Articles | Volume 21, issue 11
https://doi.org/10.5194/hess-21-5493-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-5493-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Technical note: Combining quantile forecasts and predictive distributions of streamflows
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Katharina Liechti
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Massimiliano Zappa
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Related authors
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2591, https://doi.org/10.5194/egusphere-2024-2591, 2024
Short summary
Short summary
We generate operational forecasts of daily maximum stream water temperature for the next month at 54 stations in Switzerland with our best performing data-driven model. The average forecast error is 0.38 °C for 1 day ahead and increases to 0.90 °C for 1 month ahead given the uncertainty in the meteorological variables influencing water temperature. Here we compare the skill of several models, how well they can forecast at new and ungauged stations, and the importance of different model inputs.
Samuel Monhart, Massimiliano Zappa, Christoph Spirig, Christoph Schär, and Konrad Bogner
Hydrol. Earth Syst. Sci., 23, 493–513, https://doi.org/10.5194/hess-23-493-2019, https://doi.org/10.5194/hess-23-493-2019, 2019
Short summary
Short summary
Subseasonal streamflow forecasts have received increasing attention during the past decade, but their performance in alpine catchments is still largely unknown. We analyse the effect of a statistical correction technique applied to the driving meteorological forecasts on the performance of the resulting streamflow forecasts. The study shows the benefits of such hydrometeorological ensemble prediction systems and highlights the importance of snow-related processes for subseasonal predictions.
Jon Olav Skøien, Konrad Bogner, Peter Salamon, Paul Smith, and Florian Pappenberger
Proc. IAHS, 373, 109–114, https://doi.org/10.5194/piahs-373-109-2016, https://doi.org/10.5194/piahs-373-109-2016, 2016
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2591, https://doi.org/10.5194/egusphere-2024-2591, 2024
Short summary
Short summary
We generate operational forecasts of daily maximum stream water temperature for the next month at 54 stations in Switzerland with our best performing data-driven model. The average forecast error is 0.38 °C for 1 day ahead and increases to 0.90 °C for 1 month ahead given the uncertainty in the meteorological variables influencing water temperature. Here we compare the skill of several models, how well they can forecast at new and ungauged stations, and the importance of different model inputs.
Michael Margreth, Florian Lustenberger, Dorothea Hug Peter, Fritz Schlunegger, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-78, https://doi.org/10.5194/nhess-2024-78, 2024
Preprint under review for NHESS
Short summary
Short summary
Recession models (RM) are crucial for observing the low flow behavior of a catchment. We developed two novel RM, which are designed to represent slowly draining catchment conditions. With a newly designed low flow prediction procedure we tested the prediction capability of these two models and three others from literature. One of our novel products delivered the best results, because it best represents the slowly draining catchment conditions.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-993, https://doi.org/10.5194/egusphere-2024-993, 2024
Short summary
Short summary
This study uses deep learning to predict spatially contiguous water runoff in Switzerland from 1962–2023. It outperforms traditional models, requiring less data and computational power. Key findings include increased dry years and summer water scarcity. This method offers significant advancements in water monitoring.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Elham Rouholahnejad Freund, Massimiliano Zappa, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5015–5025, https://doi.org/10.5194/hess-24-5015-2020, https://doi.org/10.5194/hess-24-5015-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) is the largest flux from the land to the atmosphere and thus contributes to Earth's energy and water balance. Due to its impact on atmospheric dynamics, ET is a key driver of droughts and heatwaves. In this paper, we demonstrate how averaging over land surface heterogeneity contributes to substantial overestimates of ET fluxes. We also demonstrate how one can correct for the effects of small-scale heterogeneity without explicitly representing it in land surface models.
Marco Dal Molin, Mario Schirmer, Massimiliano Zappa, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 24, 1319–1345, https://doi.org/10.5194/hess-24-1319-2020, https://doi.org/10.5194/hess-24-1319-2020, 2020
Matthias J. R. Speich, Massimiliano Zappa, Marc Scherstjanoi, and Heike Lischke
Geosci. Model Dev., 13, 537–564, https://doi.org/10.5194/gmd-13-537-2020, https://doi.org/10.5194/gmd-13-537-2020, 2020
Short summary
Short summary
Climate change is expected to substantially affect natural processes, and simulation models are a valuable tool to anticipate these changes. In this study, we combine two existing models that each describe one aspect of the environment: forest dynamics and the terrestrial water cycle. The coupled model better described observed patterns in vegetation structure. We also found that including the effect of water availability on tree height and rooting depth improved the model.
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Short summary
River flow regimes are expected to change and so are extreme flow regimes. We propose two methods for estimating extreme flow regimes and show on a data set from Switzerland how these extreme regimes are expected to change. Our results show that changes in low- and high-flow regimes are distinct for rainfall- and melt-dominated regions. Our findings provide guidance in water resource planning and management.
Manuela I. Brunner, Katharina Liechti, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci., 19, 2311–2323, https://doi.org/10.5194/nhess-19-2311-2019, https://doi.org/10.5194/nhess-19-2311-2019, 2019
Short summary
Short summary
The 2018 drought event had severe ecological, economic, and social impacts. How extreme was it in Switzerland? We addressed this question by looking at different types of drought, including meteorological, hydrological, agricultural, and groundwater drought, and at the two characteristics deficit and deficit duration. The return period estimates depended on the region, variable, and return period considered.
Samuel Monhart, Massimiliano Zappa, Christoph Spirig, Christoph Schär, and Konrad Bogner
Hydrol. Earth Syst. Sci., 23, 493–513, https://doi.org/10.5194/hess-23-493-2019, https://doi.org/10.5194/hess-23-493-2019, 2019
Short summary
Short summary
Subseasonal streamflow forecasts have received increasing attention during the past decade, but their performance in alpine catchments is still largely unknown. We analyse the effect of a statistical correction technique applied to the driving meteorological forecasts on the performance of the resulting streamflow forecasts. The study shows the benefits of such hydrometeorological ensemble prediction systems and highlights the importance of snow-related processes for subseasonal predictions.
Manuel Antonetti, Christoph Horat, Ioannis V. Sideris, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci., 19, 19–40, https://doi.org/10.5194/nhess-19-19-2019, https://doi.org/10.5194/nhess-19-19-2019, 2019
Short summary
Short summary
To predict timing and magnitude peak run-off, meteorological and calibrated hydrological models are commonly coupled. A flash-flood forecasting chain is presented based on a process-based run-off generation module with no need for calibration. This chain has been evaluated using data for the Emme catchment (Switzerland). The outcomes of this study show that operational flash predictions in ungauged basins can benefit from the use of information on run-off processes.
