hydrology modelling or climate studies.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021, https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
Short summary
Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. Despite the impact of lakes on the water cycle, they are generally not considered in global hydrological studies. Based on a model called MLake, we assessed both the importance of lakes in simulating river flows at global scale and the value of their level variations for water resource management.
Zun Yin, Catherine Ottlé, Philippe Ciais, Feng Zhou, Xuhui Wang, Polcher Jan, Patrice Dumas, Shushi Peng, Laurent Li, Xudong Zhou, Yan Bo, Yi Xi, and Shilong Piao
Hydrol. Earth Syst. Sci., 25, 1133–1150, https://doi.org/10.5194/hess-25-1133-2021, https://doi.org/10.5194/hess-25-1133-2021, 2021
Short summary
Short summary
We improved the irrigation module in a land surface model ORCHIDEE and developed a dam operation model with the aim to investigate how irrigation and dams affect the streamflow fluctuations of the Yellow River. Results show that irrigation mainly reduces the annual river flow. The dam operation, however, mainly affects streamflow variation. By considering two generic operation rules, flood control and base flow guarantee, our dam model can sustainably improve the simulation accuracy.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
Emiliano Gelati, Zuzanna Zajac, Andrej Ceglar, Simona Bassu, Bernard Bisselink, Marko Adamovic, Jeroen Bernhard, Anna Malagó, Marco Pastori, Fayçal Bouraoui, and Ad de Roo
Adv. Sci. Res., 17, 227–253, https://doi.org/10.5194/asr-17-227-2020, https://doi.org/10.5194/asr-17-227-2020, 2020
Short summary
Short summary
In this modelling study, we conclude that groundwater is used unsustainably for irrigation in several areas of the
Euro-Mediterranean region. In the southern Iberian Peninsula, we estimate the potential effects of reducing irrigation groundwater abstractions to sustainable amounts to prevent long-term decline of groundwater storage. These restrictions may cause crop production losses but halt groundwater depletion and increase river flow during dry periods which is beneficial for ecosystems.
Marco Cucchi, Graham P. Weedon, Alessandro Amici, Nicolas Bellouin, Stefan Lange, Hannes Müller Schmied, Hans Hersbach, and Carlo Buontempo
Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, https://doi.org/10.5194/essd-12-2097-2020, 2020
Short summary
Short summary
WFDE5 is a novel meteorological forcing dataset for running land surface and global hydrological models. It has been generated using the WATCH Forcing Data methodology applied to surface meteorological variables from the ERA5 reanalysis. It is publicly available, along with its source code, through the C3S Climate Data Store at ECMWF. Results of the evaluations described in the paper highlight the benefits of using WFDE5 compared to both ERA5 and its predecessor WFDEI.
Clément Albergel, Yongjun Zheng, Bertrand Bonan, Emanuel Dutra, Nemesio Rodríguez-Fernández, Simon Munier, Clara Draper, Patricia de Rosnay, Joaquin Muñoz-Sabater, Gianpaolo Balsamo, David Fairbairn, Catherine Meurey, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 24, 4291–4316, https://doi.org/10.5194/hess-24-4291-2020, https://doi.org/10.5194/hess-24-4291-2020, 2020
Short summary
Short summary
LDAS-Monde is a global offline land data assimilation system (LDAS) that jointly assimilates satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the ISBA (Interaction between Soil Biosphere and Atmosphere) land surface model (LSM). This study demonstrates that LDAS-Monde is able to detect, monitor and forecast the impact of extreme weather on land surface states.
Patrick Le Moigne, François Besson, Eric Martin, Julien Boé, Aaron Boone, Bertrand Decharme, Pierre Etchevers, Stéphanie Faroux, Florence Habets, Matthieu Lafaysse, Delphine Leroux, and Fabienne Rousset-Regimbeau
Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, https://doi.org/10.5194/gmd-13-3925-2020, 2020
Short summary
Short summary
The study describes how a hydrometeorological model, operational at Météo-France, has been improved. Particular emphasis is placed on the impact of climatic data, surface, and soil parametrizations on the model results. Model simulations and evaluations carried out on a variety of measurements of river flows and snow depths are presented. All improvements in climate, surface data, and model physics have a positive impact on system performance.
Yongjun Zheng, Clément Albergel, Simon Munier, Bertrand Bonan, and Jean-Christophe Calvet
Geosci. Model Dev., 13, 3607–3625, https://doi.org/10.5194/gmd-13-3607-2020, https://doi.org/10.5194/gmd-13-3607-2020, 2020
Short summary
Short summary
This study proposes a sophisticated dynamically running job scheme as well as an innovative parallel IO algorithm to reduce the time to solution of an offline framework for high-dimensional ensemble Kalman filters. The offline and online modes of ensemble Kalman filters are built to comprehensively assess their time to solution efficiencies. The offline mode is substantially faster than the online mode in terms of time to solution, especially for large-scale assimilation problems.
Pierre Nabat, Samuel Somot, Christophe Cassou, Marc Mallet, Martine Michou, Dominique Bouniol, Bertrand Decharme, Thomas Drugé, Romain Roehrig, and David Saint-Martin
Atmos. Chem. Phys., 20, 8315–8349, https://doi.org/10.5194/acp-20-8315-2020, https://doi.org/10.5194/acp-20-8315-2020, 2020
Short summary
Short summary
The present work aims at better understanding regional climate–aerosol interactions over the Euro-Mediterranean region by studying the relationships between aerosols and atmospheric circulation. Based on 40-year regional climate simulations (1979–2018), our results show the role of the North Atlantic Oscillation in driving the interannual aerosol variability, and that of weather regimes for the daily variability, with ensuing effects on shortwave surface radiation and surface temperature.
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Victor Pellet, Filipe Aires, Fabrice Papa, Simon Munier, and Bertrand Decharme
Hydrol. Earth Syst. Sci., 24, 3033–3055, https://doi.org/10.5194/hess-24-3033-2020, https://doi.org/10.5194/hess-24-3033-2020, 2020
Short summary
Short summary
The water mass variation at and below the land surface is a major component of the water cycle that was first estimated using GRACE observations (2002–2017). Our analysis shows the advantages of the use of satellite observation for precipitation and evapotranspiration along with river discharge measurement to perform an indirect and coherent reconstruction of this water component estimate over longer time periods.
Xudong Zhou, Jan Polcher, Tao Yang, and Ching-Sheng Huang
Hydrol. Earth Syst. Sci., 24, 2061–2081, https://doi.org/10.5194/hess-24-2061-2020, https://doi.org/10.5194/hess-24-2061-2020, 2020
Short summary
Short summary
This article proposes a new estimation approach for assessing the uncertainty with multiple datasets by fully considering all variations in temporal and spatial dimensions. Comparisons demonstrate that classical metrics may underestimate the uncertainties among datasets due to an averaging process in their algorithms. This new approach is particularly suitable for overall assessment of multiple climatic products, but can be easily applied to other spatiotemporal products in related fields.
Bertrand Bonan, Clément Albergel, Yongjun Zheng, Alina Lavinia Barbu, David Fairbairn, Simon Munier, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 24, 325–347, https://doi.org/10.5194/hess-24-325-2020, https://doi.org/10.5194/hess-24-325-2020, 2020
Short summary
Short summary
This paper introduces an ensemble square root filter (EnSRF), a deterministic ensemble Kalman filter, for jointly assimilating observations of the surface soil moisture and leaf area index in the Land Data Assimilation System LDAS-Monde. LDAS-Monde constrains the Interaction between Soil, Biosphere and Atmosphere (ISBA) land surface model to improve the reanalysis of land surface variables. EnSRF is compared with the simplified extended Kalman filter over the European Mediterranean region.
Huw W. Lewis, Juan Manuel Castillo Sanchez, John Siddorn, Robert R. King, Marina Tonani, Andrew Saulter, Peter Sykes, Anne-Christine Pequignet, Graham P. Weedon, Tamzin Palmer, Joanna Staneva, and Lucy Bricheno
Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019, https://doi.org/10.5194/os-15-669-2019, 2019
Short summary
Short summary
Forecasts of ocean temperature, salinity, currents, and sea height can be improved by linking state-of-the-art ocean and wave models, so that they can interact to better represent the real world. We test this approach in an ocean model of north-west Europe which can simulate small-scale details of the ocean state. The intention is to implement the system described in this study for operational use so that improved information can be provided to users of ocean forecast data.
Md Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Jan Polcher, Clément Albergel, Emanuel Dutra, Gabriel Fink, Alberto Martínez-de la Torre, and Simon Munier
Hydrol. Earth Syst. Sci., 23, 1973–1994, https://doi.org/10.5194/hess-23-1973-2019, https://doi.org/10.5194/hess-23-1973-2019, 2019
Short summary
Short summary
This study investigates the propagation of precipitation uncertainty, and its interaction with hydrologic modeling, in global water resource reanalysis. Analysis is based on ensemble hydrologic simulations for a period of 11 years based on six global hydrologic models and five precipitation datasets. Results show that uncertainties in the model simulations are attributed to both uncertainty in precipitation forcing and the model structure.
Sibo Zhang, Catherine Meurey, and Jean-Christophe Calvet
Atmos. Chem. Phys., 19, 5005–5020, https://doi.org/10.5194/acp-19-5005-2019, https://doi.org/10.5194/acp-19-5005-2019, 2019
Short summary
Short summary
In situ rain temperature measurements are rare. Soil moisture and soil temperature observations in southern France are used to assess the cooling effects on soils of rainfall events. The rainwater temperature is estimated using observed changes of topsoil volumetric soil moisture and soil temperature in response to the rainfall event. The obtained rain temperature estimates are generally lower than the ambient air temperatures, wet-bulb temperatures, and topsoil temperatures.
Lluís Fita, Jan Polcher, Theodore M. Giannaros, Torge Lorenz, Josipa Milovac, Giannis Sofiadis, Eleni Katragkou, and Sophie Bastin
Geosci. Model Dev., 12, 1029–1066, https://doi.org/10.5194/gmd-12-1029-2019, https://doi.org/10.5194/gmd-12-1029-2019, 2019
Short summary
Short summary
Regional climate experiments coordinated throughout CORDEX aim to study and provide high-quality climate data over a given region. The data are used in climate change mitigation and adaptation policy studies and by stakeholders. CORDEX requires a list of variables, most of which are not provided by atmospheric models. Aiming to help the community and to maximize the use of CORDEX exercises, we create a new module for WRF models to directly produce them by adding
genericand
additionalones.
Alberto Martínez-de la Torre, Eleanor M. Blyth, and Graham P. Weedon
Geosci. Model Dev., 12, 765–784, https://doi.org/10.5194/gmd-12-765-2019, https://doi.org/10.5194/gmd-12-765-2019, 2019
Short summary
Short summary
Land–surface interactions with the atmosphere are key for weather and climate modelling studies, both in research and in the operational systems that provide scientific tools for decision makers. Regional assessments will be influenced by the characteristics of the land. We improved the representation of river flows in Great Britain by including a dependency on the terrain slope. This development will be reflected not only in river flows, but in the whole water cycle represented by the model.
Tim Busker, Ad de Roo, Emiliano Gelati, Christian Schwatke, Marko Adamovic, Berny Bisselink, Jean-Francois Pekel, and Andrew Cottam
Hydrol. Earth Syst. Sci., 23, 669–690, https://doi.org/10.5194/hess-23-669-2019, https://doi.org/10.5194/hess-23-669-2019, 2019
Short summary
Short summary
This paper estimates lake and reservoir volume variations over all continents from 1984 to 2015 using remote sensing alone. This study improves on previous methodologies by using the Global Surface Water dataset developed by the Joint Research Centre, which allowed for volume calculations on a global scale, a high resolution (30 m) and back to 1984 using very detailed lake area dynamics. Using 18 in situ volume time series as validation, our volume estimates showed a high accuracy.
Victor Pellet, Filipe Aires, Simon Munier, Diego Fernández Prieto, Gabriel Jordá, Wouter Arnoud Dorigo, Jan Polcher, and Luca Brocca
Hydrol. Earth Syst. Sci., 23, 465–491, https://doi.org/10.5194/hess-23-465-2019, https://doi.org/10.5194/hess-23-465-2019, 2019
Short summary
Short summary
This study is an effort for a better understanding and quantification of the water cycle and related processes in the Mediterranean region, by dealing with satellite products and their uncertainties. The aims of the paper are 3-fold: (1) developing methods with hydrological constraints to integrate all the datasets, (2) giving the full picture of the Mediterranean WC, and (3) building a model-independent database that can evaluate the numerous regional climate models (RCMs) for this region.
