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Abstract. The enhanced availability of many different
hydro-meteorological modelling and forecasting systems
raises the issue of how to optimally combine this great deal
of information. Especially the usage of deterministic and
probabilistic forecasts with sometimes widely divergent pre-
dicted future streamflow values makes it even more com-
plicated for decision makers to sift out the relevant infor-
mation. In this study multiple streamflow forecast informa-
tion will be aggregated based on several different predictive
distributions, and quantile forecasts. For this combination
the Bayesian model averaging (BMA) approach, the non-
homogeneous Gaussian regression (NGR), also known as the
ensemble model output statistic (EMOS) techniques, and a
novel method called Beta-transformed linear pooling (BLP)
will be applied. By the help of the quantile score (QS) and
the continuous ranked probability score (CRPS), the combi-
nation results for the Sihl River in Switzerland with about
5 years of forecast data will be compared and the differ-
ences between the raw and optimally combined forecasts will
be highlighted. The results demonstrate the importance of
applying proper forecast combination methods for decision
makers in the field of flood and water resource management.

1 Introduction

The combination, or aggregation, of differing probability dis-
tributions into a single one could result in beneficial effects,
since the differences between various forecast systems pro-
vide a better understanding of the uncertainty about the target
quantities, and the aggregates may reflect more accurately
the information. However, the biggest advantage of aggre-

gation is that the forecaster is not forced to decide a priori
which forecast system is the most reliable at the actual point
of issuing a forecast, because the combination method will
be optimized at each forecast run by taking into consider-
ation the quality of the forecast from previous time steps.
Thus, the data themselves will automatically lead to the op-
timal decision incorporating all available information about
the different deficiencies and strengths of the individual fore-
cast systems.

In econometrics and related disciplines, the combination
of forecasts has a long tradition starting with Bates and
Granger (1969) suggesting the use of empirical weights de-
rived from “out of sample” forecast variances. An overview
of the last 40 years of forecast combination in the field of
economics can be found in Wallis (2011). Thompson (1977)
was one of the first who outlined the advantages of forecast
combinations in meteorology and Shamseldin et al. (1997)
showed different methods of combining the output of dif-
ferent hydrological models. In Abrahart and See (2002) dif-
ferent combination methods for hydrological forecast mod-
els are compared. Diks and Vrugt (2010) compare differ-
ent model averaging approaches, showing that a simple re-
gression method could result in improvements comparable
to more sophisticated methods.

In general the challenge of model combination is that,
apart from the simple model averaging methodologies, dif-
ferent weights need to be assigned according to the quality of
the forecast of the preceding days and periods. A frequently
used method for model averaging and forecast combination
is the method of Bayesian model averaging (BMA) intro-
duced by Min and Zellner (1993) and Raftery et al. (1997),
where the weights are based on posterior model probabilities
within a Bayesian framework. The BMA method has been
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applied in the field of ensemble forecast calibration (Raftery
et al., 2005; Fraley et al., 2010) and for flood forecasting
purposes, e.g. in Ajami et al. (2007), Vrugt and Robinson
(2007), Todini (2008), and Hemri et al. (2013).

In Gneiting et al. (2005) and Gneiting et al. (2007) the term
“calibration” is used to describe the statistical consistency
between the distributional forecasts and the observations and
is a joint property of the predictions and the events that ma-
terialize. A state of the art calibration and bias correction
method is non-homogeneous Gaussian regression (NGR),
also known as the ensemble model output statistic (EMOS)
technique of Gneiting et al. (2005). It fits a single parametric
predictive probability density function (pdf) using summary
statistics from the (multi-model) ensemble and corrects si-
multaneously for biases and dispersion errors. Also, NGR
has been applied many times successfully for calibrating and
combining hydro-meteorological ensemble forecasts (see for
example Hemri et al., 2014).

The Beta-transformed linear pooling (BLP) approach,
which has been developed recently by Ranjan and Gneiting
(2010) and Gneiting and Ranjan (2013) for combining pre-
dictive distributions, will be tested and compared with the
NGR and the BMA in this study. To the author’s knowledge
the BLP and the associated estimation of weights, which as-
sign relative importance to the individual predictive distribu-
tions, have not been applied to hydrological forecasts so far.