Peter Stucki, Moritz Bandhauer, Ulla Heikkilä, Ole Rössler, Massimiliano Zappa, Lucas Pfister, Melanie Salvisberg, Paul Froidevaux, Olivia Martius, Luca Panziera, and Stefan Brönnimann
Nat. Hazards Earth Syst. Sci., 18, 2717–2739, https://doi.org/10.5194/nhess-18-2717-2018, https://doi.org/10.5194/nhess-18-2717-2018, 2018
Short summary
Short summary
A catastrophic flood south of the Alps in 1868 is assessed using documents and the earliest example of high-resolution weather simulation. Simulated weather dynamics agree well with observations and damage reports. Simulated peak water levels are biased. Low forest cover did not cause the flood, but such a paradigm was used to justify afforestation. Supported by historical methods, such numerical simulations allow weather events from past centuries to be used for modern hazard and risk analyses.
Manuel Antonetti and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4425–4447, https://doi.org/10.5194/hess-22-4425-2018, https://doi.org/10.5194/hess-22-4425-2018, 2018
Short summary
Short summary
We developed 60 modelling chain combinations based on either experimentalists' (bottom-up) or modellers' (top-down) thinking and forced them with data of increasing accuracy. Results showed that the differences in performance arising from the forcing data were due to compensation effects. We also found that modellers' and experimentalists' concept of
model realismdiffers, and the level of detail a model should have to reproduce the processes expected must be agreed in advance.
Matthias J. R. Speich, Heike Lischke, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4097–4124, https://doi.org/10.5194/hess-22-4097-2018, https://doi.org/10.5194/hess-22-4097-2018, 2018
Short summary
Short summary
To simulate the water balance of, e.g., a forest plot, it is important to estimate the maximum volume of water available to plants. This depends on soil properties and the average depth of roots. Rooting depth has proven challenging to estimate. Here, we applied a model assuming that plants dimension their roots to optimize their carbon budget. We compared its results with values obtained by calibrating a dynamic water balance model. In most cases, there is good agreement between both methods.
Christoph Horat, Manuel Antonetti, Katharina Liechti, Pirmin Kaufmann, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-119, https://doi.org/10.5194/nhess-2018-119, 2018
Publication in NHESS not foreseen
Short summary
Short summary
Two forecasting chains are forced by information from numerical weather predictions. The framework presented in the companion paper by Antonetti et al. has been set up for the Swiss Verzasca basin. The forecasts obtained with the uncalibrated RGM-PRO model are compared to forecasts yielded by the calibrated PREVAH-HRU model. Results shows that the uncalibrated model is able to compete with the calibrated operational prediction system and was consistently superior for
high-flow situations.
Love Råman Vinnå, Alfred Wüest, Massimiliano Zappa, Gabriel Fink, and Damien Bouffard
Hydrol. Earth Syst. Sci., 22, 31–51, https://doi.org/10.5194/hess-22-31-2018, https://doi.org/10.5194/hess-22-31-2018, 2018
Short summary
Short summary
Responses of inland waters to climate change vary on global and regional scales. Shifts in river discharge regimes act as positive and negative feedbacks in influencing water temperature. The extent of this effect on warming is controlled by the change in river discharge and lake hydraulic residence time. A shift of deep penetrating river intrusions from summer towards winter can potentially counteract the otherwise negative climate effects on deep-water oxygen content.
Manuel Antonetti, Rahel Buss, Simon Scherrer, Michael Margreth, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 20, 2929–2945, https://doi.org/10.5194/hess-20-2929-2016, https://doi.org/10.5194/hess-20-2929-2016, 2016
Short summary
Short summary
We evaluated three automatic mapping approaches of dominant runoff processes (DRPs) with different complexity using similarity measures and synthetic runoff simulations. The most complex DRP maps were the most similar to the reference maps. Runoff simulations derived from the simpler DRP maps were more uncertain due to inaccuracies in the input data and rather coarse simplifications in the mapping criteria. It would thus be worthwhile trying to obtain DRP maps that are as realistic as possible.
Lieke Melsen, Adriaan Teuling, Paul Torfs, Massimiliano Zappa, Naoki Mizukami, Martyn Clark, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 20, 2207–2226, https://doi.org/10.5194/hess-20-2207-2016, https://doi.org/10.5194/hess-20-2207-2016, 2016
Short summary
Short summary
In this study we investigated the sensitivity of a large-domain hydrological model for spatial and temporal resolution. We evaluated the results on a mesoscale catchment in Switzerland. Our results show that the model was hardly sensitive for the spatial resolution, which implies that spatial variability is likely underestimated. Our results provide a motivation to improve the representation of spatial variability in hydrological models in order to increase their credibility on a smaller scale.
Jon Olav Skøien, Konrad Bogner, Peter Salamon, Paul Smith, and Florian Pappenberger
Proc. IAHS, 373, 109–114, https://doi.org/10.5194/piahs-373-109-2016, https://doi.org/10.5194/piahs-373-109-2016, 2016
Michal Jenicek, Jan Seibert, Massimiliano Zappa, Maria Staudinger, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 859–874, https://doi.org/10.5194/hess-20-859-2016, https://doi.org/10.5194/hess-20-859-2016, 2016
Short summary
Short summary
We quantified how long snowmelt affects runoff, and we estimated the sensitivity of catchments to changes in snowpack. This is relevant as the increase of air temperature might cause decreased snow storage. We used time series from 14 catchments in Switzerland. On average, a decrease of maximum snow storage by 10 % caused a decrease of minimum discharge in July by 2 to 9 %. The results showed a higher sensitivity of summer low flow to snow in alpine catchments compared to pre-alpine catchments.
M. Zappa, N. Andres, P. Kienzler, D. Näf-Huber, C. Marti, and M. Oplatka
Proc. IAHS, 370, 235–242, https://doi.org/10.5194/piahs-370-235-2015, https://doi.org/10.5194/piahs-370-235-2015, 2015
Short summary
Short summary
The most severe threat for the city of Zürich (Switzerland) are flash-floods from the small Sihl river. An assessment using a rainfall-runoff model evaluated more than 40000 extreme flood scenarios. These scenarios identified deficits for the safety of Zürich. The combination of different structural and flood management measures can lead to an optimal safety also in case of unfavorable initial conditions. Pending questions concern the costs, political decisions and the environmental matters.
M. Zappa, T. Vitvar, A. Rücker, G. Melikadze, L. Bernhard, V. David, M. Jans-Singh, N. Zhukova, and M. Sanda
Proc. IAHS, 369, 25–30, https://doi.org/10.5194/piahs-369-25-2015, https://doi.org/10.5194/piahs-369-25-2015, 2015
Short summary
Short summary
A research effort involving Switzerland, Georgia and the Czech Republic has been launched to evaluate the relation between snowpack and summer low flows. Two rainfall-runoff models will simulate over 10 years of snow hydrology and runoff in nested streams. Processes involved will be also evaluated by mean by means of high frequency sampling of the environmental isotopes 18O and 2H. The paper presents first analysis of available datasets of 18O, 2H, discharge, snowpack and modelling experiments.
P. Ronco, M. Bullo, S. Torresan, A. Critto, R. Olschewski, M. Zappa, and A. Marcomini
Hydrol. Earth Syst. Sci., 19, 1561–1576, https://doi.org/10.5194/hess-19-1561-2015, https://doi.org/10.5194/hess-19-1561-2015, 2015
Short summary
Short summary
The aim of the paper is the application of the KULTURisk regional risk assessment (KR-RRA) methodology, presented in the companion paper (Part 1), to the Sihl River basin, in northern Switzerland. Flood-related risks have been assessed for different receptors lying in the Sihl river valley including the city of Zurich, which represents a typical case of river flooding in an urban area, by means of a calibration process of the methodology to the site-specific context and features.