Hylke E. Beck, Ming Pan, Tirthankar Roy, Graham P. Weedon, Florian Pappenberger, Albert I. J. M. van Dijk, George J. Huffman, Robert F. Adler, and Eric F. Wood
Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, https://doi.org/10.5194/hess-23-207-2019, 2019
Short summary
Short summary
We conducted a comprehensive evaluation of 26 precipitation datasets for the US using the Stage-IV gauge-radar dataset as a reference. The best overall performance was obtained by MSWEP V2.2, underscoring the importance of applying daily gauge corrections and accounting for reporting times. Our findings can be used as a guide to choose the most suitable precipitation dataset for a particular application.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Trung Nguyen-Quang, Jan Polcher, Agnès Ducharne, Thomas Arsouze, Xudong Zhou, Ana Schneider, and Lluís Fita
Geosci. Model Dev., 11, 4965–4985, https://doi.org/10.5194/gmd-11-4965-2018, https://doi.org/10.5194/gmd-11-4965-2018, 2018
Short summary
Short summary
This study presents a revised river routing scheme for the Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. The revision is carried out to benefit from the high-resolution topography provided by the Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS). We demonstrate that the finer description of the catchments allows for an improvement of the simulated river discharge of ORCHIDEE in an area with complex topography.
Xudong Zhou, Jan Polcher, Tao Yang, Yukiko Hirabayashi, and Trung Nguyen-Quang
Hydrol. Earth Syst. Sci., 22, 6087–6108, https://doi.org/10.5194/hess-22-6087-2018, https://doi.org/10.5194/hess-22-6087-2018, 2018
Short summary
Short summary
Model bias is commonly seen in discharge simulation by hydrological or land surface models. This study tested an approach with the Budyko hypothesis to retrospect the estimated discharge bias to different bias sources including the atmospheric variables and model structure. Results indicate that the bias is most likely caused by the forcing variables, and the forcing bias should firstly be assessed and reduced in order to perform pertinent analysis of the regional water cycle.
Zun Yin, Catherine Ottlé, Philippe Ciais, Matthieu Guimberteau, Xuhui Wang, Dan Zhu, Fabienne Maignan, Shushi Peng, Shilong Piao, Jan Polcher, Feng Zhou, Hyungjun Kim, and other China-Trend-Stream project members
Hydrol. Earth Syst. Sci., 22, 5463–5484, https://doi.org/10.5194/hess-22-5463-2018, https://doi.org/10.5194/hess-22-5463-2018, 2018
Short summary
Short summary
Simulations in China were performed in ORCHIDEE driven by different forcing datasets: GSWP3, PGF, CRU-NCEP, and WFDEI. Simulated soil moisture was compared to several datasets to evaluate the ability of ORCHIDEE in reproducing soil moisture dynamics. Results showed that ORCHIDEE soil moisture coincided well with other datasets in wet areas and in non-irrigated areas. It suggested that the ORCHIDEE-MICT was suitable for further hydrological studies in China.
Fuxing Wang, Jan Polcher, Philippe Peylin, and Vladislav Bastrikov
Hydrol. Earth Syst. Sci., 22, 3863–3882, https://doi.org/10.5194/hess-22-3863-2018, https://doi.org/10.5194/hess-22-3863-2018, 2018
Short summary
Short summary
This work improves river discharge estimation by taking advantages of observation and model simulations. The new estimation takes into account both gauged and un-gauged rivers, and it compensates model systematic errors and missing processes (e.g., human water usage). This improved estimation is important not only for water resources management and ecosystem health over continent but also for ocean dynamics and salinity.
Clement Albergel, Emanuel Dutra, Simon Munier, Jean-Christophe Calvet, Joaquin Munoz-Sabater, Patricia de Rosnay, and Gianpaolo Balsamo
Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, https://doi.org/10.5194/hess-22-3515-2018, 2018
Short summary
Short summary
ECMWF recently released the first 7-year segment of its latest atmospheric reanalysis: ERA-5 (2010–2016). ERA-5 has important changes relative to ERA-Interim including higher spatial and temporal resolutions as well as a more recent model and data assimilation system. ERA-5 is foreseen to replace ERA-Interim reanalysis. One of the main goals of this study is to assess whether ERA-5 can enhance the simulation performances with respect to ERA-Interim when it is used to force a land surface model.
Sibo Zhang, Jean-Christophe Calvet, José Darrozes, Nicolas Roussel, Frédéric Frappart, and Gilles Bouhours
Hydrol. Earth Syst. Sci., 22, 1931–1946, https://doi.org/10.5194/hess-22-1931-2018, https://doi.org/10.5194/hess-22-1931-2018, 2018
Short summary
Short summary
Surface soil moisture was retrieved from a grassland site in southwestern France using the GNSS-IR technique. In order to efficiently limit the impact of perturbing vegetation effects, the grass growth period and the senescence period are treated separately. While the vegetation biomass effect can be corrected for, the litter water interception influences the observations and cannot be easily accounted for.
Alberto Martínez-de la Torre, Eleanor M. Blyth, and Graham P. Weedon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-750, https://doi.org/10.5194/hess-2017-750, 2018
Manuscript not accepted for further review
Short summary
Short summary
Land surface interactions with the atmosphere are key for weather and climate modelling studies, both in research and in the operational systems that provide scientific tools for decision makers. Regional assessments will be influenced by the characteristics of the land. We improved the representation of Great Britain river flows by including a dependency on terrain slope. This development will be reflected not only in river flows, but in the whole water cycle represented by the model/system.
Roland Séférian, Sunghye Baek, Olivier Boucher, Jean-Louis Dufresne, Bertrand Decharme, David Saint-Martin, and Romain Roehrig
Geosci. Model Dev., 11, 321–338, https://doi.org/10.5194/gmd-11-321-2018, https://doi.org/10.5194/gmd-11-321-2018, 2018
Short summary
Short summary
This paper presents a new interactive scheme for ocean surface albedo suited for the current generation of Earth system models. This scheme computes the ocean surface albedo accounting for the spectral dependence (across a range of wavelengths between 200 and 4000 nm), the characteristics of incident solar radiation (direct of diffuse), the effects of surface winds, chlorophyll content and whitecaps in addition to the canonical solar zenith angle dependence.
Hylke E. Beck, Noemi Vergopolan, Ming Pan, Vincenzo Levizzani, Albert I. J. M. van Dijk, Graham P. Weedon, Luca Brocca, Florian Pappenberger, George J. Huffman, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, https://doi.org/10.5194/hess-21-6201-2017, 2017
Short summary
Short summary
This study represents the most comprehensive global-scale precipitation dataset evaluation to date. We evaluated 13 uncorrected precipitation datasets using precipitation observations from 76 086 gauges, and 9 gauge-corrected ones using hydrological modeling for 9053 catchments. Our results highlight large differences in estimation accuracy, and hence, the importance of precipitation dataset selection in both research and operational applications.
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
Clément Albergel, Simon Munier, Delphine Jennifer Leroux, Hélène Dewaele, David Fairbairn, Alina Lavinia Barbu, Emiliano Gelati, Wouter Dorigo, Stéphanie Faroux, Catherine Meurey, Patrick Le Moigne, Bertrand Decharme, Jean-Francois Mahfouf, and Jean-Christophe Calvet
Geosci. Model Dev., 10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, https://doi.org/10.5194/gmd-10-3889-2017, 2017
Short summary
Short summary
LDAS-Monde, a global land data assimilation system, is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. It is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the ISBA land surface model coupled with the CTRIP continental hydrological system. Assimilation of SSM and LAI leads to a better representation of evapotranspiration and gross primary production.
Ronny Lauerwald, Pierre Regnier, Marta Camino-Serrano, Bertrand Guenet, Matthieu Guimberteau, Agnès Ducharne, Jan Polcher, and Philippe Ciais
Geosci. Model Dev., 10, 3821–3859, https://doi.org/10.5194/gmd-10-3821-2017, https://doi.org/10.5194/gmd-10-3821-2017, 2017
Short summary
Short summary
ORCHILEAK is a new branch of the terrestrial ecosystem model ORCHIDEE that represents dissolved organic carbon (DOC) production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition, and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks on floodplains and in swamps. We parameterized and validated ORCHILEAK for the Amazon basin.
Hélène Dewaele, Simon Munier, Clément Albergel, Carole Planque, Nabil Laanaia, Dominique Carrer, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 4861–4878, https://doi.org/10.5194/hess-21-4861-2017, https://doi.org/10.5194/hess-21-4861-2017, 2017
Short summary
Short summary
Soil maximum available water content (MaxAWC) is a key parameter in land surface models. Being difficult to measure, this parameter is usually unavailable. A 15-year time series of satellite-derived observations of leaf area index (LAI) is used to retrieve MaxAWC for rainfed straw cereals over France. Disaggregated LAI is sequentially assimilated into the ISBA LSM. MaxAWC is estimated minimising LAI analyses increments. Annual maximum LAI observations correlate with the MaxAWC estimates.
Sibo Zhang, Nicolas Roussel, Karen Boniface, Minh Cuong Ha, Frédéric Frappart, José Darrozes, Frédéric Baup, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 4767–4784, https://doi.org/10.5194/hess-21-4767-2017, https://doi.org/10.5194/hess-21-4767-2017, 2017
Short summary
Short summary
GNSS SNR data were obtained from an intensively cultivated wheat field in southwestern France. The data were used to retrieve soil moisture and vegetation characteristics during the growing period of wheat. Vegetation growth broke up the constant height assumption used in soil moisture retrieval algorithms. Soil moisture could not be retrieved after wheat tillering. A new algorithm based on a wavelet analysis was implemented and used to retrieve vegetation height.
Mathieu Barrere, Florent Domine, Bertrand Decharme, Samuel Morin, Vincent Vionnet, and Matthieu Lafaysse
Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, https://doi.org/10.5194/gmd-10-3461-2017, 2017
Short summary
Short summary
Global warming projections still suffer from a limited representation of the permafrost–carbon feedback. This study assesses the capacity of snow-soil coupled models to simulate the permafrost thermal regime at Bylot Island, a high Arctic site. Significant flaws are found in the description of Arctic snow properties, resulting in erroneous heat transfers between the soil and the snow in simulations. Improved snow schemes are needed to accurately predict the future of permafrost.
Jaap Schellekens, Emanuel Dutra, Alberto Martínez-de la Torre, Gianpaolo Balsamo, Albert van Dijk, Frederiek Sperna Weiland, Marie Minvielle, Jean-Christophe Calvet, Bertrand Decharme, Stephanie Eisner, Gabriel Fink, Martina Flörke, Stefanie Peßenteiner, Rens van Beek, Jan Polcher, Hylke Beck, René Orth, Ben Calton, Sophia Burke, Wouter Dorigo, and Graham P. Weedon
Earth Syst. Sci. Data, 9, 389–413, https://doi.org/10.5194/essd-9-389-2017, https://doi.org/10.5194/essd-9-389-2017, 2017
Short summary
Short summary
The dataset combines the results of 10 global models that describe the global continental water cycle. The data can be used as input for water resources studies, flood frequency studies etc. at different scales from continental to medium-scale catchments. We compared the results with earth observation data and conclude that most uncertainties are found in snow-dominated regions and tropical rainforest and monsoon regions.
Adrien Napoly, Aaron Boone, Patrick Samuelsson, Stefan Gollvik, Eric Martin, Roland Seferian, Dominique Carrer, Bertrand Decharme, and Lionel Jarlan
Geosci. Model Dev., 10, 1621–1644, https://doi.org/10.5194/gmd-10-1621-2017, https://doi.org/10.5194/gmd-10-1621-2017, 2017
Short summary
Short summary
This paper is the second part of a new parameterization for canopy representation that has been developed in the Interactions between the Surface Biosphere Atmosphere model (ISBA). A module for the explicit representation of the litter bellow forest canopies has been added. Then, the first evaluation of these new developments is performed at local scale among three well-instrumented sites and then at the global scale using the FLUXNET network.
David Fairbairn, Alina Lavinia Barbu, Adrien Napoly, Clément Albergel, Jean-François Mahfouf, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 2015–2033, https://doi.org/10.5194/hess-21-2015-2017, https://doi.org/10.5194/hess-21-2015-2017, 2017
Short summary
Short summary
This study assesses the impact on river discharge simulations over France of assimilating ASCAT-derived surface soil moisture (SSM) and leaf area index (LAI) observations into the ISBA land surface model. Wintertime LAI has a notable impact on river discharge. SSM assimilation degrades river discharge simulations. This is caused by limitations in the simplified versions of the Kalman filter and ISBA model used in this study. Implementing an observation operator for ASCAT is needed.