Before the combination methods are applied, the errors of
the hydrological model are corrected in order to minimize
the difference between the last available observation and the
predictions at the time of initialization of the forecast. This
process of error correction is later on called post-processing,
since it starts after completing the hydrological simulations
and predictions given meteorological observations or fore-
casts. Depending on the post-processing method, quantiles
or pdfs for future streamflows will be derived for each single
forecast time step. Whereas quantile regression (QR) meth-
ods (Koenker, 2005) and modifications of them will lead
to predictions of quantiles, a predictive pdf can be derived
for example by the recently developed waveVARX method
(Bogner and Pappenberger, 2011) directly. For more details
of these post-processing methods, the reader is referred to
Bogner et al. (2016), whereas the objective of this paper will
be the analysis of combination methods of forecasts. In the
next section the three combination methods and the applied
verification measures will be described. After the presenta-
tion of the data and the results, the outcome of the compari-
son will be discussed and summarized in the conclusions.

2 Methods

Three different combination methods have been applied to
the flood forecasting system for the Sihl River at station
Zurich (Switzerland), where two meteorological forecasts,
the 16-member COSMO-LEPS (Montani et al., 2011) and

the deterministic C7 system (produced at MeteoSwiss with
≈ 7 km resolution) are implemented (a detailed description
can be found in Addor et al., 2011, Ronco et al., 2015, and
Liechti et al., 2016).

In a first step the hydrological modelling errors of all these
forecasts will be minimized, using a QR method in com-
bination with neural networks (QRNN, Taylor, 2000; Can-
non, 2011). This will result in direct estimates of the in-
verse cumulative density function (i.e. the quantile function),
which in turn allows the derivation of the predictive uncer-
tainty (see for example Weerts et al., 2011, López López
et al., 2014, and Dogulu et al., 2015, where the applica-
tion of the QR in order to estimate predictive uncertain-
ties (PUs) is outlined). If the number of estimated quantiles
within the domain {0< τ < 1} is sufficiently large, the re-
sulting distribution could be considered to be continuous. In
this study the number of quantiles is set to nine with probabil-
ity levels τ = 0.01,0.1,0.2,0.25,0.5,0.75,0.8,0.9,0.99. In
Quiñonero Candela et al. (2006) the cdf or pdf is constructed
by combining step interpolation of probability densities for
specified τ -quantiles with exponential lower and upper tails,
which will be called the empirical method (EMP). Alterna-
tively the pdf could be constructed by monotone re-arranging
of the τ -quantiles and estimating a log-normal distribution
(LN) to these quantiles for each lead time1t . The advantage
of the quantile re-arranging and the distribution fitting is 2-
fold and efficiently prevents known problems occurring with
QR: firstly it eliminates the problem of crossing of differ-
ent quantiles (i.e. the unrealistic but possible outcome of the
non-linear optimization problem yielding lower quantiles for
higher streamflow values – Chernozhukov et al., 2010 – e.g.
the value of the 0.90 quantile is higher than the value of the
0.95 quantile), and secondly it permits the extrapolation to
extremes not included in the training sample (Bowden et al.,
2012).

This QRNN method will be applied to each ensemble
member of the COSMO-LEPS forecasts, resulting in 16 fore-
casts of quantiles, and to the C7 forecasts. Lichtendahl et al.
(2013) have examined averaging quantiles of continuous dis-
tributions given by multiple information sources rather than
averaging probabilities. Both approaches of probability and
quantile averaging have been applied in this paper for aver-
aging the post-processed ensemble prediction system (EPS)
based streamflow forecasts in order to get one predictive
pdf or quantile forecast. Before applying the probability av-
eraging approach, a pdf has been constructed by the LN
method, i.e. a log-normal distribution has been fitted to the
re-arranged τ -quantiles.

Thus, in total there are five different forecasts available
after post-processing, two based on the application of the
QRNN method for the COSMO-LEPS with probability av-
eraging (p.aver.) or quantile averaging (q.aver.), two post-
processed C7 forecasts based on QRNN with the EMP and
the LN approach, and one forecast based on the waveVARX
method. Additionally the raw COSMO-LEPS forecast will
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be included in the following combination procedures as well
(see Fig. 1).

Three different methods will be tested for optimally com-
bining these six forecast models (M1, . . ., M6), which al-
low us to assign different weights to the raw and five post-
processed forecasts. For the application of the first two meth-
ods, BMA and NGR, the streamflow values have been trans-
formed to the normal space by the help of the normal quantile
transformation (Van der Waerden, 1952, 1953a, b).