S. Jörg-Hess, F. Fundel, T. Jonas, and M. Zappa
The Cryosphere, 8, 471–485, https://doi.org/10.5194/tc-8-471-2014, https://doi.org/10.5194/tc-8-471-2014, 2014
K. Liechti, L. Panziera, U. Germann, and M. Zappa
Hydrol. Earth Syst. Sci., 17, 3853–3869, https://doi.org/10.5194/hess-17-3853-2013, https://doi.org/10.5194/hess-17-3853-2013, 2013
F. Fundel, S. Jörg-Hess, and M. Zappa
Hydrol. Earth Syst. Sci., 17, 395–407, https://doi.org/10.5194/hess-17-395-2013, https://doi.org/10.5194/hess-17-395-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Mathematical applications
Theoretical Annual Exceedances from Moving Average Drought Indices
Estimating global precipitation fields from rain gauge observations using local ensemble data assimilation
Using statistical models to depict the response of multi-timescale drought to forest cover change across climate zones
Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations
The most extreme rainfall erosivity event ever recorded in China up to 2022: the 7.20 storm in Henan Province
The role of atmospheric rivers in the distribution of heavy precipitation events over North America
Study on a mother wavelet optimization framework based on change-point detection of hydrological time series
Projected changes in droughts and extreme droughts in Great Britain strongly influenced by the choice of drought index
Atmospheric water transport connectivity within and between ocean basins and land
Technical Note: Space–time statistical quality control of extreme precipitation observations
The relative importance of antecedent soil moisture and precipitation in flood generation in the middle and lower Yangtze River basin
Rainfall pattern analysis in 24 East Asian megacities using a complex network
Comparison between canonical vine copulas and a meta-Gaussian model for forecasting agricultural drought over China
Analysis of flash droughts in China using machine learning
Performance-based comparison of regionalization methods to improve the at-site estimates of daily precipitation
The use of personal weather station observations to improve precipitation estimation and interpolation
The 2018 northern European hydrological drought and its drivers in a historical perspective
Assimilating shallow soil moisture observations into land models with a water budget constraint
Emerging climate signals in the Lena River catchment: a non-parametric statistical approach
Near-0 °C surface temperature and precipitation type patterns across Canada
A universal multifractal approach to assessment of spatiotemporal extreme precipitation over the Loess Plateau of China
Significant spatial patterns from the GCM seasonal forecasts of global precipitation
Bayesian performance evaluation of evapotranspiration models based on eddy covariance systems in an arid region
Technical note: An improved Grassberger–Procaccia algorithm for analysis of climate system complexity
The influence of long-term changes in canopy structure on rainfall interception loss: a case study in Speulderbos, the Netherlands
Geostatistical assessment of warm-season precipitation observations in Korea based on the composite precipitation and satellite water vapor data
Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets
Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale
Assessment of an ensemble seasonal streamflow forecasting system for Australia
Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes
Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē–Atbara river basin, Ethiopia
Seasonal streamflow forecasting by conditioning climatology with precipitation indices
Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts
Flood triggering in Switzerland: the role of daily to monthly preceding precipitation
Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China
Explaining and forecasting interannual variability in the flow of the Nile River
Drought severity–duration–frequency curves: a foundation for risk assessment and planning tool for ecosystem establishment in post-mining landscapes
Characterising the space–time structure of rainfall in the Sahel with a view to estimating IDAF curves
Spatial analysis of precipitation in a high-mountain region: exploring methods with multi-scale topographic predictors and circulation types
Variability of extreme precipitation over Europe and its relationships with teleconnection patterns
Drought evolution characteristics and precipitation intensity changes during alternating dry–wet changes in the Huang–Huai–Hai River basin
Structural break or long memory: an empirical survey on daily rainfall data sets across Malaysia
Calibration of aerodynamic roughness over the Tibetan Plateau with Ensemble Kalman Filter analysed heat flux
Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods
Spectral representation of the annual cycle in the climate change signal
Simultaneous estimation of land surface scheme states and parameters using the ensemble Kalman filter: identical twin experiments
Downscaling of surface moisture flux and precipitation in the Ebro Valley (Spain) using analogues and analogues followed by random forests and multiple linear regression
Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland
El Niño-Southern Oscillation and water resources in the headwaters region of the Yellow River: links and potential for forecasting
A summer climate regime over Europe modulated by the North Atlantic Oscillation
James Howard Stagge, Kyungmin Sung, Irenee Munyejuru, and Md Atif Ibne Haidar
EGUsphere, https://doi.org/10.5194/egusphere-2024-1430, https://doi.org/10.5194/egusphere-2024-1430, 2024
Short summary
Short summary
The Standardized Precipitation Index (SPI) and related drought indices are used globally to measure drought severity. The index uses a predictable structure, which we leverage to determine the theoretical likelihood of a year with an extreme worse than a given threshold. We show these likelihoods differ by the length (number of months) and resolution (daily vs monthly) of the index. This is important for drought managers when setting decision thresholds or when communicating risk to the public.
Yuka Muto and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2024-960, https://doi.org/10.5194/egusphere-2024-960, 2024
Short summary
Short summary
It is crucial to improve global precipitation estimates for understanding water-related disasters and water resources. This study proposes a new methodology to interpolate global precipitation fields from ground rain gauge observations using ensemble data assimilation and the precipitation of a numerical weather prediction model. Our estimates agree with independent rain gauge observations better than the existing precipitation estimates, especially in mountainous or rain-gauge-sparse regions.
Yan Li, Bo Huang, and Henning W. Rust
Hydrol. Earth Syst. Sci., 28, 321–339, https://doi.org/10.5194/hess-28-321-2024, https://doi.org/10.5194/hess-28-321-2024, 2024
Short summary
Short summary
The inconsistent changes in temperature and precipitation induced by forest cover change are very likely to affect drought condition. We use a set of statistical models to explore the relationship between forest cover change and drought change in different timescales and climate zones. We find that the influence of forest cover on droughts varies under different precipitation and temperature quantiles. Forest cover also could modulate the impacts of precipitation and temperature on drought.
Magdalena Uber, Michael Haller, Christoph Brendel, Gudrun Hillebrand, and Thomas Hoffmann
Hydrol. Earth Syst. Sci., 28, 87–102, https://doi.org/10.5194/hess-28-87-2024, https://doi.org/10.5194/hess-28-87-2024, 2024
Short summary
Short summary
We calculated past, present and future rainfall erosivity in central Europe from high-resolution precipitation data (3 km and 1 h) generated by the COSMO-CLM convection-permitting climate model. Future rainfall erosivity can be up to 84 % higher than it was in the past. Such increases are much higher than estimated previously from regional climate model output. Convection-permitting simulations have an enormous and, to date, unexploited potential for the calculation of future rainfall erosivity.