Aaron Boone, Patrick Samuelsson, Stefan Gollvik, Adrien Napoly, Lionel Jarlan, Eric Brun, and Bertrand Decharme
Geosci. Model Dev., 10, 843–872, https://doi.org/10.5194/gmd-10-843-2017, https://doi.org/10.5194/gmd-10-843-2017, 2017
Short summary
Short summary
Land surface models describe the different exchanges of mass, heat, and momentum with the atmosphere. They are pushing towards improved realism owing to an increasing number of in situ observations, improving satellite data-sets and increasing computing resources. As a part of the trend, a new parameterization has been developed called the Interactions between the Surface Biosphere Atmosphere-Multi-Energy Budget model. This technical paper describes model equations and theoretical background.
Anaïs Barella-Ortiz, Jan Polcher, Patricia de Rosnay, Maria Piles, and Emiliano Gelati
Hydrol. Earth Syst. Sci., 21, 357–375, https://doi.org/10.5194/hess-21-357-2017, https://doi.org/10.5194/hess-21-357-2017, 2017
Short summary
Short summary
L-band radiometry is considered to be one of the most suitable techniques for estimating surface soil moisture (SSM) by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm which yields SSM. This paper compares brightness temperatures measured by the SMOS mission to two different sets of modelled ones. It shows that models and remote-sensed values agree well in temporal variability, but not in their spatial structures.
Jean-Christophe Calvet, Noureddine Fritz, Christine Berne, Bruno Piguet, William Maurel, and Catherine Meurey
SOIL, 2, 615–629, https://doi.org/10.5194/soil-2-615-2016, https://doi.org/10.5194/soil-2-615-2016, 2016
Short summary
Short summary
Soil thermal conductivity in wet conditions can be retrieved together with the soil quartz content using a reverse modelling technique based on sub-hourly soil temperature observations at three depths below the soil surface.
A pedotransfer function is proposed for quartz, for the considered region in France.
Gravels have a major impact on soil thermal conductivity, and omitting the soil organic matter information tends to enhance this impact.
Yiying Chen, James Ryder, Vladislav Bastrikov, Matthew J. McGrath, Kim Naudts, Juliane Otto, Catherine Ottlé, Philippe Peylin, Jan Polcher, Aude Valade, Andrew Black, Jan A. Elbers, Eddy Moors, Thomas Foken, Eva van Gorsel, Vanessa Haverd, Bernard Heinesch, Frank Tiedemann, Alexander Knohl, Samuli Launiainen, Denis Loustau, Jérôme Ogée, Timo Vessala, and Sebastiaan Luyssaert
Geosci. Model Dev., 9, 2951–2972, https://doi.org/10.5194/gmd-9-2951-2016, https://doi.org/10.5194/gmd-9-2951-2016, 2016
Short summary
Short summary
In this study, we compiled a set of within-canopy and above-canopy measurements of energy and water fluxes, and used these data to parametrize and validate the new multi-layer energy budget scheme for a range of forest types. An adequate parametrization approach has been presented for the global-scale land surface model (ORCHIDEE-CAN). Furthermore, model performance of the new multi-layer parametrization was compared against the existing single-layer scheme.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Wenli Wang, Annette Rinke, John C. Moore, Duoying Ji, Xuefeng Cui, Shushi Peng, David M. Lawrence, A. David McGuire, Eleanor J. Burke, Xiaodong Chen, Bertrand Decharme, Charles Koven, Andrew MacDougall, Kazuyuki Saito, Wenxin Zhang, Ramdane Alkama, Theodore J. Bohn, Philippe Ciais, Christine Delire, Isabelle Gouttevin, Tomohiro Hajima, Gerhard Krinner, Dennis P. Lettenmaier, Paul A. Miller, Benjamin Smith, Tetsuo Sueyoshi, and Artem B. Sherstiukov
The Cryosphere, 10, 1721–1737, https://doi.org/10.5194/tc-10-1721-2016, https://doi.org/10.5194/tc-10-1721-2016, 2016
Short summary
Short summary
The winter snow insulation is a key process for air–soil temperature coupling and is relevant for permafrost simulations. Differences in simulated air–soil temperature relationships and their modulation by climate conditions are found to be related to the snow model physics. Generally, models with better performance apply multilayer snow schemes.
Roland Séférian, Christine Delire, Bertrand Decharme, Aurore Voldoire, David Salas y Melia, Matthieu Chevallier, David Saint-Martin, Olivier Aumont, Jean-Christophe Calvet, Dominique Carrer, Hervé Douville, Laurent Franchistéguy, Emilie Joetzjer, and Séphane Sénési
Geosci. Model Dev., 9, 1423–1453, https://doi.org/10.5194/gmd-9-1423-2016, https://doi.org/10.5194/gmd-9-1423-2016, 2016
Short summary
Short summary
This paper presents the first IPCC-class Earth system model developed at Centre National de Recherches Météorologiques (CNRM-ESM1). We detail how the various carbon reservoirs were initialized and analyze the behavior of the carbon cycle and its prominent physical drivers, comparing model results to the most up-to-date climate and carbon cycle dataset over the latest decades.
Bertrand Decharme, Eric Brun, Aaron Boone, Christine Delire, Patrick Le Moigne, and Samuel Morin
The Cryosphere, 10, 853–877, https://doi.org/10.5194/tc-10-853-2016, https://doi.org/10.5194/tc-10-853-2016, 2016
Short summary
Short summary
We analyze how snowpack processes and soil properties impact the soil temperature profiles over northern Eurasian regions using a land surface model. A correct representation of snow compaction is critical in winter while snow albedo is dominant in spring. In summer, soil temperature is more affected by soil organic carbon content, which strongly influences the maximum thaw depth in permafrost regions. This work was done to improve the representation of boreal region processes in climate models.
W. Wang, A. Rinke, J. C. Moore, X. Cui, D. Ji, Q. Li, N. Zhang, C. Wang, S. Zhang, D. M. Lawrence, A. D. McGuire, W. Zhang, C. Delire, C. Koven, K. Saito, A. MacDougall, E. Burke, and B. Decharme
The Cryosphere, 10, 287–306, https://doi.org/10.5194/tc-10-287-2016, https://doi.org/10.5194/tc-10-287-2016, 2016
Short summary
Short summary
We use a model-ensemble approach for simulating permafrost on the Tibetan Plateau. We identify the uncertainties across models (state-of-the-art land surface models) and across methods (most commonly used methods to define permafrost).
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
J. Ryder, J. Polcher, P. Peylin, C. Ottlé, Y. Chen, E. van Gorsel, V. Haverd, M. J. McGrath, K. Naudts, J. Otto, A. Valade, and S. Luyssaert
Geosci. Model Dev., 9, 223–245, https://doi.org/10.5194/gmd-9-223-2016, https://doi.org/10.5194/gmd-9-223-2016, 2016
S. Peng, P. Ciais, G. Krinner, T. Wang, I. Gouttevin, A. D. McGuire, D. Lawrence, E. Burke, X. Chen, B. Decharme, C. Koven, A. MacDougall, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, C. Delire, T. Hajima, D. Ji, D. P. Lettenmaier, P. A. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
The Cryosphere, 10, 179–192, https://doi.org/10.5194/tc-10-179-2016, https://doi.org/10.5194/tc-10-179-2016, 2016
Short summary
Short summary
Soil temperature change is a key indicator of the dynamics of permafrost. Using nine process-based ecosystem models with permafrost processes, a large spread of soil temperature trends across the models. Air temperature and longwave downward radiation are the main drivers of soil temperature trends. Based on an emerging observation constraint method, the total boreal near-surface permafrost area decrease comprised between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000.
D. Fairbairn, A. L. Barbu, J.-F. Mahfouf, J.-C. Calvet, and E. Gelati
Hydrol. Earth Syst. Sci., 19, 4811–4830, https://doi.org/10.5194/hess-19-4811-2015, https://doi.org/10.5194/hess-19-4811-2015, 2015
Short summary
Short summary
The ensemble Kalman filter (EnKF) and simplified extended Kalman filter (SEKF) root-zone soil moisture analyses are compared when assimilating in situ surface observations. In the synthetic experiments, the EnKF performs best because it can stochastically capture the errors in the precipitation. The two methods perform similarly in the real experiments. During the summer period, both methods perform poorly as a result of nonlinearities in the land surface model.
S. Garrigues, A. Olioso, D. Carrer, B. Decharme, J.-C. Calvet, E. Martin, S. Moulin, and O. Marloie
Geosci. Model Dev., 8, 3033–3053, https://doi.org/10.5194/gmd-8-3033-2015, https://doi.org/10.5194/gmd-8-3033-2015, 2015
Short summary
Short summary
This paper investigates the impacts of uncertainties in the climate, the vegetation dynamic, the soil properties and the cropland management on the simulation of evapotranspiration from the ISBA-A-gs land surface model over a 12-year Mediterranean crop succession. It mainly shows that errors in the soil parameters and the lack of irrigation in the simulation have the largest influence on evapotranspiration compared to the uncertainties in the climate and the vegetation dynamic.
M. A. Rawlins, A. D. McGuire, J. S. Kimball, P. Dass, D. Lawrence, E. Burke, X. Chen, C. Delire, C. Koven, A. MacDougall, S. Peng, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, P. Ciais, B. Decharme, I. Gouttevin, T. Hajima, D. Ji, G. Krinner, D. P. Lettenmaier, P. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
Biogeosciences, 12, 4385–4405, https://doi.org/10.5194/bg-12-4385-2015, https://doi.org/10.5194/bg-12-4385-2015, 2015
Short summary
Short summary
We used outputs from nine models to better understand land-atmosphere CO2 exchanges across Northern Eurasia over the period 1960-1990. Model estimates were assessed against independent ground and satellite measurements. We find that the models show a weakening of the CO2 sink over time; the models tend to overestimate respiration, causing an underestimate in NEP; the model range in regional NEP is twice the multimodel mean. Residence time for soil carbon decreased, amid a gain in carbon storage.
S. Garrigues, A. Olioso, J. C. Calvet, E. Martin, S. Lafont, S. Moulin, A. Chanzy, O. Marloie, S. Buis, V. Desfonds, N. Bertrand, and D. Renard
Hydrol. Earth Syst. Sci., 19, 3109–3131, https://doi.org/10.5194/hess-19-3109-2015, https://doi.org/10.5194/hess-19-3109-2015, 2015
Short summary
Short summary
Land surface model simulations of evapotranspiration are assessed over a 12-year Mediterranean crop succession. Evapotranspiration mainly results from soil evaporation when it is simulated over a Mediterranean crop succession. This leads to a high sensitivity to the soil parameters. Errors on soil hydraulic properties can lead to a large bias in cumulative evapotranspiration over a long period of time. Accounting for uncertainties in soil properties is essential for land surface modelling.
E. Joetzjer, C. Delire, H. Douville, P. Ciais, B. Decharme, D. Carrer, H. Verbeeck, M. De Weirdt, and D. Bonal
Geosci. Model Dev., 8, 1709–1727, https://doi.org/10.5194/gmd-8-1709-2015, https://doi.org/10.5194/gmd-8-1709-2015, 2015
N. Canal, J.-C. Calvet, B. Decharme, D. Carrer, S. Lafont, and G. Pigeon
Hydrol. Earth Syst. Sci., 18, 4979–4999, https://doi.org/10.5194/hess-18-4979-2014, https://doi.org/10.5194/hess-18-4979-2014, 2014
Short summary
Short summary
Regional French agricultural yield statistics are used to benchmark root water uptake representations in the ISBA-A-gs model. Key model parameters governing the inter-annual variability of the simulated biomass are retrieved. A complex multi-layer soil hydrology model does not outperform a simple bulk root-zone reservoir approach. This could be explained by missing processes/information in the model such as hydraulic redistribution and detailed soil properties.