2.1 Bayesian model averaging (BMA)

If the combination is calculated within a Bayesian framework
by using weights corresponding to the posterior model prob-
abilities, it is usually referred to as BMA and follows from
direct application of Bayes’ theorem as explained in e.g. Min
and Zellner (1993) and Raftery et al. (1997).

In Raftery et al. (2005) the statistical BMA model is ex-
tended to dynamical forecast models, where each forecast
and/or ensemble member is represented by a probabilistic
distribution for which a weight is assigned based on the past
performance of each individual forecast. These weights are
used to combine all distributions into one single mixture dis-
tribution. Therefore the BMA predictive model of the quan-
tity of interest y is given by

p(y|k1, . . .,kM)=

M∑
m=1

hmgm(y|km), (1)

where hm is the posterior probability (i.e. weight) of fore-
cast km, the best forecast derived from its performance in
the training period, and the conditional pdf of y on km,
gm(y|km), given that km is the best forecast in the ensemble
with m= 1, . . .,M members, or models. The transformation
of the streamflow values to the normal space beforehand al-
lows the application of the BMA method based on mixtures
of univariate normal distributions. In the work of Wang et al.
(2012) and Schepen and Wang (2015) variants of the BMA
method have been applied, which allow the direct usage of
the cdfs for estimating the weighting parameters. However,
in this study these BMA approaches have not been imple-
mented, and the estimated medians (τ = 0.5) from the five
post-processing methods and from the raw COSMO-LEPS
are taken as input only in order to allow better comparison
with the following NGR approach.

2.2 Non-homogeneous Gaussian regression (NGR)

Another possibility to address underdispersion and forecast
bias is the use of the NGR method, also known as EMOS,
and is based on multiple linear regression for linear vari-
ables, such as temperature or streamflows, and logistic re-
gression for binary variables, such as precipitation occur-
rence or freezing. More information about the MOS tech-
nique can be found for example in Glahn and Lowry (1972)
and Wilks (1995). Its extension for ensembles is explained

in Gneiting et al. (2005) and a brief summary of this method
is given hereafter. Let y denote again the variable of inter-
est (e.g. streamflow) and let k1, . . .,kM be the corresponding
forecast of theM ensemble members or models. IfN (µ,σ 2)

denotes a Gaussian density with mean µ and variance σ 2, the
NGR predictive distribution is given by

y|k1, . . .,kM ∼N (a0+ a1k1+ ·· ·+ aMkM ,b0+ b1s
2),

where s2
=

1
M

M∑
m=1

(
km−

1
M

M∑
m=1

km

)2

. (2)

Thus the predictive mean is equal to the regression es-
timates with coefficients a0, . . .,am,b0, and b1 and forms
a bias-corrected weighted average of the different forecasts
(ensemble members), whereas the predictive variance de-
pends linearly on the variance of the forecast models (en-
semble members). Although modifications for the NGR exist
for non-normal distributed variates (see for example Baran,
2014; Baran and Lerch, 2015), the streamflow values have
been transformed to the normal space for comparison rea-
sons and the medians (τ = 0.5) from the five post-processing
methods and from the raw COSMO-LEPS are taken as input
as in the BMA method.

2.3 Beta-transformed linear pool (BLP)

In Ranjan and Gneiting (2010) it has been stated that any
non-trivially weighted average of distinct probability fore-
casts will be uncalibrated and lack sharpness, even when the
individual forecasts have been calibrated. Hence they sug-
gested a composite of the traditional linear pool with a beta
transform. The aggregation method introduced by Ranjan
and Gneiting (2010) and Gneiting and Ranjan (2013) con-
siders the BLP for a set of predictive cdfs F1, . . .,FM as

F(y)= Bα,β

(
M∑
m=1

ωmFm (y)

)
(3)

for y ∈ R, where Bα,β denotes the cdf of the standard Beta
distribution with parameters α > 0 and β > 0 andω1, . . .,ωM
are non-negative weights that sum to 1. The BLP density
forecast for the component densities fi, . . .,fM then is

f (y)=

(
M∑
m=1

ωmfm (y)

)
bα,β

(
M∑
m=1

ωmFm (y)

)
, (4)

with parameters α > 0 and β > 0 of the Beta density function
bα,β . For α = β = 1 the BLP corresponds to the traditional
linear opinion pool.