Yuanyuan Xiao, Shuiqing Yin, Bofu Yu, Conghui Fan, Wenting Wang, and Yun Xie
Hydrol. Earth Syst. Sci., 27, 4563–4577, https://doi.org/10.5194/hess-27-4563-2023, https://doi.org/10.5194/hess-27-4563-2023, 2023
Short summary
Short summary
An exceptionally heavy rainfall event occurred on 20 July 2021 in central China (the 7.20 storm). The storm presents a rare opportunity to examine the extreme rainfall erosivity. The storm, with an average recurrence interval of at least 10 000 years, was the largest in terms of its rainfall erosivity on record over the past 70 years in China. The study suggests that extreme erosive events can occur anywhere in eastern China and are not necessarily concentrated in low latitudes.
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023, https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Short summary
Employing event synchronization and complex networks analysis, we reveal a cascade of heavy rainfall events, related to intense atmospheric rivers (ARs): heavy precipitation events (HPEs) in western North America (NA) that occur in the aftermath of land-falling ARs are synchronized with HPEs in central and eastern Canada with a delay of up to 12 d. Understanding the effects of ARs in the rainfall over NA will lead to better anticipating the evolution of the climate dynamics in the region.
Jiqing Li, Jing Huang, Lei Zheng, and Wei Zheng
Hydrol. Earth Syst. Sci., 27, 2325–2339, https://doi.org/10.5194/hess-27-2325-2023, https://doi.org/10.5194/hess-27-2325-2023, 2023
Short summary
Short summary
Under the joint action of climate–human activities the use of runoff data whose mathematical properties have changed has become the key to watershed management. To determine whether the data have been changed, the number and the location of changes, we proposed a change-point detection framework. The problem of determining the parameters of wavelet transform has been solved by comparing the accuracy of identifying change points. This study helps traditional models adapt to environmental changes.
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-2023, https://doi.org/10.5194/hess-27-1151-2023, 2023
Short summary
Short summary
In an analysis of future drought projections for Great Britain based on the Standardised Precipitation Index and the Standardised Precipitation Evapotranspiration Index, we show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought characteristics, although both result in increased drying. This highlights the need to understand the interplay between increasing atmospheric evaporative demand and drought impacts under a changing climate.
Dipanjan Dey, Aitor Aldama Campino, and Kristofer Döös
Hydrol. Earth Syst. Sci., 27, 481–493, https://doi.org/10.5194/hess-27-481-2023, https://doi.org/10.5194/hess-27-481-2023, 2023
Short summary
Short summary
One of the most striking and robust features of climate change is the acceleration of the atmospheric water cycle branch. Earlier studies were able to provide a quantification of the global atmospheric water cycle, but they missed addressing the atmospheric water transport connectivity within and between ocean basins and land. These shortcomings were overcome in the present study and presented a complete synthesised and quantitative view of the atmospheric water cycle.
Abbas El Hachem, Jochen Seidel, Florian Imbery, Thomas Junghänel, and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 6137–6146, https://doi.org/10.5194/hess-26-6137-2022, https://doi.org/10.5194/hess-26-6137-2022, 2022
Short summary
Short summary
Through this work, a methodology to identify outliers in intense precipitation data was presented. The results show the presence of several suspicious observations that strongly differ from their surroundings. Many identified outliers did not have unusually high values but disagreed with their neighboring values at the corresponding time steps. Weather radar and discharge data were used to distinguish between single events and false observations.
Qihua Ran, Jin Wang, Xiuxiu Chen, Lin Liu, Jiyu Li, and Sheng Ye
Hydrol. Earth Syst. Sci., 26, 4919–4931, https://doi.org/10.5194/hess-26-4919-2022, https://doi.org/10.5194/hess-26-4919-2022, 2022
Short summary
Short summary
This study aims to further evaluate the relative importance of antecedent soil moisture and rainfall on flood generation and the controlling factors. The relative importance of antecedent soil moisture and daily rainfall present a significant correlation with drainage area; the larger the watershed, and the more essential the antecedent soil saturation rate is in flood generation, the less important daily rainfall will be.
Kyunghun Kim, Jaewon Jung, Hung Soo Kim, Masahiko Haraguchi, and Soojun Kim
Hydrol. Earth Syst. Sci., 26, 4823–4836, https://doi.org/10.5194/hess-26-4823-2022, https://doi.org/10.5194/hess-26-4823-2022, 2022
Short summary
Short summary
This study applied a new methodology (complex network), instead of using classic methods, to establish the relationships between rainfall events in large East Asian cities. The relationships show that western China and Southeast Asia have a lot of influence on each other. Moreover, it is confirmed that the relationships arise from the effect of the East Asian monsoon. In future, complex network may be able to be applied to analyze the concurrent relationships between extreme rainfall events.
Haijiang Wu, Xiaoling Su, Vijay P. Singh, Te Zhang, Jixia Qi, and Shengzhi Huang
Hydrol. Earth Syst. Sci., 26, 3847–3861, https://doi.org/10.5194/hess-26-3847-2022, https://doi.org/10.5194/hess-26-3847-2022, 2022
Short summary
Short summary
Agricultural drought forecasting lies at the core of overall drought risk management and is critical for food security and drought early warning. Using three-dimensional scenarios, we attempted to compare the agricultural drought forecast performance of a canonical vine copula (3C-vine) model and meta-Gaussian (MG) model over China. The findings show that the 3C-vine model exhibits more skill than the MG model when using 1– to 3-month lead times for forecasting agricultural drought.
Linqi Zhang, Yi Liu, Liliang Ren, Adriaan J. Teuling, Ye Zhu, Linyong Wei, Linyan Zhang, Shanhu Jiang, Xiaoli Yang, Xiuqin Fang, and Hang Yin
Hydrol. Earth Syst. Sci., 26, 3241–3261, https://doi.org/10.5194/hess-26-3241-2022, https://doi.org/10.5194/hess-26-3241-2022, 2022
Short summary
Short summary
In this study, three machine learning methods displayed a good detection capacity of flash droughts. The RF model was recommended to estimate the depletion rate of soil moisture and simulate flash drought by considering the multiple meteorological variable anomalies in the adjacent time to drought onset. The anomalies of precipitation and potential evapotranspiration exhibited a stronger synergistic but asymmetrical effect on flash droughts compared to slowly developing droughts.
Abubakar Haruna, Juliette Blanchet, and Anne-Catherine Favre
Hydrol. Earth Syst. Sci., 26, 2797–2811, https://doi.org/10.5194/hess-26-2797-2022, https://doi.org/10.5194/hess-26-2797-2022, 2022
Short summary
Short summary
Reliable prediction of floods depends on the quality of the input data such as precipitation. However, estimation of precipitation from the local measurements is known to be difficult, especially for extremes. Regionalization improves the estimates by increasing the quantity of data available for estimation. Here, we compare three regionalization methods based on their robustness and reliability. We apply the comparison to a dense network of daily stations within and outside Switzerland.
