Technical note
08 Nov 2017
Technical note | 08 Nov 2017
Technical note: Combining quantile forecasts and predictive distributions of streamflows
Konrad Bogner et al.
Related authors
Future shifts in extreme flow regimes in Alpine regions
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019,https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Reconstruction and simulation of an extreme flood event in the Lago Maggiore catchment in 1868
Peter Stucki, Moritz Bandhauer, Ulla Heikkilä, Ole Rössler, Massimiliano Zappa, Lucas Pfister, Melanie Salvisberg, Paul Froidevaux, Olivia Martius, Luca Panziera, and Stefan Brönnimann
Nat. Hazards Earth Syst. Sci., 18, 2717–2739, https://doi.org/10.5194/nhess-18-2717-2018,https://doi.org/10.5194/nhess-18-2717-2018, 2018
Short summary
Representation of spatial and temporal variability in large-domain hydrological models: case study for a mesoscale pre-Alpine basin
Lieke Melsen, Adriaan Teuling, Paul Torfs, Massimiliano Zappa, Naoki Mizukami, Martyn Clark, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 20, 2207–2226, https://doi.org/10.5194/hess-20-2207-2016,https://doi.org/10.5194/hess-20-2207-2016, 2016
Short summary
A Tri-National program for estimating the link between snow resources and hydrological droughts
M. Zappa, T. Vitvar, A. Rücker, G. Melikadze, L. Bernhard, V. David, M. Jans-Singh, N. Zhukova, and M. Sanda
Proc. IAHS, 369, 25–30, https://doi.org/10.5194/piahs-369-25-2015,https://doi.org/10.5194/piahs-369-25-2015, 2015
Short summary
Crash tests for forward-looking flood control in the city of Zürich (Switzerland)
M. Zappa, N. Andres, P. Kienzler, D. Näf-Huber, C. Marti, and M. Oplatka
Proc. IAHS, 370, 235–242, https://doi.org/10.5194/piahs-370-235-2015,https://doi.org/10.5194/piahs-370-235-2015, 2015
Short summary
KULTURisk regional risk assessment methodology for water-related natural hazards – Part 2: Application to the Zurich case study
P. Ronco, M. Bullo, S. Torresan, A. Critto, R. Olschewski, M. Zappa, and A. Marcomini
Hydrol. Earth Syst. Sci., 19, 1561–1576, https://doi.org/10.5194/hess-19-1561-2015,https://doi.org/10.5194/hess-19-1561-2015, 2015
Short summary
Related subject area
Near-0 °C surface temperature and precipitation type patterns across Canada
Eva Mekis, Ronald E. Stewart, Julie M. Theriault, Bohdan Kochtubajda, Barrie R. Bonsal, and Zhuo Liu
Hydrol. Earth Syst. Sci., 24, 1741–1761, https://doi.org/10.5194/hess-24-1741-2020,https://doi.org/10.5194/hess-24-1741-2020, 2020
Short summary
A universal multifractal approach to assessment of spatiotemporal extreme precipitation over the Loess Plateau of China
Jianjun Zhang, Guangyao Gao, Bojie Fu, Cong Wang, Hoshin V. Gupta, Xiaoping Zhang, and Rui Li
Hydrol. Earth Syst. Sci., 24, 809–826, https://doi.org/10.5194/hess-24-809-2020,https://doi.org/10.5194/hess-24-809-2020, 2020
Short summary
Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets
Wenbin Liu, Fubao Sun, Yanzhong Li, Guoqing Zhang, Yan-Fang Sang, Wee Ho Lim, Jiahong Liu, Hong Wang, and Peng Bai
Hydrol. Earth Syst. Sci., 22, 351–371, https://doi.org/10.5194/hess-22-351-2018,https://doi.org/10.5194/hess-22-351-2018, 2018
Short summary
Assessment of an ensemble seasonal streamflow forecasting system for Australia
James C. Bennett, Quan J. Wang, David E. Robertson, Andrew Schepen, Ming Li, and Kelvin Michael
Hydrol. Earth Syst. Sci., 21, 6007–6030, https://doi.org/10.5194/hess-21-6007-2017,https://doi.org/10.5194/hess-21-6007-2017, 2017