Thus Bα,β can be interpreted as a parametric calibration
function for combining F1, . . .,FM with mixture weights
ω ∈1M , which assign relative importance to the individ-
ual predictive distributions. The parameters α > 0 and β > 0
and the weights ω1, . . .,ωM are estimated with the maximum
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Figure 1. Set of six different forecast models available for combination, five post-processed plus one raw forecast. For the quantile averag-
ing (M1) and the probability averaging (M2) method, an example of averaging two ensemble members is indicated.

likelihood method. The log-likelihood function for the BLP
model (Eq. 4) is

`(ω1, . . .,ωM ;α,β)

=

J∑
j=1

log(f (yj ))

=

J∑
j=1

log

(
M∑
m=1

ωmfmj
(
yj
))

+

J∑
j=1

log

(
bα,β

(
M∑
m=1

ωmFmj
(
yj
)))

(5)

=

J∑
j=1

log

(
M∑
m=1

ωmfmj
(
yj
))

+

J∑
j=1

(
(α− 1) log

(
M∑
m=1

ωmFmj
(
yj
))

+(β − 1) log

(
1−

M∑
m=1

ωmFmj
(
yj
)))
+ J logB(α,β)

where B is the classical Beta function.
This BLP approach has been applied now to combine the

different forecast systems. The quantiles resulting from the
QRNN method (models M1, M4, and M5) forecasts have

been converted to pdfs by applying the LN method (by fit-
ting a log-normal distribution to the re-arranged τ quantiles).

2.4 Verification

Although probability and quantile forecasts are both proba-
bilistic products, the former is expressed in terms of a prob-
ability (e.g. that a certain threshold will be exceeded) and
the latter is given by a quantile for a particular probability
level of interest (Bouallègue et al., 2015). Since the outputs
of the QRNN model are quantiles, it is reasonable to evalu-
ate the performance with a skill score which has been devel-
oped for predictive quantiles (Koenker and Machado, 1999;
Friederichs and Hense, 2007), known as the quantile score
(QS). It is based on an asymmetric piecewise linear func-
tion, the so-called check function, ρτ

(
yi − qτ,i

)
, which is a

function of the probability level τ (0< τ < 1) and the error
between the observation yi and the quantile forecast qτ,i for
i = 1, . . .,N , whereN is the sample size. The check function
is defined as

ρτ
(
yi − qτ,i

)
=

{
τ
(
yi − qτ,i

)
∀yi ≥ qτ,i

(τ − 1)
(
yi − qτ,i

)
∀yi < qτ,i

(6)

and the QS results as the mean of the check function with
penalties 1− τ and τ for under- and over-forecasting (see

Hydrol. Earth Syst. Sci., 21, 5493–5502, 2017 www.hydrol-earth-syst-sci.net/21/5493/2017/



K. Bogner et al.: Forecast combination 5497

Bouallègue et al., 2015):

QS=
1− τ
N

∑
i:yi<qτ,i

(qτ,i − yi)+
τ

N

∑
i:yi≥qτ,i

(yi − qτ,i). (7)

The CRPS compares the forecast probability distribution
with the observation and both are represented as cdfs. If F is
the predictive cdf and y is the verifying observation, Gneit-
ing and Ranjan (2011) showed that the CRPS can be defined
equivalently as a standard form,

CRPS(F,y)=

∞∫
−∞

(F (t)− I {y ≤ t})2dt,and as (8)

= 2

1∫
0

(
I
{
y < F−1(τ )

}
− τ

)(
F−1(τ )− y

)
dτ. (9)

Thus, in the standard form (Eq. 8) an ensemble of pre-
dictions can be converted into a piecewise constant cdf with
jumps at the different models (ensemble members), and I {.}
is a Heaviside step function, with a single step from 0 to
1 at the observed value of the variable. The equivalence
of Eqs. (8)–(9) was noted by Laio and Tamea (2007). For
the quantile forecast qτ = F−1(τ ), the integrand in Eq. (9)
equals the quantile score, i.e. the mean of the check function
(Eq. 6). That means the CRPS corresponds to the integral of
the QS over all thresholds, or likewise the integral of the QS
over all probability levels (Laio and Tamea, 2007 and Gneit-
ing and Ranjan, 2011). Hence, the CRPS averages over the
complete range of forecast thresholds and probability levels,
whereas the QS looks at specific τ -quantiles; thus, it is more
efficient in revealing deficiencies in different parts of the dis-
tributions, especially with respect to the tails of the distri-
bution. Both verification measures are negatively oriented,
meaning the smaller the better.

