Articles | Volume 22, issue 2
https://doi.org/10.5194/hess-22-1629-2018
https://doi.org/10.5194/hess-22-1629-2018
Research article
 | Highlight paper
 | 
02 Mar 2018
Research article | Highlight paper |  | 02 Mar 2018

Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers

Etienne Bresciani, Roger H. Cranswick, Eddie W. Banks, Jordi Batlle-Aguilar, Peter G. Cook, and Okke Batelaan

Related authors

HydroModPy: A Python toolbox for deploying catchment-scale shallow groundwater models
Alexandre Gauvain, Ronan Abhervé, Alexandre Coche, Martin Le Mesnil, Clément Roques, Camille Bouchez, Jean Marçais, Sarah Leray, Etienne Marti, Ronny Figueroa, Etienne Bresciani, Camille Vautier, Bastien Boivin, June Sallou, Johan Bourcier, Benoit Combemale, Philip Brunner, Laurent Longuevergne, Luc Aquilina, and Jean-Raynald de Dreuzy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3962,https://doi.org/10.5194/egusphere-2024-3962, 2025
Short summary
GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021,https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
HESS Opinions: Improving the evaluation of groundwater representation in continental to global scale models
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378,https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Instruments and observation techniques
Experimental investigation of the interplay between transverse mixing and pH reaction in porous media
Adi Biran, Tomer Sapar, Ludmila Abezgauz, and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 4755–4770, https://doi.org/10.5194/hess-28-4755-2024,https://doi.org/10.5194/hess-28-4755-2024, 2024
Short summary
A hydrogeological conceptual model of aquifers in catchments headed by temperate glaciers
Aude Vincent, Clémence Daigre, Ophélie Fischer, Guðfinna Aðalgeirsdóttir, Sophie Violette, Jane Hart, Snævarr Guðmundsson, and Finnur Pálsson
Hydrol. Earth Syst. Sci., 28, 3475–3494, https://doi.org/10.5194/hess-28-3475-2024,https://doi.org/10.5194/hess-28-3475-2024, 2024
Short summary
Seasonal and diurnal freeze-thaw dynamics of a rock glacier and their impacts on mixing and solute transport
Cyprien Louis, Landon J. S. Halloran, and Clément Roques
EGUsphere, https://doi.org/10.5194/egusphere-2024-927,https://doi.org/10.5194/egusphere-2024-927, 2024
Short summary
Technical note: High-density mapping of regional groundwater tables with steady-state surface nuclear magnetic resonance – three Danish case studies
Mathias Vang, Denys Grombacher, Matthew P. Griffiths, Lichao Liu, and Jakob Juul Larsen
Hydrol. Earth Syst. Sci., 27, 3115–3124, https://doi.org/10.5194/hess-27-3115-2023,https://doi.org/10.5194/hess-27-3115-2023, 2023
Short summary
Geoelectrical and hydro-chemical monitoring of karst formation at the laboratory scale
Flore Rembert, Marie Léger, Damien Jougnot, and Linda Luquot
Hydrol. Earth Syst. Sci., 27, 417–430, https://doi.org/10.5194/hess-27-417-2023,https://doi.org/10.5194/hess-27-417-2023, 2023
Short summary

Cited articles

Allison, G. B., Gee, G. W., and Tyler, S. W.: Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions, Soil Sci. Soc. Am. J., 58, 6–14, 1994. 
Anderson, T. W.: Electrical-analog analysis of the hydrologic system, Tucson basin, southeastern Arizona, Geological Survey Water-Supply Paper 1939C, 1972. 
Baird, D. J.: Groundwater recharge and flow mechanisms in a perturbed, buried aquifer system: Northern Adelaide Plains, South Australia, PhD thesis, Flinders University, Adelaide, South Australia, 345 pp., 2010. 
Batlle-Aguilar, J., Banks, E. W., Batelaan, O., Kipfer, R., Brennwald, M. S., and Cook, P. G.: Groundwater residence time and aquifer recharge in multilayered, semi-confined and faulted aquifer systems using environmental tracers, J. Hydrol., 546, 150–165, 2017. 
Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., and Scibek, J.: Fault zone hydrogeology, Earth-Sci. Rev., 127, 171–192, 2013. 
Download
Short summary
This article tackles the problem of finding the origin of groundwater in basin aquifers adjacent to mountains. In particular, we aim to determine whether the recharge occurs predominantly through stream infiltration along the mountain front or through subsurface flow from the mountain. To this end, we discuss the use of routinely measured variables: hydraulic head, chloride and electrical conductivity. A case study from Australia demonstrates the approach.
Share