Short summary
Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes
Matthew B. Switanek, Peter A. Troch, Christopher L. Castro, Armin Leuprecht, Hsin-I Chang, Rajarshi Mukherjee, and Eleonora M. C. Demaria
Hydrol. Earth Syst. Sci., 21, 2649–2666, https://doi.org/10.5194/hess-21-2649-2017,https://doi.org/10.5194/hess-21-2649-2017, 2017
Short summary
Downscaling of surface moisture flux and precipitation in the Ebro Valley (Spain) using analogues and analogues followed by random forests and multiple linear regression
G. Ibarra-Berastegi, J. Saénz, A. Ezcurra, A. Elías, J. Diaz Argandoña, and I. Errasti
Hydrol. Earth Syst. Sci., 15, 1895–1907, https://doi.org/10.5194/hess-15-1895-2011,https://doi.org/10.5194/hess-15-1895-2011, 2011
Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland
R. Schiemann, R. Erdin, M. Willi, C. Frei, M. Berenguer, and D. Sempere-Torres
Hydrol. Earth Syst. Sci., 15, 1515–1536, https://doi.org/10.5194/hess-15-1515-2011,https://doi.org/10.5194/hess-15-1515-2011, 2011
El Niño-Southern Oscillation and water resources in the headwaters region of the Yellow River: links and potential for forecasting
A. Lü, S. Jia, W. Zhu, H. Yan, S. Duan, and Z. Yao
Hydrol. Earth Syst. Sci., 15, 1273–1281, https://doi.org/10.5194/hess-15-1273-2011,https://doi.org/10.5194/hess-15-1273-2011, 2011
Introducing a rainfall compound distribution model based on weather patterns sub-sampling
F. Garavaglia, J. Gailhard, E. Paquet, M. Lang, R. Garçon, and P. Bernardara
Hydrol. Earth Syst. Sci., 14, 951–964, https://doi.org/10.5194/hess-14-951-2010,https://doi.org/10.5194/hess-14-951-2010, 2010
Cited articles
Abrahart, R. J. and See, L.: Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments, Hydrol. Earth Syst. Sci., 6, 655–670, https://doi.org/10.5194/hess-6-655-2002, 2002.
Addor, N., Jaun, S., Fundel, F., and Zappa, M.: An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios, Hydrol. Earth Syst. Sci., 15, 2327–2347, https://doi.org/10.5194/hess-15-2327-2011, 2011.
Ajami, N. K., Duan, Q., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, https://doi.org/10.1029/2005WR004745, 2007.
Baran, S.: Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components, Comput. Stat. Data An., 75, 227–238, https://doi.org/10.1016/j.csda.2014.02.013, 2014.
Baran, S. and Lerch, S.: Log-normal distribution based Ensemble Model Output Statistics models for probabilistic wind-speed forecasting, Q. J. Roy. Meteor. Soc., 141, 2289–2299, https://doi.org/10.1002/qj.2521, 2015.
Bogner, K. and Pappenberger, F.: Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system, Water Resour. Res., 47, W07524, https://doi.org/10.1029/2010WR009137, 2011.
Bogner, K., Liechti, K., and Zappa, M.: Post-Processing of Stream Flows in Switzerland with an Emphasis on Low Flows and Floods, Water, 8, 115, https://doi.org/10.3390/w8040115, 2016.
Bouallègue, Z. B., Pinson, P., and Friederichs, P.: Quantile forecast discrimination ability and value, Q. J. Roy. Meteor. Soc., 141, 3415–3424, https://doi.org/10.1002/qj.2624, 2015.
Bowden, G. J., Maier, H. R., and Dandy, G. C.: Real-time deployment of artificial neural network forecasting models: Understanding the range of applicability, Water Resour. Res., 48, w10549, https://doi.org/10.1029/2012WR011984, 2012.
Cannon, A. J.: Quantile regression neural networks: Implementation in R and application to precipitation downscaling, Comput. Geosci., 37, 1277–1284, https://doi.org/10.1016/j.cageo.2010.07.005, 2011.