E. Joetzjer, C. Delire, H. Douville, P. Ciais, B. Decharme, R. Fisher, B. Christoffersen, J. C. Calvet, A. C. L. da Costa, L. V. Ferreira, and P. Meir
Geosci. Model Dev., 7, 2933–2950, https://doi.org/10.5194/gmd-7-2933-2014, https://doi.org/10.5194/gmd-7-2933-2014, 2014
M. Balzarolo, S. Boussetta, G. Balsamo, A. Beljaars, F. Maignan, J.-C. Calvet, S. Lafont, A. Barbu, B. Poulter, F. Chevallier, C. Szczypta, and D. Papale
Biogeosciences, 11, 2661–2678, https://doi.org/10.5194/bg-11-2661-2014, https://doi.org/10.5194/bg-11-2661-2014, 2014
C. Szczypta, J.-C. Calvet, F. Maignan, W. Dorigo, F. Baret, and P. Ciais
Geosci. Model Dev., 7, 931–946, https://doi.org/10.5194/gmd-7-931-2014, https://doi.org/10.5194/gmd-7-931-2014, 2014
M. Parrens, J.-F. Mahfouf, A. L. Barbu, and J.-C. Calvet
Hydrol. Earth Syst. Sci., 18, 673–689, https://doi.org/10.5194/hess-18-673-2014, https://doi.org/10.5194/hess-18-673-2014, 2014
A. L. Barbu, J.-C. Calvet, J.-F. Mahfouf, and S. Lafont
Hydrol. Earth Syst. Sci., 18, 173–192, https://doi.org/10.5194/hess-18-173-2014, https://doi.org/10.5194/hess-18-173-2014, 2014
E. Joetzjer, H. Douville, C. Delire, P. Ciais, B. Decharme, and S. Tyteca
Hydrol. Earth Syst. Sci., 17, 4885–4895, https://doi.org/10.5194/hess-17-4885-2013, https://doi.org/10.5194/hess-17-4885-2013, 2013
A. Barella-Ortiz, J. Polcher, A. Tuzet, and K. Laval
Hydrol. Earth Syst. Sci., 17, 4625–4639, https://doi.org/10.5194/hess-17-4625-2013, https://doi.org/10.5194/hess-17-4625-2013, 2013
R. Alkama, L. Marchand, A. Ribes, and B. Decharme
Hydrol. Earth Syst. Sci., 17, 2967–2979, https://doi.org/10.5194/hess-17-2967-2013, https://doi.org/10.5194/hess-17-2967-2013, 2013
V. Masson, P. Le Moigne, E. Martin, S. Faroux, A. Alias, R. Alkama, S. Belamari, A. Barbu, A. Boone, F. Bouyssel, P. Brousseau, E. Brun, J.-C. Calvet, D. Carrer, B. Decharme, C. Delire, S. Donier, K. Essaouini, A.-L. Gibelin, H. Giordani, F. Habets, M. Jidane, G. Kerdraon, E. Kourzeneva, M. Lafaysse, S. Lafont, C. Lebeaupin Brossier, A. Lemonsu, J.-F. Mahfouf, P. Marguinaud, M. Mokhtari, S. Morin, G. Pigeon, R. Salgado, Y. Seity, F. Taillefer, G. Tanguy, P. Tulet, B. Vincendon, V. Vionnet, and A. Voldoire
Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, https://doi.org/10.5194/gmd-6-929-2013, 2013
R. Amri, M. Zribi, Z. Lili-Chabaane, C. Szczypta, J. C. Calvet, and G. Boulet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-8117-2013, https://doi.org/10.5194/hessd-10-8117-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Global hydrology | Techniques and Approaches: Uncertainty analysis
Leveraging multi-variable observations to reduce and quantify the output uncertainty of a global hydrological model: evaluation of three ensemble-based approaches for the Mississippi River basin
Refining Remote Sensing precipitation Datasets in the South Pacific: An Adaptive Multi-Method Approach for Calibrating the TRMM Product
Information content of soil hydrology in a west Amazon watershed as informed by GRACE
Diagnostic evaluation of river discharge into the Arctic Ocean and its impact on oceanic volume transports
The 63-year changes in annual streamflow volumes across Europe with a focus on the Mediterranean basin
Multivariable evaluation of land surface processes in forced and coupled modes reveals new error sources to the simulated water cycle in the IPSL (Institute Pierre Simon Laplace) climate model
Implications of model selection: a comparison of publicly available, conterminous US-extent hydrologic component estimates
Historical and future changes in global flood magnitude – evidence from a model–observation investigation
A global-scale evaluation of extreme event uncertainty in the eartH2Observe project
Assessment of precipitation error propagation in multi-model global water resource reanalysis
The potential of global reanalysis datasets in identifying flood events in Southern Africa
Global change in streamflow extremes under climate change over the 21st century
Have precipitation extremes and annual totals been increasing in the world's dry regions over the last 60 years?
Sensitivity of future continental United States water deficit projections to general circulation models, the evapotranspiration estimation method, and the greenhouse gas emission scenario
Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use
Evaluating uncertainty in estimates of soil moisture memory with a reverse ensemble approach
Flood and drought hydrologic monitoring: the role of model parameter uncertainty
Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration
Climate change impacts on runoff in West Africa: a review
Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis
Disinformative data in large-scale hydrological modelling
The impact of climate mitigation on projections of future drought
Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data
Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias
Improving runoff estimates from regional climate models: a performance analysis in Spain
A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models
Error characterisation of global active and passive microwave soil moisture datasets
Assessment of soil moisture fields from imperfect climate models with uncertain satellite observations
Petra Döll, Howlader Mohammad Mehedi Hasan, Kerstin Schulze, Helena Gerdener, Lara Börger, Somayeh Shadkam, Sebastian Ackermann, Seyed-Mohammad Hosseini-Moghari, Hannes Müller Schmied, Andreas Güntner, and Jürgen Kusche
Hydrol. Earth Syst. Sci., 28, 2259–2295, https://doi.org/10.5194/hess-28-2259-2024, https://doi.org/10.5194/hess-28-2259-2024, 2024
Short summary
Short summary
Currently, global hydrological models do not benefit from observations of model output variables to reduce and quantify model output uncertainty. For the Mississippi River basin, we explored three approaches for using both streamflow and total water storage anomaly observations to adjust the parameter sets in a global hydrological model. We developed a method for considering the observation uncertainties to quantify the uncertainty of model output and provide recommendations.
Óscar Mirones, Joaquín Bedia, Sixto Herrera, Maialen Iturbide, and Jorge Baño Medina
EGUsphere, https://doi.org/10.5194/egusphere-2023-1402, https://doi.org/10.5194/egusphere-2023-1402, 2023
Short summary
Short summary
We developed an adaptive method for calibrating TRMM precipitation in the South Pacific. By classifying data into weather types and applying different techniques, we achieve improved calibration. Results showed enhanced accuracy in mean and extreme precipitation indices across locations. The method offers customization options and effectively addresses intense rainfall events. Its versatility allows for application in diverse scenarios, supporting a better understanding of climate impacts.
Elias C. Massoud, A. Anthony Bloom, Marcos Longo, John T. Reager, Paul A. Levine, and John R. Worden
Hydrol. Earth Syst. Sci., 26, 1407–1423, https://doi.org/10.5194/hess-26-1407-2022, https://doi.org/10.5194/hess-26-1407-2022, 2022
Short summary
Short summary
The water balance on river basin scales depends on a number of soil physical processes. Gaining information on these quantities using observations is a key step toward improving the skill of land surface hydrology models. In this study, we use data from the Gravity Recovery and Climate Experiment (NASA-GRACE) to inform and constrain these hydrologic processes. We show that our model is able to simulate the land hydrologic cycle for a watershed in the Amazon from January 2003 to December 2012.
Susanna Winkelbauer, Michael Mayer, Vanessa Seitner, Ervin Zsoter, Hao Zuo, and Leopold Haimberger
Hydrol. Earth Syst. Sci., 26, 279–304, https://doi.org/10.5194/hess-26-279-2022, https://doi.org/10.5194/hess-26-279-2022, 2022
Short summary
Short summary
We evaluate Arctic river discharge using in situ observations and state-of-the-art reanalyses, inter alia the most recent Global Flood Awareness System (GloFAS) river discharge reanalysis version 3.1. Furthermore, we combine reanalysis data, in situ observations, ocean reanalyses, and satellite data and use a Lagrangian optimization scheme to close the Arctic's volume budget on annual and seasonal scales, resulting in one reliable and up-to-date estimate of every volume budget term.
Daniele Masseroni, Stefania Camici, Alessio Cislaghi, Giorgio Vacchiano, Christian Massari, and Luca Brocca
Hydrol. Earth Syst. Sci., 25, 5589–5601, https://doi.org/10.5194/hess-25-5589-2021, https://doi.org/10.5194/hess-25-5589-2021, 2021
Short summary
Short summary
We evaluate 63 years of changes in annual streamflow volume across Europe, using a data set of more than 3000 stations, with a special focus on the Mediterranean basin. The results show decreasing (increasing) volumes in the southern (northern) regions. These trends are strongly consistent with the changes in temperature and precipitation.
Hiroki Mizuochi, Agnès Ducharne, Frédérique Cheruy, Josefine Ghattas, Amen Al-Yaari, Jean-Pierre Wigneron, Vladislav Bastrikov, Philippe Peylin, Fabienne Maignan, and Nicolas Vuichard
Hydrol. Earth Syst. Sci., 25, 2199–2221, https://doi.org/10.5194/hess-25-2199-2021, https://doi.org/10.5194/hess-25-2199-2021, 2021
Samuel Saxe, William Farmer, Jessica Driscoll, and Terri S. Hogue
Hydrol. Earth Syst. Sci., 25, 1529–1568, https://doi.org/10.5194/hess-25-1529-2021, https://doi.org/10.5194/hess-25-1529-2021, 2021
Short summary
Short summary
We compare simulated values from 47 models estimating surface water over the USA. Results show that model uncertainty is substantial over much of the conterminous USA and especially high in the west. Applying the studied models to a simple water accounting equation shows that model selection can significantly affect research results. This paper concludes that multimodel ensembles help to best represent uncertainty in conclusions and suggest targeted research efforts in arid regions.
Hong Xuan Do, Fang Zhao, Seth Westra, Michael Leonard, Lukas Gudmundsson, Julien Eric Stanislas Boulange, Jinfeng Chang, Philippe Ciais, Dieter Gerten, Simon N. Gosling, Hannes Müller Schmied, Tobias Stacke, Camelia-Eliza Telteu, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 24, 1543–1564, https://doi.org/10.5194/hess-24-1543-2020, https://doi.org/10.5194/hess-24-1543-2020, 2020
Short summary
Short summary
We presented a global comparison between observed and simulated trends in a flood index over the 1971–2005 period using the Global Streamflow Indices and Metadata archive and six global hydrological models available through The Inter-Sectoral Impact Model Intercomparison Project. Streamflow simulations over 2006–2099 period robustly project high flood hazard in several regions. These high-flood-risk areas, however, are under-sampled by the current global streamflow databases.
Toby R. Marthews, Eleanor M. Blyth, Alberto Martínez-de la Torre, and Ted I. E. Veldkamp
Hydrol. Earth Syst. Sci., 24, 75–92, https://doi.org/10.5194/hess-24-75-2020, https://doi.org/10.5194/hess-24-75-2020, 2020
Short summary
Short summary
Climate change impact modellers can only act on predictions of the occurrence of an extreme event in the Earth system if they know the uncertainty in that prediction and how uncertainty is attributable to different model components. Using eartH2Observe data, we quantify the balance between different sources of uncertainty in global evapotranspiration and runoff, making a crucial contribution to understanding the spatial distribution of water resources allocation deficiencies.
Md Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Jan Polcher, Clément Albergel, Emanuel Dutra, Gabriel Fink, Alberto Martínez-de la Torre, and Simon Munier
Hydrol. Earth Syst. Sci., 23, 1973–1994, https://doi.org/10.5194/hess-23-1973-2019, https://doi.org/10.5194/hess-23-1973-2019, 2019
Short summary
Short summary
This study investigates the propagation of precipitation uncertainty, and its interaction with hydrologic modeling, in global water resource reanalysis. Analysis is based on ensemble hydrologic simulations for a period of 11 years based on six global hydrologic models and five precipitation datasets. Results show that uncertainties in the model simulations are attributed to both uncertainty in precipitation forcing and the model structure.
Gaby J. Gründemann, Micha Werner, and Ted I. E. Veldkamp
Hydrol. Earth Syst. Sci., 22, 4667–4683, https://doi.org/10.5194/hess-22-4667-2018, https://doi.org/10.5194/hess-22-4667-2018, 2018
Short summary
Short summary
Flooding in vulnerable and data-sparse regions such as the Limpopo basin in Southern Africa is a key concern. Data available to local flood managers are often limited, inconsistent or asymmetrically distributed. We demonstrate that freely available global datasets are well suited to provide essential information. Despite the poor performance of simulated discharges, these datasets hold potential in identifying damaging flood events, particularly for higher-resolution datasets and larger basins.