3 Results

COSMO-LEPS and C7 forecasts are available from
24 February 2010 to 27 April 2016 once a day with hourly
time resolution, which have been post-processed in order to
derive predictive distributions and quantile forecasts. To cal-
ibrate and validate the post-processing parameters (QRNN
and waveVARX), the data sets of available hourly obser-
vations and corresponding simulations have been split into
two halves (calibration period: 2010–2012; validation pe-
riod: 2013–2016). The results of the validation, which are
not shown due to lack of space, highlight the improvements
of the QRNN method (similar to the results shown in Bogner
et al., 2016).

The weighting parameters of the combination methods are
estimated by applying a moving window with a size of 7 days
(168 h) for optimization. Different window sizes have been

Figure 2. Hourly weights of the BMA (a), NGR (b), and
BLP (c) methods estimated for a lead time of 48 h. The six forecasts
are the QRNN method for the COSMO-LEPS with quantile averag-
ing (QRNN-CL-q.) – M1, probability averaging (QRNN-CL-p.) –
M2, the waveVARX(-CL) method – M3, the raw COSMO-LEPS
(CL) forecast – M4, the two post-processed C7 forecasts based on
QRNN with the EMP – M5, and the LN approach – M6.

tested as well, but 7 days was chosen finally as a trade-off
between computing time and efficiency. In Fig. 2 an example
of the temporal evolution of the hourly weights for a lead
time of 48 h for the three combination methods is shown.

Before the forecast skill of the three combination methods
are compared, the statistical consistency between the pre-
dictive cdf and the observations are analysed with the help
of the probability integral transform (PIT) as proposed by
Dawid (1984) (see Fig. 3). In the case of well-calibrated fore-
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Figure 3. Probability integral transform (PIT) of the raw and three combined forecasts at a lead time of 48 h.

casts, the sequence of PIT values will follow a uniform dis-
tribution U(0,1). U-shaped PIT histograms indicate under-
dispersed forecasts with too little spread on average, and in-
verse U-shaped histograms correspond to overdispersed fore-
casts (see for example Gneiting et al., 2007; Laio and Tamea,
2007).

The question now is whether there are significant differ-
ences between the three combination methods. Therefore the
QS has been applied at first to highlight possible differences
between the combination methods in more detail.

In Fig. 4 the results of the QS at four lead times for the raw
COSMO-LEPS (C-L, black line) and for the three combina-
tion methods BLP (red line), NGR (green line), and BMA
(blue line) are shown and compared to the QS results of the
raw C-L (black circles). Additionally, a simple quantile map-
ping (QM) is applied (cyan diamonds) to the raw C-L fore-
casts in order to evaluate the positive effect of using more
complex methods. Thereby the cdf of the raw forecast is
matched to the cdf of the observations. As mentioned in Zhao
et al. (2017), QM is highly effective for bias correction, but
ensemble spread reliability problems cannot be solved prop-
erly.

In Fig. 5 the CRPS results of the six forecast models are
shown in comparison to the BLP in order to demonstrate

the motivation of aggregating these systems. As can be seen
clearly, the combined forecast outperforms each of the indi-
vidual forecasts in view of the CRPS.

The CRPS for the raw C-L, the QM approach and the three
combination methods is shown in Fig. 6.

4 Discussion

So far most of the studies comparing the results of the BMA
and the NGR approach have not found any preference (see
for example Williams et al., 2014). In this paper these two
methods are checked against the BLP, which has not been
used for hydrological purposes until now. In a first step the
weights derived for each individual, raw and post-processed,
forecast system are compared. The pattern of these optimized
weights in Fig. 2 shows rather vague similarities between the
three combination methods. The BLP and the NGR are in
general more spiky, with rapid changes between consecutive
hours. This could result from problems in convergence from
the optimization algorithm applied for estimating the param-
eters (“constrOptim” in R R Core Team, 2016).