Chernozhukov, V., Fernández-Val, I., and Galichon, A.: Quantile and Probability Curves Without Crossing, Econometrica, 78, 1093–1125, https://doi.org/10.3982/ECTA7880, 2010.
Dawid, A.: Statistical theory: The prequential approach, J. Roy. Statist. Soc. A, 147, 278–292, 1984.
Diks, C. G. H. and Vrugt, J. A.: Comparison of point forecast accuracy of model averaging methods in hydrologic applications, Stoch. Env. Res. Risk A., 24, 809–820, https://doi.org/10.1007/s00477-010-0378-z, 2010.
Dogulu, N., López López, P., Solomatine, D. P., Weerts, A. H., and Shrestha, D. L.: Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments, Hydrol. Earth Syst. Sci., 19, 3181–3201, https://doi.org/10.5194/hess-19-3181-2015, 2015.
Friederichs, P. and Hense, A.: Statistical Downscaling of Extreme Precipitation Events Using Censored Quantile Regression, Mon. Weather Rev., 135, 2365–2378, https://doi.org/10.1175/MWR3403.1, 2007.
Glahn, H. and Lowry, D.: The use of model output statistics (MOS) in objective weather forecasting, J. Appl. Meteorol., 11, 1203–1211, 1972.
Gneiting, T. and Ranjan, R.: Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules, J. Bus. Econ. Stat., 29, 411–422, 2011.
Gneiting, T. and Ranjan, R.: Combining predictive distributions, Electron. J. Statist., 7, 1747–1782, https://doi.org/10.1214/13-EJS823, 2013.
Gneiting, T., Raftery, A., Westveld III, A., and Goldman, T.: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Mon. Weather Rev., 133, 1098–1118, 2005.
Gneiting, T., Balabdaoui, F., and Raftery, A.: Probabilistic forecasts, calibration and sharpness, J. Roy. Stat. Soc. B, 69, 243–268, 2007.
Hemri, S., Fundel, F., and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49, 6744–6755, https://doi.org/10.1002/wrcr.20542, 2013.
Hemri, S., Scheuerer, M., Pappenberger, F., Bogner, K., and Haiden, T.: Trends in the predictive performance of raw ensemble weather forecasts, Geophys. Res. Lett., 41, 9197–9205, https://doi.org/10.1002/2014GL062472, 2014.
Koenker, R.: Quantile Regression, Econometric Society Monographs, Cambridge University Press, New York, 2005.
Koenker, R. and Machado, J. A. F.: Goodness of Fit and Related Inference Processes for Quantile Regression, J. Am. Stat. Assoc., 94, 1296–1310, https://doi.org/10.1080/01621459.1999.10473882, 1999.
Laio, F. and Tamea, S.: Verification tools for probabilistic forecasts of continuous hydrological variables, Hydrol. Earth Syst. Sci., 11, 1267–1277, https://doi.org/10.5194/hess-11-1267-2007, 2007.
Lichtendahl, K. C. J., Grushka-Cockayne, Y., and Winkler, R. L.: Is It Better to Average Probabilities or Quantiles?, Manage. Sci., 59, 1594–1611, https://doi.org/10.1287/mnsc.1120.1667, 2013.
Liechti, K., Oplatka, M., Eisenhut, N., and Zappa, M.: Early Flood Warning for the City of Zurich: Evaluation of real-time Operations since 2010, in: 13th Congress Interpraevent 2016, Living with natural risks, 2016.
López López, P., Verkade, J. S., Weerts, A. H., and Solomatine, D. P.: Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the upper Severn River: a comparison, Hydrol. Earth Syst. Sci., 18, 3411–3428, https://doi.org/10.5194/hess-18-3411-2014, 2014.
Min, C.-K. and Zellner, A.: Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates, J. Econ., 56, 89–118, https://doi.org/10.1016/0304-4076(93)90102-B, 1993.
Montani, A., Cesari, D., Marsigli, C., and Paccagnella, T.: Seven years of activity in the field of mesoscale ensemble forecasting by the COSMO-LEPS system: main achievements and open challenges, Tellus A, 63, 605–624, 2011.