András Bárdossy, Jochen Seidel, and Abbas El Hachem
Hydrol. Earth Syst. Sci., 25, 583–601, https://doi.org/10.5194/hess-25-583-2021, https://doi.org/10.5194/hess-25-583-2021, 2021
Short summary
Short summary
In this study, the applicability of data from private weather stations (PWS) for precipitation interpolation was investigated. Due to unknown errors and biases in these observations, a two-step filter was developed that uses indicator correlations and event-based spatial precipitation patterns. The procedure was tested and cross validated for the state of Baden-Württemberg (Germany). The biggest improvement is achieved for the shortest time aggregations.
Sigrid J. Bakke, Monica Ionita, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, https://doi.org/10.5194/hess-24-5621-2020, 2020
Short summary
Short summary
This study provides an in-depth analysis of the 2018 northern European drought. Large parts of the region experienced 60-year record-breaking temperatures, linked to high-pressure systems and warm surrounding seas. Meteorological drought developed from May and, depending on local conditions, led to extreme low flows and groundwater drought in the following months. The 2018 event was unique in that it affected most of Fennoscandia as compared to previous droughts.
Bo Dan, Xiaogu Zheng, Guocan Wu, and Tao Li
Hydrol. Earth Syst. Sci., 24, 5187–5201, https://doi.org/10.5194/hess-24-5187-2020, https://doi.org/10.5194/hess-24-5187-2020, 2020
Short summary
Short summary
Data assimilation is a procedure to generate an optimal combination of the state variable in geoscience, based on the model outputs and observations. The ensemble Kalman filter (EnKF) scheme is a widely used assimilation method in soil moisture estimation. This study proposed several modifications of EnKF for improving this assimilation. The study shows that the quality of the assimilation result is improved, while the degree of water budget imbalance is reduced.
Eric Pohl, Christophe Grenier, Mathieu Vrac, and Masa Kageyama
Hydrol. Earth Syst. Sci., 24, 2817–2839, https://doi.org/10.5194/hess-24-2817-2020, https://doi.org/10.5194/hess-24-2817-2020, 2020
Short summary
Short summary
Existing approaches to quantify the emergence of climate change require several user choices that make these approaches less objective. We present an approach that uses a minimum number of choices and showcase its application in the extremely sensitive, permafrost-dominated region of eastern Siberia. Designed as a Python toolbox, it allows for incorporating climate model, reanalysis, and in situ data to make use of numerous existing data sources and reduce uncertainties in obtained estimates.
Eva Mekis, Ronald E. Stewart, Julie M. Theriault, Bohdan Kochtubajda, Barrie R. Bonsal, and Zhuo Liu
Hydrol. Earth Syst. Sci., 24, 1741–1761, https://doi.org/10.5194/hess-24-1741-2020, https://doi.org/10.5194/hess-24-1741-2020, 2020
Short summary
Short summary
This article provides a Canada-wide analysis of near-0°C temperature conditions (±2°C) using hourly surface temperature and precipitation type observations from 92 locations for the 1981–2011 period. Higher annual occurrences were found in Atlantic Canada, although high values also occur in other regions. Trends of most indicators show little or no change despite a systematic warming over Canada. A higher than expected tendency for near-0°C conditions was also found at some stations.
Jianjun Zhang, Guangyao Gao, Bojie Fu, Cong Wang, Hoshin V. Gupta, Xiaoping Zhang, and Rui Li
Hydrol. Earth Syst. Sci., 24, 809–826, https://doi.org/10.5194/hess-24-809-2020, https://doi.org/10.5194/hess-24-809-2020, 2020
Short summary
Short summary
We proposed an approach that integrates universal multifractals and a segmentation algorithm to precisely identify extreme precipitation (EP) and assess spatiotemporal EP variation over the Loess Plateau, using daily data. Our results explain how EP contributes to the widely distributed severe natural hazards. These findings are of great significance for ecological management in the Loess Plateau. Our approach is also helpful for spatiotemporal EP assessment at the regional scale.
Tongtiegang Zhao, Wei Zhang, Yongyong Zhang, Zhiyong Liu, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1–16, https://doi.org/10.5194/hess-24-1-2020, https://doi.org/10.5194/hess-24-1-2020, 2020
Guoxiao Wei, Xiaoying Zhang, Ming Ye, Ning Yue, and Fei Kan
Hydrol. Earth Syst. Sci., 23, 2877–2895, https://doi.org/10.5194/hess-23-2877-2019, https://doi.org/10.5194/hess-23-2877-2019, 2019
Short summary
Short summary
Accurately evaluating evapotranspiration (ET) is a critical challenge in improving hydrological process modeling. Here we evaluated four ET models (PM, SW, PT–FC, and AA) under the Bayesian framework. Our results reveal that the SW model has the best performance. This is in part because the SW model captures the main physical mechanism in ET; the other part is that the key parameters, such as the extinction factor, could be well constrained with observation data.
Chongli Di, Tiejun Wang, Xiaohua Yang, and Siliang Li
Hydrol. Earth Syst. Sci., 22, 5069–5079, https://doi.org/10.5194/hess-22-5069-2018, https://doi.org/10.5194/hess-22-5069-2018, 2018
Short summary
Short summary
The original Grassberger–Procaccia algorithm for complex analysis was modified by incorporating the normal-based K-means clustering technique and the RANSAC algorithm. The calculation accuracy of the proposed method was shown to outperform traditional algorithms. The proposed algorithm was used to diagnose climate system complexity in the Hai He basin. The spatial patterns of the complexity of precipitation and air temperature reflected the influence of the dominant climate system.
César Cisneros Vaca, Christiaan van der Tol, and Chandra Prasad Ghimire
Hydrol. Earth Syst. Sci., 22, 3701–3719, https://doi.org/10.5194/hess-22-3701-2018, https://doi.org/10.5194/hess-22-3701-2018, 2018
Short summary
Short summary
The influence of long-term changes in canopy structure on rainfall interception loss was studied in a 55-year old forest. Interception loss was similar at the same site (38 %), when the forest was 29 years old. In the past, the forest was denser and had a higher storage capacity, but the evaporation rates were lower. We emphasize the importance of quantifying downward sensible heat flux and heat release from canopy biomass in tall forest in order to improve the quantification of evaporation.
Sojung Park, Seon Ki Park, Jeung Whan Lee, and Yunho Park
Hydrol. Earth Syst. Sci., 22, 3435–3452, https://doi.org/10.5194/hess-22-3435-2018, https://doi.org/10.5194/hess-22-3435-2018, 2018
Short summary
Short summary
Understanding the precipitation characteristics is essential to design an optimal observation network. We studied the spatial and temporal characteristics of summertime precipitation systems in Korea via geostatistical analyses on the ground-based precipitation and satellite water vapor data. We found that, under a strict standard, an observation network with higher resolution is required in local areas with frequent heavy rainfalls, depending on directional features of precipitation systems.