In general the weights show some periodicity, which in-
dicates that some models are more appropriate to be used in
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Figure 4. Quantile score (QS) for various lead times and the three combination methods in comparison to the raw COMSO-LEPS and a
simple quantile mapping (QM) approach.

0 10 20 30 40 50 60 70

0.
5

1.
0

1.
5

2.
0

Sihl

Lead time [h]

C
R

P
S

M1
M2
M3
M4
M5
M6
BLP

Figure 5. CRPS of the six forecast models: COSMO-LEPS with
quantile averaging (QRNN-CL-q.) – M1, probability averaging
(QRNN-CL-p.) – M2, the waveVARX(-CL) method – M3, the raw
COSMO-LEPS (CL) forecast – M4, the two post-processed C7
forecasts based on QRNN with the EMP – M5, and the LN ap-
proach – M6. Additionally, the CRPS of the BLP combined forecast
is shown.
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Figure 6. CRPS of the raw and combined forecasts.

certain seasons and for certain flow conditions during a year.
However, the limited amount of data does not allow us to
draw clear conclusions.

The results of the PIT clearly indicate that all three combi-
nations result in well-calibrated forecasts with close to uni-
form histograms. In Fig. 3 the examples for the 48 h fore-
cast are given, highlighting the heavy underdispersiveness
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of the raw forecasts. The same behaviour is visible for al-
most all lead times; however, the raw COSMO-LEPS fore-
casts get less underdispersed with increasing lead time, since
the spread and the uncertainty in the ensemble increase.

The analysis of the QS (Fig. 4) shows slightly better re-
sults for the BLP, followed by the NGR and BMA. The raw
COSMO-LEPS (C-L) and the QM are much worse, espe-
cially for smaller lead times. It is interesting to see that the
QS of the raw C-L follows a straight line for smaller lead
times (6 and 12 h) in the same manner as one would expect
from deterministic forecasts, because of the underdispersive-
ness of the C-L at the beginning of the forecast horizon. The
slope of this line is an indicator of the size of the (positive)
bias. The QM at a lead time of 6 h is also a straight line, how-
ever, with an opposite but much smaller and negative slope
(bias) in comparison to the raw C-L. With increasing lead
times the QS of the raw C-L and the QM forecasts come
closer to the combined forecasts for probability levels be-
tween 0.1 and 0.5. This is most probably caused by the in-
creased spread of the ensemble. However, for a lead time of
24 and 48 h, the raw C-L forecasts still show the worst be-
haviour at higher flows, whereas the QM method performs at
a lead time of 48 h almost as well as the combination meth-
ods, apart from the forecasts around the median.

As already stated previously, the comparison of the CRPS
of the different post-processed methods and the aggregated
ones (e.g. BLP) clearly identifies the advantage of combina-
tion (Fig. 5). The CRPS, i.e. the integral of the QS, for the
different combination methods (Fig. 6) confirms the results
of the QS. In general the results of the BLP are slightly bet-
ter than the NGR and BMA results. It seems that for those
periods of lead times, where the BLP is not superior (e.g.
around 20 h), the optimization routines had problems on con-
vergence. However, further analysis will be necessary. The
comparison with the QM approach confirmed the results of
Zhao et al. (2017), since the forecast quality did not show
any improvements at the first lead times because of the un-
derdispersiveness of the raw C-L. Thus, the more complex
combination by far outperforms the QM method.

5 Conclusions

Combination is an essential tool for improving the forecast
quality. The different methods are all more or less equally
suited. Although the BLP showed slightly better results, the
straightforward application and the low computational costs
of the NGR make this method an equally good alternative,
at least for this case study. The parameter estimation of
the BMA and the BLP could get quite time-consuming and
sometimes results in suboptimal solutions, which could de-
grade the gain of applying combination methods.

Data availability. The COSMO-LEPS and C7 raw meteorological
forecasts are properties of MeteoSwiss and have been made avail-
able under license agreement between WSL and MeteoSwiss. The
processed streamflow simulations and forecasts as well as the mea-
sured discharge data can be made available upon request. All cal-
culations of the post-processing and the combination methods have
been implemented in the R statistical software (R Core Team, 2016)
using various packages like QRNN (Cannon, 2011) and ensem-
bleBMA (Raftery et al., 2005).
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