Articles | Volume 22, issue 2
https://doi.org/10.5194/hess-22-1119-2018
https://doi.org/10.5194/hess-22-1119-2018
Research article
 | 
09 Feb 2018
Research article |  | 09 Feb 2018

A global approach to estimate irrigated areas – a comparison between different data and statistics

Jonas Meier, Florian Zabel, and Wolfram Mauser

Related authors

CropSuite – A comprehensive open-source crop suitability model considering climate variability for climate impact assessment
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
EGUsphere, https://doi.org/10.5194/egusphere-2024-2526,https://doi.org/10.5194/egusphere-2024-2526, 2024
Short summary
The Teddy tool v1.1: temporal disaggregation of daily climate model data for climate impact analysis
Florian Zabel and Benjamin Poschlod
Geosci. Model Dev., 16, 5383–5399, https://doi.org/10.5194/gmd-16-5383-2023,https://doi.org/10.5194/gmd-16-5383-2023, 2023
Short summary
The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0)
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020,https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
The GGCMI Phase 2 experiment: global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0)
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Juraj Balkovic, Philippe Ciais, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, Munir Hoffmann, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Nikolay Khabarov, Marian Koch, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Xuhui Wang, Karina Williams, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 2315–2336, https://doi.org/10.5194/gmd-13-2315-2020,https://doi.org/10.5194/gmd-13-2315-2020, 2020
Short summary
Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin
M. Prasch, W. Mauser, and M. Weber
The Cryosphere, 7, 889–904, https://doi.org/10.5194/tc-7-889-2013,https://doi.org/10.5194/tc-7-889-2013, 2013

Related subject area

Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
Technical note: Surface fields for global environmental modelling
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024,https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Benchmarking multimodel terrestrial water storage seasonal cycle against Gravity Recovery and Climate Experiment (GRACE) observations over major global river basins
Sadia Bibi, Tingju Zhu, Ashraf Rateb, Bridget R. Scanlon, Muhammad Aqeel Kamran, Abdelrazek Elnashar, Ali Bennour, and Ci Li
Hydrol. Earth Syst. Sci., 28, 1725–1750, https://doi.org/10.5194/hess-28-1725-2024,https://doi.org/10.5194/hess-28-1725-2024, 2024
Short summary
Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022
Björn Nyberg, Roger Sayre, and Elco Luijendijk
Hydrol. Earth Syst. Sci., 28, 1653–1663, https://doi.org/10.5194/hess-28-1653-2024,https://doi.org/10.5194/hess-28-1653-2024, 2024
Short summary
Interannual Variations of Terrestrial Water Storage in the East African Rift Region
Eva Boergens, Andreas Güntner, Mike Sips, Christian Schwatke, and Henryk Dobslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-641,https://doi.org/10.5194/egusphere-2024-641, 2024
Short summary
Investigating sources of variability in closing the terrestrial water balance with remote sensing
Claire I. Michailovsky, Bert Coerver, Marloes Mul, and Graham Jewitt
Hydrol. Earth Syst. Sci., 27, 4335–4354, https://doi.org/10.5194/hess-27-4335-2023,https://doi.org/10.5194/hess-27-4335-2023, 2023
Short summary

Cited articles

Abuzar, M., McAllister, A., and Whitfield, D.: Mapping Irrigated Farmlands Using Vegetation and Thermal Thresholds Derived from Landsat and ASTER Data in an Irrigation District of Australia, Photogram. Eng. Remote Sens., 81, 229–238, 2015. 
Alexandratos, N. and Bruinsma, J.: World agriculture towards 2030/2050: the 2012 revision, ESA working paper no. 12-03, Global Perspective Studies Team, FAO Agricultural Development Economics Division, Rome, Italy, 2012. 
Ambika, A. K., Wardlow, B., and Mishra, V.: Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015, Sci Data, 3, 160118, https://doi.org/10.1038/sdata.2016.118, 2016. 
Bauer, S., Olson, J., Cockrill, A., van Hattem, M., Miller, L., Tauzer, M., and Leppig, G.: Impacts of Surface Water Diversions for Marijuana Cultivation on Aquatic Habitat in Four Northwestern California Watersheds, PLoS ONE, 10, e0120016, https://doi.org/10.1371/journal.pone.0120016, 2015. 
Bhattarai, M., Sakthivadivel, R., and Hussain, I.: Irrigation impacts on income inequality and poverty alleviation: Policy issues and options for improved management of irrigation systems, edited by: International Water Management Institute (IWMI), Colombo, 2002. 
Download
Short summary
The following study extends existing irrigation maps based on official reports. The main idea was to extend the reported irrigated areas using agricultural suitability data and compare them with remote sensing information about plant conditions. The analysis indicates an increase in irrigated land by 18 % compared to the reported statistics. The additional areas are mainly identified within already known irrigated regions where irrigation is more dense than previously estimated.