Behzad Asadieh and Nir Y. Krakauer
Hydrol. Earth Syst. Sci., 21, 5863–5874, https://doi.org/10.5194/hess-21-5863-2017, https://doi.org/10.5194/hess-21-5863-2017, 2017
Short summary
Short summary
Multi-model analysis of global streamflow extremes for the 20th and 21st centuries under two warming scenarios is performed. About 37 and 43 % of global land areas show potential for increases in flood and drought events. Nearly 10 % of global land areas, holding around 30 % of world’s population, reflect a potentially worsening hazard of flood and drought. A significant increase in streamflow of the regions near and above the Arctic Circle, and decrease in subtropical arid areas, is projected.
Sebastian Sippel, Jakob Zscheischler, Martin Heimann, Holger Lange, Miguel D. Mahecha, Geert Jan van Oldenborgh, Friederike E. L. Otto, and Markus Reichstein
Hydrol. Earth Syst. Sci., 21, 441–458, https://doi.org/10.5194/hess-21-441-2017, https://doi.org/10.5194/hess-21-441-2017, 2017
Short summary
Short summary
The paper re-investigates the question whether observed precipitation extremes and annual totals have been increasing in the world's dry regions over the last 60 years. Despite recently postulated increasing trends, we demonstrate that large uncertainties prevail due to (1) the choice of dryness definition and (2) statistical data processing. In fact, we find only minor (and only some significant) increases if (1) dryness is based on aridity and (2) statistical artefacts are accounted for.
Seungwoo Chang, Wendy D. Graham, Syewoon Hwang, and Rafael Muñoz-Carpena
Hydrol. Earth Syst. Sci., 20, 3245–3261, https://doi.org/10.5194/hess-20-3245-2016, https://doi.org/10.5194/hess-20-3245-2016, 2016
Short summary
Short summary
Projecting water deficit depends on how researchers combine possible future climate scenarios such as general circulation models (GCMs), evapotranspiration estimation method (ET), and greenhouse gas emission scenarios. Using global sensitivity analysis, we found the relative contribution of each of these factors to projecting future water deficit and the choice of ET estimation method are as important as the choice of GCM, and greenhouse gas emission scenario is less influential than the others.
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Hydrol. Earth Syst. Sci., 20, 2877–2898, https://doi.org/10.5194/hess-20-2877-2016, https://doi.org/10.5194/hess-20-2877-2016, 2016
Short summary
Short summary
The assessment of water balance components of the global land surface by means of hydrological models is affected by large uncertainties, in particular related to meteorological forcing. We analyze the effect of five state-of-the-art forcings on water balance components at different spatial and temporal scales modeled with WaterGAP. Furthermore, the dominant effect (precipitation/human alteration) for long-term changes in river discharge is assessed.
Dave MacLeod, Hannah Cloke, Florian Pappenberger, and Antje Weisheimer
Hydrol. Earth Syst. Sci., 20, 2737–2743, https://doi.org/10.5194/hess-20-2737-2016, https://doi.org/10.5194/hess-20-2737-2016, 2016
Short summary
Short summary
Soil moisture memory is a key aspect of seasonal climate predictions, through feedback between the land surface and the atmosphere. Estimates have been made of the length of soil moisture memory; however, we show here how estimates of memory show large variation with uncertain model parameters. Explicit representation of model uncertainty may then improve the realism of simulations and seasonal climate forecasts.
N. W. Chaney, J. D. Herman, P. M. Reed, and E. F. Wood
Hydrol. Earth Syst. Sci., 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015, https://doi.org/10.5194/hess-19-3239-2015, 2015
Short summary
Short summary
Land surface modeling is playing an increasing role in global monitoring and prediction of extreme hydrologic events. However, uncertainties in parameter identifiability limit the reliability of model predictions. This study makes use of petascale computing to perform a comprehensive evaluation of land surface modeling for global flood and drought monitoring and suggests paths forward to overcome the challenges posed by parameter uncertainty.
H. Müller Schmied, S. Eisner, D. Franz, M. Wattenbach, F. T. Portmann, M. Flörke, and P. Döll
Hydrol. Earth Syst. Sci., 18, 3511–3538, https://doi.org/10.5194/hess-18-3511-2014, https://doi.org/10.5194/hess-18-3511-2014, 2014
P. Roudier, A. Ducharne, and L. Feyen
Hydrol. Earth Syst. Sci., 18, 2789–2801, https://doi.org/10.5194/hess-18-2789-2014, https://doi.org/10.5194/hess-18-2789-2014, 2014
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
A. Kauffeldt, S. Halldin, A. Rodhe, C.-Y. Xu, and I. K. Westerberg
Hydrol. Earth Syst. Sci., 17, 2845–2857, https://doi.org/10.5194/hess-17-2845-2013, https://doi.org/10.5194/hess-17-2845-2013, 2013
I. H. Taylor, E. Burke, L. McColl, P. D. Falloon, G. R. Harris, and D. McNeall
Hydrol. Earth Syst. Sci., 17, 2339–2358, https://doi.org/10.5194/hess-17-2339-2013, https://doi.org/10.5194/hess-17-2339-2013, 2013
H. Xie, L. Longuevergne, C. Ringler, and B. R. Scanlon
Hydrol. Earth Syst. Sci., 16, 3083–3099, https://doi.org/10.5194/hess-16-3083-2012, https://doi.org/10.5194/hess-16-3083-2012, 2012
F. Sienz, O. Bothe, and K. Fraedrich
Hydrol. Earth Syst. Sci., 16, 2143–2157, https://doi.org/10.5194/hess-16-2143-2012, https://doi.org/10.5194/hess-16-2143-2012, 2012
D. González-Zeas, L. Garrote, A. Iglesias, and A. Sordo-Ward
Hydrol. Earth Syst. Sci., 16, 1709–1723, https://doi.org/10.5194/hess-16-1709-2012, https://doi.org/10.5194/hess-16-1709-2012, 2012
S. N. Gosling, R. G. Taylor, N. W. Arnell, and M. C. Todd
Hydrol. Earth Syst. Sci., 15, 279–294, https://doi.org/10.5194/hess-15-279-2011, https://doi.org/10.5194/hess-15-279-2011, 2011
W. A. Dorigo, K. Scipal, R. M. Parinussa, Y. Y. Liu, W. Wagner, R. A. M. de Jeu, and V. Naeimi
Hydrol. Earth Syst. Sci., 14, 2605–2616, https://doi.org/10.5194/hess-14-2605-2010, https://doi.org/10.5194/hess-14-2605-2010, 2010
G. Schumann, D. J. Lunt, P. J. Valdes, R. A. M. de Jeu, K. Scipal, and P. D. Bates
Hydrol. Earth Syst. Sci., 13, 1545–1553, https://doi.org/10.5194/hess-13-1545-2009, https://doi.org/10.5194/hess-13-1545-2009, 2009
Cited articles
Albergel, C., de Rosnay, P., Gruhier, C., Muñoz-Sabater, J., Hasenauer,
S., Isaksen, L., Kerr, Y., and Wagner, W.: Evaluation of remotely sensed and
modelled soil moisture products using global ground-based in situ
observations, Remote Sens. Environ., 118, 215–226, https://doi.org/10.1016/j.rse.2011.11.017, 2012.
Albergel, C., Dorigo, W., Balsamo, G., Muñoz-Sabater, J., de Rosnay, P.,
Isaksen, L., Brocca, L., de Jeu, R., and Wagner, W.: Monitoring
multi-decadal satellite earth observation of soil moisture products through
land surface reanalyses, Remote Sens. Environ., 138, 77–89,
https://doi.org/10.1016/j.rse.2013.07.009, 2013a.
Albergel, C., Dorigo, W., Reichle, R. H., Balsamo, G., de Rosnay, P.,
Muñoz-Sabater, J., Isaksen, L., de Jeu, R., and Wagner, W.: Skill and
global trend analysis of soil moisture from reanalyses and microwave remote
sensing, J. Hydrometeorol., 14, 1259–1277,
https://doi.org/10.1175/JHM-D-12-0161.1, 2013b.
Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L.,
Gelati, E., Dorigo, W., Faroux, S., Meurey, C., Le Moigne, P., Decharme, B., Mahfouf,
J.-F., and Calvet, J.-C.: Sequential assimilation of satellite-derived vegetation and
soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean
area, Geosci. Model Dev., 10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, 2017.
Alkama, R., Decharme, B., Douville, H., Becker, M., Cazenave, A., Sheffield,
J., Voldoire, A., Tyteca, S., and Le Moigne, P.: Global evaluation of the
isba-trip continental hydrological system, Part I: comparison to GRACE
terrestrial water storage estimates and in situ river discharges, J.
Hydrometeorol., 11, 583–600, https://doi.org/10.1175/2010JHM1211.1, 2010.
Andréassian, V., Le Moine, N., Perrin, C., Ramos, M. H., Oudin, L.,
Mathevet, T., Lerat, J., and Berthet, L.: All that glitters is not gold: the
case of calibrating hydrological models, Hydrol. Proc., 26,
2206–2210, https://doi.org/10.1002/hyp.9264, 2012.
Arora, V. K. and Boer, G. J.: A variable velocity flow routing algorithm
for GCMs, J. Geophys. Res., 104, 30965–30979, 1999.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D.,
Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart,
F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci.,
19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Barbu, A. L., Calvet, J.-C., Mahfouf, J.-F., and Lafont, S.: Integrating ASCAT surface
soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: a land data
assimilation application over France, Hydrol. Earth Syst. Sci., 18, 173–192, https://doi.org/10.5194/hess-18-173-2014, 2014.
Barella-Ortiz, A., Polcher, J., de Rosnay, P., Piles, M., and Gelati, E.: Comparison of
measured brightness temperatures from SMOS with modelled ones from ORCHIDEE and H-TESSEL
over the Iberian Peninsula, Hydrol. Earth Syst. Sci., 21, 357–375, https://doi.org/10.5194/hess-21-357-2017, 2017.
Bastidas, L. A.: Parameter estimation for hydrometeorological models using
multi-criteria methods, PhD dissertation, Department of Hydrology and Water
Resources, University of Arizona, Tucson, 1998.
Bastidas, L. A., Hogue, T. S., Sorooshian, S., Gupta, H. V., and
Shuttleworth, W. J.: Parameter sensitivity analysis for different complexity
land surface models using multicriteria methods, J. Geophys. Res., 111,
D20101, https://doi.org/10.1029/2005JD006377, 2006.
Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D.,
Steduto, P., Mueller, A., Komor, P., Tol, R. S. J., and Yumkella, K. K.:
Considering the energy, water and food nexus: towards an integrated
modelling approach, Energy Policy, 39, 7896–7906,
https://doi.org/10.1016/j.enpol.2011.09.039, 2011.
Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Dutra, E., Fink, G., Orth, R.,
and Schellekens, J.: Global evaluation of runoff from 10 state-of-the-art hydrological
models, Hydrol. Earth Syst. Sci., 21, 2881–2903, https://doi.org/10.5194/hess-21-2881-2017, 2017.
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B.,
and de Roo, A.: MSWEP: 3-hourly 0.25∘ global gridded precipitation (1979–2015) by merging gauge,
satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615,
https://doi.org/10.5194/hess-21-589-2017, 2017.
Becker, M., Meyssignac, B., Xavier, L., Cazenave, A., Alkama, R., and Decharme, B.:
Past terrestrial water storage (1980–2008) in the Amazon Basin reconstructed from GRACE
and in situ river gauging data, Hydrol. Earth Syst. Sci., 15, 533–546, https://doi.org/10.5194/hess-15-533-2011, 2011.
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U.,
and Ziese, M.: A description of the global land-surface precipitation data products of
the Global Precipitation Climatology Centre with sample applications including
centennial (trend) analysis from 1901-present, Earth Syst. Sci. Data, 5, 71–99,
https://doi.org/10.5194/essd-5-71-2013, 2013.
Berg, A. A., Famiglietti, J. S., Walker, J. P., and Houser, P. R.: Impact of
bias correction to reanalysis products on simulations of North American soil
moisture and hydrological fluxes, J. Geophys. Res., 108, 4490,
https://doi.org/10.1029/2002JD003334, 2003.
Betts, A. K.: Coupling of water vapor convergence, clouds, precipitation,
and land-surface processes, J Geophys. Res., 112, D10108,
https://doi.org/10.1029/2006JD008191, 2007.