Wenbin Liu, Fubao Sun, Yanzhong Li, Guoqing Zhang, Yan-Fang Sang, Wee Ho Lim, Jiahong Liu, Hong Wang, and Peng Bai
Hydrol. Earth Syst. Sci., 22, 351–371, https://doi.org/10.5194/hess-22-351-2018, https://doi.org/10.5194/hess-22-351-2018, 2018
Short summary
Short summary
The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of hydro-climatic observations. In this study, we investigate seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982–2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations).
Harsh Beria, Trushnamayee Nanda, Deepak Singh Bisht, and Chandranath Chatterjee
Hydrol. Earth Syst. Sci., 21, 6117–6134, https://doi.org/10.5194/hess-21-6117-2017, https://doi.org/10.5194/hess-21-6117-2017, 2017
Short summary
Short summary
High-quality satellite precipitation forcings have provided a viable alternative to hydrologic modeling in data-scarce regions. Ageing TRMM sensors have recently been upgraded to GPM, promising enhanced spatio-temporal resolutions. Statistical and hydrologic evaluation of GPM measurements across 86 Indian river basins revealed improved low rainfall estimates with reduced effects of climatology and topography.
James C. Bennett, Quan J. Wang, David E. Robertson, Andrew Schepen, Ming Li, and Kelvin Michael
Hydrol. Earth Syst. Sci., 21, 6007–6030, https://doi.org/10.5194/hess-21-6007-2017, https://doi.org/10.5194/hess-21-6007-2017, 2017
Short summary
Short summary
We assess a new streamflow forecasting system in Australia. The system is designed to meet the need of water agencies for 12-month forecasts. The forecasts perform well in a wide range of rivers. Forecasts for shorter periods (up to 6 months) are generally informative. Forecasts sometimes did not perform well in a few very dry rivers. We test several techniques for improving streamflow forecasts in drylands, with mixed success.
Matthew B. Switanek, Peter A. Troch, Christopher L. Castro, Armin Leuprecht, Hsin-I Chang, Rajarshi Mukherjee, and Eleonora M. C. Demaria
Hydrol. Earth Syst. Sci., 21, 2649–2666, https://doi.org/10.5194/hess-21-2649-2017, https://doi.org/10.5194/hess-21-2649-2017, 2017
Short summary
Short summary
The commonly used bias correction method called quantile mapping assumes a constant function of error correction values between modeled and observed distributions. Our article finds that this function cannot be assumed to be constant. We propose a new bias correction method, called scaled distribution mapping, that does not rely on this assumption. Furthermore, the proposed method more explicitly accounts for the frequency of rain days and the likelihood of individual events.
Tesfay G. Gebremicael, Yasir A. Mohamed, Pieter v. Zaag, and Eyasu Y. Hagos
Hydrol. Earth Syst. Sci., 21, 2127–2142, https://doi.org/10.5194/hess-21-2127-2017, https://doi.org/10.5194/hess-21-2127-2017, 2017
Short summary
Short summary
This study was conducted to understand the spatio-temporal variations of streamflow in the Tekezē basin. Results showed rainfall over the basin did not significantly change. However, streamflow experienced high variabilities at seasonal and annual scales. Further studies are needed to verify hydrological changes by identifying the physical mechanisms behind those changes. Findings are useful as prerequisite for studying the effects of catchment management dynamics on the hydrological processes.
Louise Crochemore, Maria-Helena Ramos, Florian Pappenberger, and Charles Perrin
Hydrol. Earth Syst. Sci., 21, 1573–1591, https://doi.org/10.5194/hess-21-1573-2017, https://doi.org/10.5194/hess-21-1573-2017, 2017
Short summary
Short summary
The use of general circulation model outputs for streamflow forecasting has developed in the last decade. In parallel, traditional streamflow forecasting is commonly based on historical data. This study investigates the impact of conditioning historical data based on circulation model precipitation forecasts on seasonal streamflow forecast quality. Results highlighted a trade-off between the sharpness and reliability of forecasts.
Louise Crochemore, Maria-Helena Ramos, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3601–3618, https://doi.org/10.5194/hess-20-3601-2016, https://doi.org/10.5194/hess-20-3601-2016, 2016
Short summary
Short summary
This study investigates the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. Eight variants of bias correction approaches based on the linear scaling and the distribution mapping methods are applied to the precipitation forecasts prior to generating the streamflow forecasts. One of the main results of the study is that distribution mapping of daily values is successful in improving forecast reliability.
P. Froidevaux, J. Schwanbeck, R. Weingartner, C. Chevalier, and O. Martius
Hydrol. Earth Syst. Sci., 19, 3903–3924, https://doi.org/10.5194/hess-19-3903-2015, https://doi.org/10.5194/hess-19-3903-2015, 2015
Short summary
Short summary
We investigate precipitation characteristics prior to 4000 annual floods in Switzerland since 1961. The floods were preceded by heavy precipitation, but in most catchments extreme precipitation occurred only during the last 3 days prior to the flood events. Precipitation sums for earlier time periods (like e.g. 4-14 days prior to floods) were mostly average and do not correlate with the return period of the floods.
G. H. Fang, J. Yang, Y. N. Chen, and C. Zammit
Hydrol. Earth Syst. Sci., 19, 2547–2559, https://doi.org/10.5194/hess-19-2547-2015, https://doi.org/10.5194/hess-19-2547-2015, 2015
Short summary
Short summary
This study compares the effects of five precipitation and three temperature correction methods on precipitation, temperature, and streamflow through loosely coupling RCM (RegCM) and a distributed hydrological model (SWAT) in terms of frequency-based indices and time-series-based indices. The methodology and results can be used for other regions and other RCM and hydrologic models, and for impact studies of climate change on water resources at a regional scale.
M. S. Siam and E. A. B. Eltahir
Hydrol. Earth Syst. Sci., 19, 1181–1192, https://doi.org/10.5194/hess-19-1181-2015, https://doi.org/10.5194/hess-19-1181-2015, 2015
Short summary
Short summary
This paper explains the different natural modes of interannual variability in the flow of the Nile River and also presents a new index based on the sea surface temperature (SST) over the southern Indian Ocean to forecast the flow of the Nile River. It also presents a new hybrid forecasting algorithm that can be used to predict the Nile flow based on indices of the SST in the eastern Pacific and southern Indian oceans.
D. Halwatura, A. M. Lechner, and S. Arnold
Hydrol. Earth Syst. Sci., 19, 1069–1091, https://doi.org/10.5194/hess-19-1069-2015, https://doi.org/10.5194/hess-19-1069-2015, 2015
G. Panthou, T. Vischel, T. Lebel, G. Quantin, and G. Molinié
Hydrol. Earth Syst. Sci., 18, 5093–5107, https://doi.org/10.5194/hess-18-5093-2014, https://doi.org/10.5194/hess-18-5093-2014, 2014
D. Masson and C. Frei
Hydrol. Earth Syst. Sci., 18, 4543–4563, https://doi.org/10.5194/hess-18-4543-2014, https://doi.org/10.5194/hess-18-4543-2014, 2014
Short summary
Short summary
The question of how to utilize information from the physiography/topography in the spatial interpolation of rainfall is a long-standing discussion in the literature. In this study we test ideas that go beyond the approach in popular interpolation schemes today. The key message of our study is that these ideas can at best marginally improve interpolation accuracy, even in a region where a clear benefit would intuitively be expected.