Quiñonero Candela, J., Rasmussen, C., Sinz, F., Bousquet, O., and Schölkopf, B.: Evaluating Predictive Uncertainty Challenge, in: Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, edited by: Quiñonero Candela, J., Dagan, I., Magnini, B., and d'Alché Buc, F., vol. 3944 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1–27, https://doi.org/10.1007/11736790_1, 2006.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 30 September 2017), 2016.
Raftery, A., Gneiting, T., Balabdaoui, F., and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133, 1155–1174, https://doi.org/10.1175/MWR2906.1, 2005.
Raftery, A. E., Madigan, D., and Hoeting, J. A.: Bayesian Model Averaging for Linear Regression Models, J. Am. Stat. Assoc., 92, 179–191, https://doi.org/10.1080/01621459.1997.10473615, 1997.
Ranjan, R. and Gneiting, T.: Combining probability forecasts, J. Roy. Stat. Soc. B Met., 72, 71–91, https://doi.org/10.1111/j.1467-9868.2009.00726.x, 2010.
Ronco, P., Bullo, M., Torresan, S., Critto, A., Olschewski, R., Zappa, M., and Marcomini, A.: KULTURisk regional risk assessment methodology for water-related natural hazards – Part 2: Application to the Zurich case study, Hydrol. Earth Syst. Sci., 19, 1561–1576, https://doi.org/10.5194/hess-19-1561-2015, 2015.
Schepen, A. and Wang, Q. J.: Model averaging methods to merge operational statistical and dynamic seasonal streamflow forecasts in Australia, Water Resour. Res., 51, 1797–1812, https://doi.org/10.1002/2014WR016163, 2015.
Taylor, J. W.: A quantile regression neural network approach to estimating the conditional density of multiperiod returns, J. Forecasting, 19, 299–311, 2000.
Thompson, P. D.: How to Improve Accuracy by Combining Independent Forecasts, Mon. Weather Rev., 105, 228–229, https://doi.org/10.1175/1520-0493(1977)105<0228:HTIABC>2.0.CO;2, 1977.
Todini, E.: A model conditional processor to assess predictive uncertainty in flood forecasting, International Journal of River Basin Management, 6, 123–137, 2008.
Van der Waerden, B. L.: Order tests for two-sample problem and their power I, Indagat. Math., 14, 453–458, 1952.
Van der Waerden, B. L.: Order tests for two-sample problem and their power II, Indagat. Math., 15, 303–310, 1953a.
Van der Waerden, B. L.: Order tests for two-sample problem and their power III, Indagat. Math., 15, 311–316, 1953b.
Vrugt, J. A. and Robinson, B. A.: Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging, Water Resour. Res., 43, W01411, https://doi.org/10.1029/2005WR004838, 2007.
Wallis, K. F.: Combining forecasts – forty years later, Applied Financial Economics, 21, 33–41, 2011.
Wang, Q. J., Schepen, A., and Robertson, D. E.: Merging Seasonal Rainfall Forecasts from Multiple Statistical Models through Bayesian Model Averaging, J. Climate, 25, 5524–5537, https://doi.org/10.1175/JCLI-D-11-00386.1, 2012.
Weerts, A. H., Winsemius, H. C., and Verkade, J. S.: Estimation of predictive hydrological uncertainty using quantile regression: examples from the National Flood Forecasting System (England and Wales), Hydrol. Earth Syst. Sci., 15, 255–265, https://doi.org/10.5194/hess-15-255-2011, 2011.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences: An Introduction, Academic Press, New York, 1995.
Williams, R. M., Ferro, C. A. T., and Kwasniok, F.: A comparison of ensemble post-processing methods for extreme events, Q. J. Roy. Meteor. Soc., 140, 1112–1120, https://doi.org/10.1002/qj.2198, 2014.
Zhao, T., Bennett, J. C., Wang, Q. J., Schepen, A., Wood, A. W., Robertson, D. E., and Ramos, M.-H.: How Suitable is Quantile Mapping For Postprocessing GCM Precipitation Forecasts?, J. Climate, 30, 3185–3196, https://doi.org/10.1175/JCLI-D-16-0652.1, 2017.