Beven, K. and Germann, P.: Macropores and water flow in soils revisited,
Water Resour. Res., 49, 3071–3092,
https://doi.org/10.1002/wrcr.20156, 2013.
Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke,
J., von Bloh, W. and Gerten, D.: Impact of reservoirs on river discharge and
irrigation water supply during the 20th century, Water Resour. Res., 47, W03509, https://doi.org/10.1029/2009WR008929, 2011.
Bierkens, M. F. P., Global hydrology 2015: State, trends, and directions,
Water Resour. Res., 51, 4923–4947, https://doi.org/10.1002/2015WR017173,
2015.
Black, P. E.: Watershed functions, J. Am. Water Resour. Assoc., 33, 1–11, 1997.
Boone, A. and Etchevers, P.: An intercomparison of three snow schemes of
varying complexity coupled to the same land-surface model: Local scale
evaluation at an Alpine site, J. Hydrometeorol., 2, 374–394, 2001
Boone, A., Masson, V., Meyers, T., and Noilhan, J.: The influence of the
inclusion of soil freezing on simulation by a soil-atmosphere-transfer
scheme, J. Appl. Meteorol., 39, 1544–1569,
https://doi.org/10.1175/1520-0450(2000)039<1544:TIOTIO>2.0.CO;2, 2000.
Brut, A., Rüdiger, C., Lafont, S., Roujean, J.-L., Calvet, J.-C., Jarlan, L.,
Gibelin, A.-L., Albergel, C., Le Moigne, P., Soussana, J.-F., Klumpp, K.,
Guyon, D., Wigneron, J.-P., and Ceschia, E.: Modelling LAI at a regional
scale with ISBA-A-gs: comparison with satellite-derived LAI over southwestern
France, Biogeosciences, 6, 1389–1404, https://doi.org/10.5194/bg-6-1389-2009, 2009.
Calvet, J.-C.: Investigating soil and atmospheric plant water stress using
physiological and micrometeorological data, Agr. Forest Meteorol., 103,
229–247, 2000.
Calvet, J.-C., Lafont, S., Cloppet, E., Souverain, F., Badeau, V., and Le Bas, C.:
Use of agricultural statistics to verify the interannual variability in land surface
models: a case study over France with ISBA-A-gs, Geosci. Model Dev., 5, 37–54,
https://doi.org/10.5194/gmd-5-37-2012, 2012.
Calvet, J.-C., Noilhan, J., Roujean, J.-L., Bessemoulin, P., Cabelguenne,
M., Olioso, A., and Wigneron, J.-P.: An interactive vegetation SVAT model
tested against data from six contrasting sites, Agr. Forest Meteorol., 92,
73–95, 1998.
Calvet, J.-C., Rivalland, V., Picon-Cochard, C., and Guehl, J.-M.: Modelling
forest transpiration and CO2 fluxes – Response to soil moisture stress,
Agr. Forest Meteorol., 124, 143–156, 2004.
Calvet, J.-C. and Soussana, J.-F.: Modelling CO2 – enrichment effects using
an interactive vegetation SVAT scheme, Agr. Forest Meteorol., 108, 129–152,
2001.
Campoy, A., Ducharne, A., Cheruy, F., Hourdin, F., Polcher, J., and Dupont,
J. C.: Response of land surface fluxes and precipitation to different soil
bottom hydrological conditions in a general circulation model, J. Geophys.
Res.-Atmos., 118, 725–10, https://doi.org/10.1002/jgrd.50627,
2013.
Canal, N., Calvet, J.-C., Decharme, B., Carrer, D., Lafont, S., and Pigeon, G.:
Evaluation of root water uptake in the ISBA-A-gs land surface model using agricultural
yield statistics over France, Hydrol. Earth Syst. Sci., 18, 4979–4999,
https://doi.org/10.5194/hess-18-4979-2014, 2014.
Carrera, M., Bélair, S., and Bilodeau, B.: The Canadian Land Data
Assimilation System (CaLDAS): description and synthetic evaluation study, J.
Hydrometeorol., 16, 1293–1294, https://doi.org/10.1175/JHM-D-14-0089.1,
2015.
CNRM: Centre National de Recherches Météorologiques, ECOCLIMAP dataset,
available at: https://opensource.umr-cnrm.fr/projects/ecoclimap, (last access: March 2018), 2013.
CNRM: Centre National de Recherches Météorologiques, SURFEX model code,
available at: http://www.umr-cnrm.fr/surfex/, (last access: March 2018), 2016.
Damerau, K., Anthony, G. P., and van Vliet, O. P. R.: Water saving
potentials and possible trade-offs for future food and energy supply, Glob.
Environ. Change, 39, 15–25,
https://doi.org/10.1016/j.gloenvcha.2016.03.014, 2016.
Decharme, B., Alkama, R., Douville, H., Becker, M., and Cazenave, A.: Global
evaluation of the ISBA-TRIP continental hydrologic system, Part II:
Uncertainties in river routing simulation related to flow velocity and
groundwater storage, J. Hydrometeorol., 11, 601–617,
https://doi.org/10.1175/2010JHM1212.1, 2010.
Decharme, B., Alkama, R., Papa, F., Faroux, S., Douville, H., and Prigent,
C.: Global off-line evaluation of the ISBA-TRIP flood model, Clim. Dynam.,
38, 7, 1389–1412, 2012.
Decharme, B., Boone, A., Delire, C., and Noilhan, J.: Local evaluation of
the Interaction between Soil Biosphere Atmosphere soil multilayer diffusion
scheme using four pedotransfer functions, J. Geophys. Res., 116, D20126,
https://doi.org/10.1029/2011JD016002, 2011.
Decharme, B. and Douville, H.: Introduction of a sub-grid hydrology in the
ISBA land surface model, Clim. Dynam., 26, 1, 65–78,
https://doi.org/10.1007/s00382-005-0059-7, 2006a.
Decharme, B. and Douville, H.: Uncertainties in the GSWP-2 precipitation
forcing and their impacts on regional and global hydrological simulations,
Clim. Dynam., 27, 7, 695–713, https://doi.org/10.1007/s00382-006-0160-6,
2006b.
Decharme, B., Martin, E., and Faroux, S.: Reconciling soil thermal and
hydrological lower boundary conditions in land surface models, J. Geophys.
Res., 118, 1–16, https://doi.org/10.1002/jgrd.50631, 2013.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy,
S., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., Mc-Nally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Peubey, J., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: Conguration and performance of the data assimilation
system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Dewaele, H., Munier, S., Albergel, C., Planque, C., Laanaia, N., Carrer, D.,
and Calvet, J.-C.: Parameter optimisation for a better representation of
drought by LSMs: inverse modelling vs. sequential data assimilation, Hydrol.
Earth Syst. Sci., 21, 4861–4878, https://doi.org/10.5194/hess-21-4861-2017,
2017.
Dirmeyer, P. A.: A history and review of the Global Soil Wetness Project
(GSWP), J. Hydrometeorol., 12, 729–749, 2011.
Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.:
GSWP-2: Multimodel analysis and implications for our perception of the land
surface, B. Am. Meteorol. Soc., 87, 1381–1397, https://doi.org/10.1175/BAMS-87-10-1381,
2006.
Dorigo, W. A., Gruber, A., De Jeu, R. A. M., Wagner, W., Stacke, T., Loew,
A., Albergel, C., Brocca, L., Chung, D., Parinussa, R. M., and Kidd, R.:
Evaluation of the ESA CCI soil moisture product using ground-based
observations, Remote Sens. Environ., 162, 380–395,
https://doi.org/10.1016/j.rse.2014.07.023, 2014.
Douville H.: Validation and sensitivity of the global hydrologic budget in
stand-alone simulations with the ISBA land-surface scheme, Clim. Dynam., 14,
151–171, 1998.
Draper, C., Mahfouf, J.-F., Calvet, J.-C., Martin, E., and Wagner, W.:
Assimilation of ASCAT near-surface soil moisture into the SIM hydrological
model over France, Hydrol. Earth Syst. Sci., 15, 3829–3841,
https://doi.org/10.5194/hess-15-3829-2011, 2011.
Draper, C., Reichle, R., Lannoy, G. D., and Liu, Q.: Assimilation of passive
and active microwave soil moisture retrievals, Geophys. Res. Lett., 39,
L04401, https://doi.org/10.1029/2011GL050655, 2012.
Ducharne, A., Golaz, C., Leblois, E., Laval, K., Polcher, J., Ledoux, E., de
Marsily, G.: Development of a high resolution runoff routing model,
calibration and application to assess runoff from the LMD GCM, J. Hydrol.,
280, 207–228, https://doi.org/10.1016/S0022-1694(03)00230-0, 2003.
ECAD: European Climate Assessment and Dataset, E-OBS dataset, available at: https://www.ecad.eu/download/ensembles/download.php,
(last access: March 2018), 2017.
ECMWF: European Centre for Medium Range Weather Forecasts, Global reanalyses,
available at: http://apps.ecmwf.int/datasets/ (last access: March 2018), 2016.
Entin, J. K., Robock, A., Vinnikov, K. Y., Zabelin, V., Liu, S., Namkhai,
A., and Adyasuren, T.: Evaluation of Global Soil Wetness Project soil
moisture simulations, J. Meteorol. Soc. J., 77, 183–198, 1999.
Escorihuela, M. J., Chanzy, A., Wigneron, J. P., and Kerr, Y. H.: Effective
soil moisture sampling depth of L-band radiometry: a case study, Remote
Sens. Environ., 114, 995–1001,
https://doi.org/10.1016/j.rse.2009.12.011, 2010.
ESA: European Space Agency, ESA-CCI Soil Moisture dataset version 2,2, available
at: http://www.esa-soilmoisture-cci.org/, (last access: March 2018), 2016.
Fairbairn, D., Barbu, A. L., Mahfouf, J.-F., Calvet, J.-C., and Gelati, E.: Comparing
the ensemble and extended Kalman filters for in situ soil moisture assimilation with
contrasting conditions, Hydrol. Earth Syst. Sci., 19, 4811–4830, https://doi.org/10.5194/hess-19-4811-2015, 2015.
Faroux, S., Kaptué Tchuenté, A. T., Roujean, J.-L., Masson, V., Martin, E., and Le Moigne, P.:
ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution
based on satellite information for use in land surface, meteorological and climate models,
Geosci. Model Dev., 6, 563–582, https://doi.org/10.5194/gmd-6-563-2013, 2013.
Fekete, B. M., Looser, U., Pietroniro, A., and Robarts, R. D.: Rationale for
monitoring discharge on the ground, J. Hydrometeorol., 13, 1977–1986,
https://doi.org/10.1175/JHM-D-11-0126.1, 2012.
Fuchs, M., Campbell, G. S., and Papendick, R. I.: An analysis of sensible and
latent heat flow in a partially frozen unsaturated soil, Soil Sci. Soc. Am.
J., 42, 379–385, 1978.
Garrigues, S., Olioso, A., Carrer, D., Decharme, B., Calvet, J.-C., Martin, E., Moulin, S., and Marloie, O.:
Impact of climate, vegetation, soil and crop management variables on multi-year
ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site, Geosci.
Model Dev., 8, 3033–3053, https://doi.org/10.5194/gmd-8-3033-2015, 2015.
Gibelin, A.-L., Calvet, J.-C., Roujean, J.-L., Jarlan, L., and Los, S. O.:
Ability of the land surface model ISBA-A-gs to simulate leaf area index at
the global scale: Comparison with satellites products, J. Geophys. Res.,
111, D18102, https://doi.org/10.1029/2005JD006691, 2006.
Goudriaan, J., van Laar, H. H., van Keulen, H., and Louwerse, W.:
Photosynthesis, CO2 and plant production, Wheat Growth and Modelling,
NATO ASI Series, Plenum Press, New York, Series A, 86, 107–122, 1985.
Gouttevin, I., Bartsch, A., Krinner, G., and Naeimi, V.: A comparison between
remotely-sensed and modelled surface soil moisture (and frozen status) at high
latitudes, Hydrol. Earth Syst. Sci. Discuss., 10, 11241–11291, https://doi.org/10.5194/hessd-10-11241-2013, 2013.
Green, W. H. and Ampt, G. A.: Studies on soil physics, 1: The flow of air
and water through soils, J. Agr. Sci., 4, 1–24, 1911.
GRDC: Global Runoff Data Centre, Federal Institute of Hydrology, Koblenz,
Germany, http://www.bafg.de/GRDC/EN/Home/homepage_node.html,
last access: February 2018.