A. Casanueva, C. Rodríguez-Puebla, M. D. Frías, and N. González-Reviriego
Hydrol. Earth Syst. Sci., 18, 709–725, https://doi.org/10.5194/hess-18-709-2014, https://doi.org/10.5194/hess-18-709-2014, 2014
D. H. Yan, D. Wu, R. Huang, L. N. Wang, and G. Y. Yang
Hydrol. Earth Syst. Sci., 17, 2859–2871, https://doi.org/10.5194/hess-17-2859-2013, https://doi.org/10.5194/hess-17-2859-2013, 2013
F. Yusof, I. L. Kane, and Z. Yusop
Hydrol. Earth Syst. Sci., 17, 1311–1318, https://doi.org/10.5194/hess-17-1311-2013, https://doi.org/10.5194/hess-17-1311-2013, 2013
J. H. Lee, J. Timmermans, Z. Su, and M. Mancini
Hydrol. Earth Syst. Sci., 16, 4291–4302, https://doi.org/10.5194/hess-16-4291-2012, https://doi.org/10.5194/hess-16-4291-2012, 2012
L. Gudmundsson, J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen
Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, https://doi.org/10.5194/hess-16-3383-2012, 2012
T. Bosshard, S. Kotlarski, T. Ewen, and C. Schär
Hydrol. Earth Syst. Sci., 15, 2777–2788, https://doi.org/10.5194/hess-15-2777-2011, https://doi.org/10.5194/hess-15-2777-2011, 2011
S. Nie, J. Zhu, and Y. Luo
Hydrol. Earth Syst. Sci., 15, 2437–2457, https://doi.org/10.5194/hess-15-2437-2011, https://doi.org/10.5194/hess-15-2437-2011, 2011
G. Ibarra-Berastegi, J. Saénz, A. Ezcurra, A. Elías, J. Diaz Argandoña, and I. Errasti
Hydrol. Earth Syst. Sci., 15, 1895–1907, https://doi.org/10.5194/hess-15-1895-2011, https://doi.org/10.5194/hess-15-1895-2011, 2011
R. Schiemann, R. Erdin, M. Willi, C. Frei, M. Berenguer, and D. Sempere-Torres
Hydrol. Earth Syst. Sci., 15, 1515–1536, https://doi.org/10.5194/hess-15-1515-2011, https://doi.org/10.5194/hess-15-1515-2011, 2011
A. Lü, S. Jia, W. Zhu, H. Yan, S. Duan, and Z. Yao
Hydrol. Earth Syst. Sci., 15, 1273–1281, https://doi.org/10.5194/hess-15-1273-2011, https://doi.org/10.5194/hess-15-1273-2011, 2011
G. Wang, A. J. Dolman, and A. Alessandri
Hydrol. Earth Syst. Sci., 15, 57–64, https://doi.org/10.5194/hess-15-57-2011, https://doi.org/10.5194/hess-15-57-2011, 2011
Cited articles
Abrahart, R. J. and See, L.: Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments, Hydrol. Earth Syst. Sci., 6, 655–670, https://doi.org/10.5194/hess-6-655-2002, 2002.
Addor, N., Jaun, S., Fundel, F., and Zappa, M.: An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios, Hydrol. Earth Syst. Sci., 15, 2327–2347, https://doi.org/10.5194/hess-15-2327-2011, 2011.
Ajami, N. K., Duan, Q., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, https://doi.org/10.1029/2005WR004745, 2007.
Baran, S.: Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components, Comput. Stat. Data An., 75, 227–238, https://doi.org/10.1016/j.csda.2014.02.013, 2014.
Baran, S. and Lerch, S.: Log-normal distribution based Ensemble Model Output Statistics models for probabilistic wind-speed forecasting, Q. J. Roy. Meteor. Soc., 141, 2289–2299, https://doi.org/10.1002/qj.2521, 2015.
Bates, J. and Granger, C.: The combination of forecasts, Operations Research Quarterly, 20, 451–468, 1969.
Bogner, K. and Pappenberger, F.: Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system, Water Resour. Res., 47, W07524, https://doi.org/10.1029/2010WR009137, 2011.
Bogner, K., Liechti, K., and Zappa, M.: Post-Processing of Stream Flows in Switzerland with an Emphasis on Low Flows and Floods, Water, 8, 115, https://doi.org/10.3390/w8040115, 2016.
Bouallègue, Z. B., Pinson, P., and Friederichs, P.: Quantile forecast discrimination ability and value, Q. J. Roy. Meteor. Soc., 141, 3415–3424, https://doi.org/10.1002/qj.2624, 2015.
Bowden, G. J., Maier, H. R., and Dandy, G. C.: Real-time deployment of artificial neural network forecasting models: Understanding the range of applicability, Water Resour. Res., 48, w10549, https://doi.org/10.1029/2012WR011984, 2012.
Cannon, A. J.: Quantile regression neural networks: Implementation in R and application to precipitation downscaling, Comput. Geosci., 37, 1277–1284, https://doi.org/10.1016/j.cageo.2010.07.005, 2011.
Chernozhukov, V., Fernández-Val, I., and Galichon, A.: Quantile and Probability Curves Without Crossing, Econometrica, 78, 1093–1125, https://doi.org/10.3982/ECTA7880, 2010.
Dawid, A.: Statistical theory: The prequential approach, J. Roy. Statist. Soc. A, 147, 278–292, 1984.
Diks, C. G. H. and Vrugt, J. A.: Comparison of point forecast accuracy of model averaging methods in hydrologic applications, Stoch. Env. Res. Risk A., 24, 809–820, https://doi.org/10.1007/s00477-010-0378-z, 2010.
Dogulu, N., López López, P., Solomatine, D. P., Weerts, A. H., and Shrestha, D. L.: Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments, Hydrol. Earth Syst. Sci., 19, 3181–3201, https://doi.org/10.5194/hess-19-3181-2015, 2015.
Fraley, C., Raftery, A., and Gneiting, T.: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging, Mon. Weather Rev., 138, 190–202, 2010.
Friederichs, P. and Hense, A.: Statistical Downscaling of Extreme Precipitation Events Using Censored Quantile Regression, Mon. Weather Rev., 135, 2365–2378, https://doi.org/10.1175/MWR3403.1, 2007.
Glahn, H. and Lowry, D.: The use of model output statistics (MOS) in objective weather forecasting, J. Appl. Meteorol., 11, 1203–1211, 1972.
Gneiting, T. and Ranjan, R.: Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules, J. Bus. Econ. Stat., 29, 411–422, 2011.
Gneiting, T. and Ranjan, R.: Combining predictive distributions, Electron. J. Statist., 7, 1747–1782, https://doi.org/10.1214/13-EJS823, 2013.
Gneiting, T., Raftery, A., Westveld III, A., and Goldman, T.: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Mon. Weather Rev., 133, 1098–1118, 2005.
