Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 21, issue 7
Hydrol. Earth Syst. Sci., 21, 3325–3352, 2017
https://doi.org/10.5194/hess-21-3325-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 21, 3325–3352, 2017
https://doi.org/10.5194/hess-21-3325-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Jul 2017

Research article | 05 Jul 2017

Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding

Christa Kelleher et al.

Related authors

CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020,https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Hydroinformatics education – The Water Informatics in Science and Engineering (WISE) Centre for Doctoral Training
Thorsten Wagener, Dragan Savic, David Butler, Reza Ahmadian, Tom Arnot, Jonathan Dawes, Slobodan Djordjevic, Roger Falconer, Raziyeh Farmani, Debbie Ford, Jan Hofman, Zoran Kapelan, Shunqi Pan, and Ross Woods
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-475,https://doi.org/10.5194/hess-2020-475, 2020
Preprint under review for HESS
Short summary
HESS Opinions: Improving the evaluation of groundwater representation in continental to global scale models
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378,https://doi.org/10.5194/hess-2020-378, 2020
Preprint under review for HESS
Including informal housing in slope stability analysis – an application to a data-scarce location in the humid tropics
Elisa Bozzolan, Elizabeth Holcombe, Francesca Pianosi, and Thorsten Wagener
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-207,https://doi.org/10.5194/nhess-2020-207, 2020
Revised manuscript accepted for NHESS
Short summary
Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain
Rosanna A. Lane, Gemma Coxon, Jim E. Freer, Thorsten Wagener, Penny J. Johnes, John P. Bloomfield, Sheila Greene, Christopher J. A. Macleod, and Sim M. Reaney
Hydrol. Earth Syst. Sci., 23, 4011–4032, https://doi.org/10.5194/hess-23-4011-2019,https://doi.org/10.5194/hess-23-4011-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
Coupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model
Aynom T. Teweldebrhan, Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020,https://doi.org/10.5194/hess-24-4641-2020, 2020
A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors – a case study for Kenya and Uganda
Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 24, 4463–4489, https://doi.org/10.5194/hess-24-4463-2020,https://doi.org/10.5194/hess-24-4463-2020, 2020
Short summary
Technical note: Uncertainty in multi-source partitioning using large tracer data sets
Alicia Correa, Diego Ochoa-Tocachi, and Christian Birkel
Hydrol. Earth Syst. Sci., 23, 5059–5068, https://doi.org/10.5194/hess-23-5059-2019,https://doi.org/10.5194/hess-23-5059-2019, 2019
Short summary
Assessment of climate change impact and difference on the river runoff in four basins in China under 1.5 and 2.0 °C global warming
Hongmei Xu, Lüliu Liu, Yong Wang, Sheng Wang, Ying Hao, Jingjin Ma, and Tong Jiang
Hydrol. Earth Syst. Sci., 23, 4219–4231, https://doi.org/10.5194/hess-23-4219-2019,https://doi.org/10.5194/hess-23-4219-2019, 2019
Short summary
A likelihood framework for deterministic hydrological models and the importance of non-stationary autocorrelation
Lorenz Ammann, Fabrizio Fenicia, and Peter Reichert
Hydrol. Earth Syst. Sci., 23, 2147–2172, https://doi.org/10.5194/hess-23-2147-2019,https://doi.org/10.5194/hess-23-2147-2019, 2019
Short summary

Cited articles

Ahl, R. S., Woods, S. W., and Zuuring, H. R.: Hydrologic calibration and validation of swat in a snow-dominated rocky mountain watershed, Montana, USA, J. Am. Water Resour. As., 44, 1411–1430, https://doi.org/10.1111/j.1752-1688.2008.00233.x, 2008.
Ajami, N. K., Gupta, H., Wagener, T., and Sorooshian, S.: Calibration of a semi-distributed hydrological model for streamflow estimation along a river system, J. Hydrol., 298, 112–135, https://doi.org/10.1016/j.jhydrol.2004.03.033, 2004.
Band, L., Peterson, D., Running, S., Coughlan, J., Lammers, R., Dungan, J., and Nemani, R.: Forest ecosystem processes at the watershed scale: Basis for distributed simulation, Ecol. Model., 56, 171–196, https://doi.org/10.1016/0304-3800(91)90199-B, 1991.
Band, L., Patterson, J., Nemani, R., and Running, S.: Forest ecosystem processes at the watershed scale: Incorporating hillslope hydrology Agric, For. Meteor., 63, 93–126, https://doi.org/10.1016/0168-1923(93)90024-C, 1993.
Bennett, N. D., Croke, B. F., Guariso, G., Guillaume, J. H., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T., Norton, J. P., Perrin, C., and Pierce, S. A.: Characterising performance of environmental models, Environ. Modell. Softw., 40, 1–20, https://doi.org/10.1016/j.envsoft.2012.09.011, 2013.
Publications Copernicus
Download
Short summary
Models are tools for understanding how watersheds function and may respond to land cover and climate change. Before we can use models towards these purposes, we need to ensure that a model adequately represents watershed-wide observations. In this paper, we propose a new way to evaluate whether model simulations match observations, using a variety of information sources. We show how this information can reduce uncertainty in inputs to models, reducing uncertainty in hydrologic predictions.
Models are tools for understanding how watersheds function and may respond to land cover and...
Citation