Grippa, M., Kergoat, L., Frappart, F., Araud, Q., Boone, A., de Rosnay, P.,
Lemoine, J.-M., Gascoin, S., Balsamo, G., Ottlé, C., Decharme, B.,
Saux-Picart, S., and Ramillien, G.: Land water storage variability over West
Africa estimated by GRACE and land surface models, Water Resour. Res., 47,
W05549, https://doi.org/10.1029/2009WR008856, 2011.
Guo, Z., Dirmeyer, P. A., Hu, Z.-Z., Gao, X., and Zhao, M.:
Evaluation of the Second Global Soil Wetness Project soil moisture
simulations: 2. Sensitivity to external meteorological forcing, J. Geophys.
Res.-Atmos., 111, https://doi.org/10.1029/2006JD007845, 2006.
Gupta, H. V., Bastidas, L. A., Sorooshian, S., Shuttleworth, W. J., and
Yang, Z. L.: Parameter estimation of a land surface scheme using
multi-criteria methods, J. Geophys. Res., 104, 19491–19504, 1999.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition
of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 1–2,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Toward improved calibration of
hydrologic models: multiple and noncommensurable measures of information,
Water Resour. Res., 34, 751–763, 1998.
Haddeland, I., Heinke, J., Voß, F., Eisner, S., Chen, C., Hagemann, S., and Ludwig, F.:
Effects of climate model radiation, humidity and wind estimates on hydrological simulations,
Hydrol. Earth Syst. Sci., 16, 305–318, https://doi.org/10.5194/hess-16-305-2012, 2012.
Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., and Piani, C.:
Impact of a statistical bias correction on the projected hydrological
changes obtained from three GCMs and two hydrology models, J.
Hydrometeorol., 12, 556–578, https://doi.org/10.1175/2011JHM1336.1,
2011.
Hanasaki, N., Kanae, S., and Oki, T.: A reservoir operation scheme for
global river routing models, J. Hydrol., 327, 1–2,
https://doi.org/10.1016/j.jhydrol.2005.11.011, 2006.
Hannah, D. M., Demuth, S., Van Lanen, H. A. J., Looser, U., Prudhomme, C.,
Rees, G., Stahl, K., and Tallaksen, L. M.: Large-scale river flow archives:
importance, current status and future needs, Hydrol. Proc., 25, 1191–1200,
https://doi.org/10.1002/hyp.7794, 2011.
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature
change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345,
2010.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climate, 34, 623–642, https://doi.org/10.1002/joc.3711,
2014.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P.
D., and New, M.: A European daily high-resolution gridded dataset of surface
temperature and precipitation, J. Geophys. Res., 113, D20119,
https://doi.org/10.1029/2008JD010201, 2008.
Hirpa, F., P. Salamon, L. Alfieri, J. Thielen-del Pozo, E. Zsoter, and F.
Pappenberger: The effect of reference climatology on global flood
forecasting, J. Hydrometeorol., 17, 4, 1131–1145,
https://doi.org/10.1175/JHM-D-15-0044.1, 2016.
Huffman, G. J., Adler, R. F., Bolvin, D. T., and Gu, G.: Improving the
global precipitation record: GPCP Version 2.1, Geophys. Res. Lett., 36,
L17808, https://doi.org/10.1029/2009GL040000, 2009.
IIASA: International Institute for Applied Systems Analysis, WFDEI dataset,
available at: ftp://rfdata:forceDATA@ftp.iiasa.ac.at, (last access: March 2018), 2015.
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Pachauri, R. K. and Meyer, L. A., IPCC,
Geneva, Switzerland, 151 pages, 2014.
Jacobs, C. M. J., Van den Hurk, B. J. J. M., and De Bruin, H. A. R.:
Stomatal behaviour and photosynthetic rate of unstressed grapevines in
semi-arid conditions, Agr. Forest Meteorol., 80, 111–134, 1996.
Jägermeyr, J., Gerten, D., and Schaphoff, S., Heinke, J., Lucht, W., and
Rockström, J.: Integrated crop water management might sustainably halve
the global food gap, Environ. Res. Lett., 11, 025002,
https://doi.org/10.1088/1748-9326/11/2/025002, 2016.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A.,
Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.
C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-Year Reanalysis Project, Bull. Am. Meteoreol. Soc., 77, 437–471,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kerr, Y., Waldteufel, P., Wigneron, J. P., Delwart, S., Cabot, F., Boutin,
J., Escorihuela, M., Font, J., Reul, N., Gruhier, C., Juglea, S.,
Drinkwater, M., Hahne, A., Martin-Neira, M., and Mecklenburg, S.: The SMOS
mission: new tool for monitoring key elements of the global water cycle,
Proc. IEEE, 98, 666–687, 2010.
Knutti, R.: Should we believe model predictions of future climate change?,
Phil. Trans. R. Soc. A, 366, 4647–4664,
https://doi.org/10.1098/rsta.2008.0169, 2008.
Koster, R., Dirmeyer, P., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C.
T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev,
S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A.,
Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T.:
Regions of strong coupling between soil moisture and precipitation, Science,
305, 1138–1140, 2004.
Krinner, G. N., Viovy, N., de Noblet-Ducoudré, N., Ogée, J.,
Polcher, J., Friedlingstein, P., Ciais, P., Stich, S., and Prentice, I. C.:
A dynamic global vegetation model for studies of the coupled
atmosphere-biosphere system, Global Biogeochem. Cy., 19, GB1015,
https://doi.org/10.1029/2003GB002199, 2005.
Lafont, S., Zhao, Y., Calvet, J.-C., Peylin, P., Ciais, P., Maignan, F., and Weiss, M.:
Modelling LAI, surface water and carbon fluxes at high-resolution over France: comparison
of ISBA-A-gs and ORCHIDEE, Biogeosciences, 9, 439–456, https://doi.org/10.5194/bg-9-439-2012, 2012.
Lawford, R., Bogardi, J., Marx, S., Jain, S., Wostl, C. P., Knüppe, K.,
Ringler, C., Lansigan, F., and Meza, F.: Basin perspectives on the
Water-Energy-Food Security Nexus, Curr. Opin. Environ. Sustain., 5, 607–616, https://doi.org/10.1016/j.cosust.2013.11.005, 2013.
Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D.
B., Vose, R. S., and Rennie, J.: An overview of the Global Historical
Climatology Network monthly mean temperature data set, version 3, J.
Geophys. Res., 116, D19121, https://doi.org/10.1029/2011JD016187, 2011.
Le Moigne, P.: SURFEX scientific documentation, CNRM, Météo-France,
Toulouse, France, 237 pp., available at: http://www.umr-cnrm.fr/surfex/, last access: February 2018, 2012.
Li, H., Wigmosta, M. S., Wu, H., Huang, M., Ke, Y., Coleman, A. M., and
Leung, L. R.: A physically based runoff routing model for land surface and
Earth system models, J. Hydrometeorol., 14, 808–828,
https://doi.org/10.1175/JHM-D-12-015.1, 2013.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F.,
and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave
satellite-based retrievals, Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, 2011.
Liu, J. G., Jia, B. H., Xie, Z. H., and Shi, C. X.: Ensemble simulation of
land evapotranspiration in China based on a multi-forcing and multi-model
approach, Adv. Atmos. Sci., 33, 673–684,
https://doi.org/10.1007/s00376-016-5213-0, 2016.
Materia, S., Dirmeyer, P. A., Guo, Z., Alessandri, A., and Navarra, A.: The
sensitivity of simulated river discharge to land surface representation and
meteorological forcings, J. Hydrometeorol., 11, 334–351, 2010.
Mätzler, C. and Standley, A.: Relief effects for passive microwave
remote sensing, Int. J. Remote Sens., 21, 12, 2403–2412,
https://doi.org/10.1080/01431160050030538, 2000.
Milly, P. C. D. and Shmakin, A. B.: Global modeling of land water and
energy balances, Part II: Land-characteristic contributions to spatial
variability, J. Hydrometeorol., 3, 301–310, https://doi.org/10.1175/1525-7541(2002)003<0301:GMOLWA>2.0.CO;2, 2002.
Muerth, M. J., Gauvin St-Denis, B., Ricard, S., Velázquez, J. A., Schmid, J.,
Minville, M., Caya, D., Chaumont, D., Ludwig, R., and Turcotte, R.: On the need for bias
correction in regional climate scenarios to assess climate change impacts on river runoff,
Hydrol. Earth Syst. Sci., 17, 1189–1204, https://doi.org/10.5194/hess-17-1189-2013, 2013.
Muñoz-Sabater, J.: Incorporation of Passive Microwave Brightness
Temperatures in the ECMWF Soil Moisture Analysis, Remote Sens., 7,
5758–5784, https://doi.org/10.3390/rs70505758, 2015.
NASA: National Aeronautics and Space Administration, CERES dataset, available at: https://ceres.larc.nasa.gov/products.php?product=EBAF-Surface,
(last access: March 2018), 2015.
NASA: National Aeronautics and Space Administration, SRB dataset, available at: https://eosweb.larc.nasa.gov/project/srb/srb_table,
(last access: March 2018), 2016a.
NASA: National Aeronautics and Space Administration, GIMMS dataset, available at: https://ecocast.arc.nasa.gov/data/pub/gimms/,
(last access: March 2018), 2016b.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through. Part I. A
conceptual models discussion of principles, J. Hydrol., 10, 282–290, 1970.
Nasonova, O. N., Gusev, Y. M., and Kovalev, Y. E.: Impact of uncertainties
in meteorological forcing data and land surface parameters on global
estimates of terrestrial water balance components, Hydrol. Proc. 25, 1074–1090, https://doi.org/10.1002/hyp.7651, 2011.
Ngo-Duc, T., Polcher, J., and Laval, K.: A 53-year forcing data set for land
surface models, J. Geophys. Res., 110, https://doi.org/10.1029/2004JD005434, 2005.
Noilhan, J. and Mahfouf, J.-F.: The ISBA land surface parameterization
scheme, Global Planet. Change, 13, 145–149, 1996.
Noilhan, J. and Planton, S.: A simple parameterisation of Land Surface
Processes for meteorological model, Mon. Weather Rev., 117, 356–549, 1989.
Oki, T. and Sud, Y. C.: Design of Total Runoff Integrating Pathways (TRIP)
– a global river channel network, Earth Interact., 2, 1–37,
1998.
Overgaard, J., Rosbjerg, D., and Butts, M. B.: Land-surface modelling in hydrological
perspective – a review, Biogeosciences, 3, 229–241, https://doi.org/10.5194/bg-3-229-2006, 2006.
Papadimitriou, L. V., Koutroulis, A. G., Grillakis, M. G., and Tsanis, I. K.:
The effect of GCM biases on global runoff simulations of a land surface model,
Hydrol. Earth Syst. Sci., 21, 4379–4401, https://doi.org/10.5194/hess-21-4379-2017, 2017.
Pappenberger, F., Cloke, H. L., Balsamo, G., Ngo-Duc, T., and Oki, T.:
Global runoff routing with the hydrological component of the ECMWF NWP
system, Int. J. Clim., 30, 2155–2174, https://doi.org/10.1002/joc.2028,
2010.
Pappenberger, F., Dutra, E., Wetterhall, F., and Cloke, H. L.: Deriving global flood
hazard maps of fluvial floods through a physical model cascade, Hydrol. Earth Syst. Sci.,
16, 4143–4156, https://doi.org/10.5194/hess-16-4143-2012, 2012.
Parrens, M., Zakharova, E., Lafont, S., Calvet, J.-C., Kerr, Y., Wagner, W.,
and Wigneron, J.-P.: Comparing soil moisture retrievals from SMOS and ASCAT
over France, Hydrol. Earth Syst. Sci., 16, 423–440, https://doi.org/10.5194/hess-16-423-2012, 2012.
Parrens, M., Calvet, J.-C., de Rosnay, P., and Decharme, B.: Benchmarking of
L-band soil microwave emission models, Remote Sens. Environ., 140, 407–419,
https://doi.org/10.1016/j.rse.2013.09.017, 2014.
PGF: Global Meteorological Forcing Dataset for land surface modeling,
Terrestrial Hydrology Research Group, Princeton University, Princeton, NJ,
USA, http://hydrology.princeton.edu/data.pgf.php, last access:
February 2018.