Gneiting, T., Balabdaoui, F., and Raftery, A.: Probabilistic forecasts, calibration and sharpness, J. Roy. Stat. Soc. B, 69, 243–268, 2007.
Hemri, S., Fundel, F., and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49, 6744–6755, https://doi.org/10.1002/wrcr.20542, 2013.
Hemri, S., Scheuerer, M., Pappenberger, F., Bogner, K., and Haiden, T.: Trends in the predictive performance of raw ensemble weather forecasts, Geophys. Res. Lett., 41, 9197–9205, https://doi.org/10.1002/2014GL062472, 2014.
Koenker, R.: Quantile Regression, Econometric Society Monographs, Cambridge University Press, New York, 2005.
Koenker, R. and Machado, J. A. F.: Goodness of Fit and Related Inference Processes for Quantile Regression, J. Am. Stat. Assoc., 94, 1296–1310, https://doi.org/10.1080/01621459.1999.10473882, 1999.
Laio, F. and Tamea, S.: Verification tools for probabilistic forecasts of continuous hydrological variables, Hydrol. Earth Syst. Sci., 11, 1267–1277, https://doi.org/10.5194/hess-11-1267-2007, 2007.
Lichtendahl, K. C. J., Grushka-Cockayne, Y., and Winkler, R. L.: Is It Better to Average Probabilities or Quantiles?, Manage. Sci., 59, 1594–1611, https://doi.org/10.1287/mnsc.1120.1667, 2013.
Liechti, K., Oplatka, M., Eisenhut, N., and Zappa, M.: Early Flood Warning for the City of Zurich: Evaluation of real-time Operations since 2010, in: 13th Congress Interpraevent 2016, Living with natural risks, 2016.
López López, P., Verkade, J. S., Weerts, A. H., and Solomatine, D. P.: Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the upper Severn River: a comparison, Hydrol. Earth Syst. Sci., 18, 3411–3428, https://doi.org/10.5194/hess-18-3411-2014, 2014.
Min, C.-K. and Zellner, A.: Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates, J. Econ., 56, 89–118, https://doi.org/10.1016/0304-4076(93)90102-B, 1993.
Montani, A., Cesari, D., Marsigli, C., and Paccagnella, T.: Seven years of activity in the field of mesoscale ensemble forecasting by the COSMO-LEPS system: main achievements and open challenges, Tellus A, 63, 605–624, 2011.
Quiñonero Candela, J., Rasmussen, C., Sinz, F., Bousquet, O., and Schölkopf, B.: Evaluating Predictive Uncertainty Challenge, in: Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, edited by: Quiñonero Candela, J., Dagan, I., Magnini, B., and d'Alché Buc, F., vol. 3944 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1–27, https://doi.org/10.1007/11736790_1, 2006.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 30 September 2017), 2016.
Raftery, A., Gneiting, T., Balabdaoui, F., and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133, 1155–1174, https://doi.org/10.1175/MWR2906.1, 2005.
Raftery, A. E., Madigan, D., and Hoeting, J. A.: Bayesian Model Averaging for Linear Regression Models, J. Am. Stat. Assoc., 92, 179–191, https://doi.org/10.1080/01621459.1997.10473615, 1997.
Ranjan, R. and Gneiting, T.: Combining probability forecasts, J. Roy. Stat. Soc. B Met., 72, 71–91, https://doi.org/10.1111/j.1467-9868.2009.00726.x, 2010.
Ronco, P., Bullo, M., Torresan, S., Critto, A., Olschewski, R., Zappa, M., and Marcomini, A.: KULTURisk regional risk assessment methodology for water-related natural hazards – Part 2: Application to the Zurich case study, Hydrol. Earth Syst. Sci., 19, 1561–1576, https://doi.org/10.5194/hess-19-1561-2015, 2015.
Schepen, A. and Wang, Q. J.: Model averaging methods to merge operational statistical and dynamic seasonal streamflow forecasts in Australia, Water Resour. Res., 51, 1797–1812, https://doi.org/10.1002/2014WR016163, 2015.
Shamseldin, A., O'Connor, K., and Liang, G.: Methods for combining the outputs of different rainfall–runoff models, J. Hydrol., 197, 203–229, 1997.
Taylor, J. W.: A quantile regression neural network approach to estimating the conditional density of multiperiod returns, J. Forecasting, 19, 299–311, 2000.
Thompson, P. D.: How to Improve Accuracy by Combining Independent Forecasts, Mon. Weather Rev., 105, 228–229, https://doi.org/10.1175/1520-0493(1977)105<0228:HTIABC>2.0.CO;2, 1977.
Todini, E.: A model conditional processor to assess predictive uncertainty in flood forecasting, International Journal of River Basin Management, 6, 123–137, 2008.
Van der Waerden, B. L.: Order tests for two-sample problem and their power I, Indagat. Math., 14, 453–458, 1952.
Van der Waerden, B. L.: Order tests for two-sample problem and their power II, Indagat. Math., 15, 303–310, 1953a.
Van der Waerden, B. L.: Order tests for two-sample problem and their power III, Indagat. Math., 15, 311–316, 1953b.
Vrugt, J. A. and Robinson, B. A.: Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging, Water Resour. Res., 43, W01411, https://doi.org/10.1029/2005WR004838, 2007.
Wallis, K. F.: Combining forecasts – forty years later, Applied Financial Economics, 21, 33–41, 2011.
Wang, Q. J., Schepen, A., and Robertson, D. E.: Merging Seasonal Rainfall Forecasts from Multiple Statistical Models through Bayesian Model Averaging, J. Climate, 25, 5524–5537, https://doi.org/10.1175/JCLI-D-11-00386.1, 2012.
Weerts, A. H., Winsemius, H. C., and Verkade, J. S.: Estimation of predictive hydrological uncertainty using quantile regression: examples from the National Flood Forecasting System (England and Wales), Hydrol. Earth Syst. Sci., 15, 255–265, https://doi.org/10.5194/hess-15-255-2011, 2011.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences: An Introduction, Academic Press, New York, 1995.
Williams, R. M., Ferro, C. A. T., and Kwasniok, F.: A comparison of ensemble post-processing methods for extreme events, Q. J. Roy. Meteor. Soc., 140, 1112–1120, https://doi.org/10.1002/qj.2198, 2014.
Zhao, T., Bennett, J. C., Wang, Q. J., Schepen, A., Wood, A. W., Robertson, D. E., and Ramos, M.-H.: How Suitable is Quantile Mapping For Postprocessing GCM Precipitation Forecasts?, J. Climate, 30, 3185–3196, https://doi.org/10.1175/JCLI-D-16-0652.1, 2017.
Short summary
The enhanced availability of many different weather prediction systems nowadays makes it very difficult for flood and water resource managers to choose the most reliable and accurate forecast. In order to circumvent this problem of choice, different approaches for combining this information have been applied at the Sihl River (CH) and the results have been verified. The outcome of this study highlights the importance of forecast combination in order to improve the quality of forecast systems.
The enhanced availability of many different weather prediction systems nowadays makes it very...