Planton, S., Lionello, P., Artale, V., Aznar, R., Carillo, A., Colin, J.,
Congedi, L., Dubois, C., Elizalde Arellano, A., Gualdi, S., Hertig, E.,
Jorda Sanchez, G., Li, L., Jucundus, J., Piani, C., Ruti, P., Sanchez-Gomez,
E., Sannino, G., Sevault, F., and Somot, S.: The climate of the
Mediterranean region in future climate projections, in: The Climate of the
Mediterranean Region, Chapter 8, 1st Edition, edited by: Lionello, P.,
Elsevier, 2012.
Pokhrel, Y., Hanasaki, N., Koirala, S., Cho, J., Yeh, P. J.-F., Kim, H., Kanae, S., and Oki, T.:
Incorporating anthropogenic water regulation modules
into a land surface model, J. Hydrometeorol., 13, 255–269,
https://doi.org/10.1175/JHM-D-11-013.1, 2012.
Polcher, J., Piles, M., Gelati, E., Barella-Ortiz, A., and Tello, M.:
Comparing surface-soil moisture from the SMOS mission and the ORCHIDEE
land-surface model over the Iberian Peninsula, Remote Sens. Environ., 174,
69–81, https://doi.org/10.1016/j.rse.2015.12.004, 2016.
Princeton University: PGF dataset, available at: http://hydrology.princeton.edu/data/pgf/,
(last access: March 2018), 2016.
Reichle, R., Crow, W., and Keppenne, C.: An adaptive Ensemble Kalman Filter
for soil moisture data assimilation, Water Resour. Res., 44, WO3243,
https://doi.org/10.1029/2007WR006357, 2008.
Ringler, C., Bhaduri, A., and Lawford, R.: The nexus across water, energy,
land and food (WELF): Potential for improved resource use efficiency?, Curr.
Opin. Environ. Sustain., 5, 617–624,
https://doi.org/10.1016/j.cosust.2013.11.002, 2013.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, Bull. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Rohde, R., Muller, R. A., Jacobsen, R., Muller, E., Perlmutter, S.,
Rosenfeld, A., Wurtele, J., Groom, D., and Wickham, C.: A New Estimate of
the Average Earth Surface Land Temperature Spanning 1753 to 2011,
Geoinformatics & Geostatistics: An Overview,
https://doi.org/10.4172/2327-4581.1000101, 2013.
Rost, S., Gerten, D., Hoff, H., Lucht, W., Falkenmark, M., and
Rockström, J.: Global potential to increase crop production through
water management in rainfed agriculture, Environ. Res. Lett., 4, 044002,
https://doi.org/10.1088/1748-9326/4/4/044002, 2009.
Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van Dijk, A.,
Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B., Eisner, S., Fink, G.,
Flörke, M., Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R., Calton, B.,
Burke, S., Dorigo, W., and Weedon, G. P.: earth2observe/water-resource-reanalysis-v1: Revised Release (Version 1.02)
Data set, Zenodo, https://doi.org/10.5281/zenodo.167070, (last access: March 2018), 2016.
Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van Dijk, A.,
Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B., Eisner, S., Fink, G.,
Flörke, M., Peßenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth, R.,
Calton, B., Burke, S., Dorigo, W., and Weedon, G. P.: A global water resources
ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data, 9,
389–413, https://doi.org/10.5194/essd-9-389-2017, 2017.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B.,
and Ziese, M.: GPCC Full Data Reanalysis Version 6.0 at 0.5∘:
Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and
Historic Data, Global Precipitation Climatology Centre (GPCC) at Deutscher
Wetterdienst, https://doi.org/10.5676/DWD_GPCC/FD_M_V6_050, 2011.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., and
Rudolf, B.: GPCC's new land surface precipitation climatology based on
quality-controlled insitu data and its role n quantifying the global water
cycle, Theor. Appl. Climatol., 115, 15–40,
https://doi.org/10.1007/s00704-013-0860-x, 2014.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year
high-resolution global dataset of meteorological forcings for land surface
modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1,
2006.
Sheffield, J., Ziegler, A. D., Wood, E. F., and Chen, Y.: Correction of the
high-latitude rain day anomaly in the NCEP-NCAR reanalysis for land surface
hydrological modeling. J. Climate, 17, 3814–3828, 2004.
Sippel, S., Otto, F. E. L., Forkel, M., Allen, M. R., Guillod, B. P., Heimann, M.,
Reichstein, M., Seneviratne, S. I., Thonicke, K., and Mahecha, M. D.: A novel bias
correction methodology for climate impact simulations, Earth Syst. Dynam., 7, 71–88,
https://doi.org/10.5194/esd-7-71-2016, 2016.
Smith, P. C., Ciais, P., Peylin, P., De Noblet-Ducoudré, N., Viovy, N.,
Meurdesoif, Y., and Bondeau, A.: European-wide simulations of croplands
using an improved terrestrial biosphere model: 2. interannual yields and
anomalous CO2 fluxes in 2003, J. Geophys. Res., 115, G04028,
https://doi.org/10.1029/2009JG001041, 2010a.
Smith, P. C., De Noblet- Ducoudré, N., Ciais, P., Peylin, P., Viovy, N.,
Meurdesoif, Y., and Bondeau, A.: European-wide simulations of croplands
using an improved terrestrial biosphere model: phenology and productivity,
J. Geophys. Res., 115, G01014, https://doi.org/10.1029/2008JG000800, 2010b.
Stoffelen, A., Aaboe, S., Calvet, J.-C., Cotton, J., De Chiara, G.,
Figua-Saldana, J., Mouche, A. A., Portabella, M., Scipal, K., and Wagner, W.:
Scientific developments and the EPS-SG scatterometer, IEEE J. Sel. Topics
Appl. Earth Obs. Remote Sens., 10, 2086–2097,
https://doi.org/10.1109/JSTARS.2017.2696424, 2017.
Swenson, S., Wahr, J., and Milly, P. C. D.: Estimated accuracies of regional
water storage variations inferred from the Gravity Recovery and Climate
Experiment (GRACE), Water Resour. Res., 39, 1223,
https://doi.org/10.1029/2002WR001808, 2003.
Szczypta, C., Calvet, J.-C., Maignan, F., Dorigo, W., Baret, F., and Ciais, P.:
Suitability of modelled and remotely sensed essential climate variables for monitoring
Euro-Mediterranean droughts, Geosci. Model Dev., 7, 931–946,
https://doi.org/10.5194/gmd-7-931-2014, 2014.
Szczypta, C., Decharme, B., Carrer, D., Calvet, J.-C., Lafont, S., Somot, S.,
Faroux, S., and Martin, E.: Impact of precipitation and land biophysical variables
on the simulated discharge of European and Mediterranean rivers, Hydrol.
Earth Syst. Sci., 16, 3351–3370, https://doi.org/10.5194/hess-16-3351-2012, 2012.
UEA: University of East Anglia, CRU dataset, available at: https://crudata.uea.ac.uk/cru/data/hrg/, (last access: March 2018), 2017.
van Beek, L. P. H., Eikelboom, T., van Vliet, M. T. H., and Bierkens, M. F.
P.: A physically based model of global freshwater surface temperature, Water
Resour. Res., 48, W09530, https://doi.org/10.1029/2012WR011819, 2012.
van der Schrier, G., van den Besselaar, E. J. M., Klein Tank, A. M. G., and
Verver, G.: Monitoring European average temperature based on the E-OBS
gridded data set, J. Geophys. Res.-Atmos., 118, 5120–5135,
https://doi.org/10.1002/jgrd.50444, 2013.
van Vliet, M. T. H., Yearsley, J. R., Ludwig, F., Vögele, S.,
Lettenmaier, D. P., and Kabat, P.: Vulnerability of US and European electricity
supply to climate change, Nat. Clim. Change, 2, 676–681,
https://doi.org/10.1038/nclimate1546, 2012.
Vergnes, J.-P. and Decharme, B.: A simple groundwater scheme in the TRIP river routing model:
global off-line evaluation against GRACE terrestrial water storage estimates and observed
river discharges, Hydrol. Earth Syst. Sci., 16, 3889–3908, https://doi.org/10.5194/hess-16-3889-2012, 2012.
Vergnes, J.-P., Decharme, B., and Habets, F.: Introduction of groundwater
capillary rises using subgrid spatial variability of topography into the
ISBA land surface model, J. Geophys. Res.-Atmos., 119, 11065–11086,
https://doi.org/10.1002/2014JD021573, 2014.
Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment
classification and hydrologic similarity, Geogr. Compass, 1, 901–931,
2007.
Wagner, W., Lemoine, G., Borgeaud, M., and Rott, H.: A study of vegetation
cover effects on ERS scatterometer data, IEEE T. Geosci. Remote Sens.,
37, 938–948, 1999.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50,
7505–7514, https://doi.org/10.1002/2014WR015638, 2014.
Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E.,
Österle, H., Adam, J. C., Bellouin, N., Boucher, O., and Best, M.:
Creation of the WATCH forcing data and its use to assess global and regional
reference crop evaporation over land during the twentieth century, J.
Hydrometeorol., 12, 5, 823–848, https://doi.org/10.1175/2011JHM1369.1,
2011.
Widén-Nilsson, E., Halldin, S., and Xu, C.: Global water-balance
modelling with WASMOD-M: Parameter estimation and regionalisation, J.
Hydrol., 340, 105–118, https://doi.org/10.1016/j.jhydrol.2007.04.002,
2007.
Wielicki, B. A., Barkstrom. B. R., Harrison, E. F., Lee III, R. B., Smith,
G. L., and Cooper, J. E.: Clouds and the Earth's radiant energy system
(CERES): an Earth observing system experiment, Bull. Am. Meteorol. Soc., 77,
5, 853–868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2, 1996.
Yang, W., Tan, B., Huang, D., Rautiainen, M., Shabanov, N. V., Wang, Y.,
Privette, J. L., Huemmrich, K. F., Fensholt, R., Sandholt, I., Weiss, M.,
Ahl, D. E., Gower, S. T., Nemani, R. R., Knyazikhin, Y., and Myneni, R. B.:
MODIS leaf area index products: From validation to algorithm improvement,
IEEE T. Geosci. Remote Sens., 44, 1885–1898,
https://doi.org/10.1109/TGRS.2006.871215, 2006.
Yearsley, J. R.: A grid-based approach for simulating stream temperature,
Water Resour. Res., 48, W03506, https://doi.org/10.1029/2011WR011515, 2012.
Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic
approach to model evaluation: Application to the NWS distributed hydrologic
model, Water Resour. Res., 44, W09417, https://doi.org/10.1029/2007WR006716,
2008.
Yoshimura, K. and Kanamitsu, M.: Incremental correction for the dynamical
downscaling of ensemble mean atmospheric fields, Mon. Weather Rev., 141,
3087–3101, https://doi.org/10.1175/MWR-D-12-00271.1, 2013.
Zhang, T., Stackhouse, P. W., Gupta, S. K., Cox, S. J., and Mikovitz, J. C.:
The validation of the GEWEX SRB surface longwave flux data products using
BSRN measurements, J. Quant. Spectrosc. Radiat. Transfer, 150, 134–147,
https://doi.org/10.1016/j.jqsrt.2014.07.013, 2015.
Zhang, T., Stackhouse, P. W., Gupta, S. K., Cox, S. J., and Mikovitz, J. C.,
and Hinkelman, L. M.: The validation of the GEWEX SRB surface shortwave flux
data products using BSRN measurements: A systematic quality control,
production and application approach, J. Quant. Spectrosc. Radiat. Transfer,
122, 127–140, https://doi.org/10.1016/j.jqsrt.2012.10.004, 2013.
Zhou, T., Nijssen, B., Gao, H., and Lettenmaier, D.: The contribution of
reservoirs to global land surface water storage variations, J
Hydrometeorol., 17, 1, 309–325, https://doi.org/10.1175/JHM-D-15-0002.1,
2016.
Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao,
S., Nemani, R. R., and Myneni, R. B.: Global data sets of vegetation leaf
area index (LAI)3g and fraction of photosynthetically active radiation
(FPAR)3g derived from global inventory modeling and mapping studies (GIMMS)
normalized difference vegetation index (NDVI3g) for the period 1981 to 2011,
Remote Sens., 5, 927–948, 2013.
Short summary
We compared land surface model simulations forced by several meteorological datasets with observations over the Euro-Mediterranean area, for the 1979–2012 period. Precipitation was the most uncertain forcing variable. The impacts of forcing uncertainty were larger on the mean and standard deviation rather than the timing, shape and inter-annual variability of simulated discharge. Simulated leaf area index and surface soil moisture were relatively insensitive to these uncertainties.
We compared land surface model simulations forced by several meteorological datasets with...