Articles | Volume 21, issue 4
https://doi.org/10.5194/hess-21-1911-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-1911-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climate change impacts on Yangtze River discharge at the Three Gorges Dam
Steve J. Birkinshaw
CORRESPONDING AUTHOR
School of Civil Engineering and Geosciences, Newcastle University,
Newcastle, UK
Selma B. Guerreiro
School of Civil Engineering and Geosciences, Newcastle University,
Newcastle, UK
Alex Nicholson
Ove Arup and Partners, Admiral House, 78 East St., Leeds, UK
Qiuhua Liang
School of Civil Engineering and Geosciences, Newcastle University,
Newcastle, UK
Paul Quinn
School of Civil Engineering and Geosciences, Newcastle University,
Newcastle, UK
Lili Zhang
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Bain, China Institute of Water Resources and Hydropower Research,
Beijing, China
Bin He
School of Hydraulic Engineering, Dalian University of Technology,
Dalian, China
Junxian Yin
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Bain, China Institute of Water Resources and Hydropower Research,
Beijing, China
Hayley J. Fowler
School of Civil Engineering and Geosciences, Newcastle University,
Newcastle, UK
Related authors
Eleyna L. McGrady, Stephen J. Birkinshaw, Elizabeth Lewis, Ben A. Smith, Claire L. Walsh, Geoff Darch, and Jeremy Dearlove
EGUsphere, https://doi.org/10.5194/egusphere-2025-1824, https://doi.org/10.5194/egusphere-2025-1824, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We developed a method to improve a complex hydrological model that simulates how rivers respond to rainfall across the UK. By automatically adjusting the model’s settings, we made it more accurate at predicting river flows in almost 700 locations. Our method also helps ensure the model reflects real-world conditions. Results provide evidence that detailed hydrological models can now be used at a national scale, which is important for managing water and planning for future climate changes.
Eleyna L. McGrady, Stephen J. Birkinshaw, Elizabeth Lewis, Ben A. Smith, Claire L. Walsh, Geoff Darch, and Jeremy Dearlove
EGUsphere, https://doi.org/10.5194/egusphere-2025-1824, https://doi.org/10.5194/egusphere-2025-1824, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We developed a method to improve a complex hydrological model that simulates how rivers respond to rainfall across the UK. By automatically adjusting the model’s settings, we made it more accurate at predicting river flows in almost 700 locations. Our method also helps ensure the model reflects real-world conditions. Results provide evidence that detailed hydrological models can now be used at a national scale, which is important for managing water and planning for future climate changes.
David Ronald Archer, Felipe de Mendonca Fileni, Samuel Archer Watkiss, and Hayley Jane Fowler
EGUsphere, https://doi.org/10.5194/egusphere-2025-456, https://doi.org/10.5194/egusphere-2025-456, 2025
Short summary
Short summary
Our intention is to highlight the unacknowledged and sometimes fatal hazard of rapid rate of rise in river level and flow. Using the full 15-minute records of 260 Scottish gauging stations we have extracted the maximum rates of 15-minute rise in events generated by intense convective rainfall and described their characteristics in terms of the severity of the hazard within and between catchments. Events have all the properties of kinematic shock whose mere existence has previously been doubted.
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024, https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
Cited articles
Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and Seibert, J.: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments, Water Resour. Res., 50, 7541–7562, https://doi.org/10.1002/2014WR015549, 2014.
Bartholomé, E., Belward, A. S., Achard, F., Bartalev, S., Carmona-Moreno, C., Eva, H., Fritz, S., Grégoire, J.-M., Mayaux, P., and Stibig, H.-J.: GLC 2000, Global Land Cover mapping for the year 2000, European Commission, DG Joint Research Centre, EUR 20524, 2002.
Bathurst, J. C., Birkinshaw, S. J., Cisneros, F., Fallas, J., Iroumé, A., Iturraspe, R., Novillo, M. G., Urciuolo, A., Alvarado, A., Coello, C., and Huber, A.: Forest impact on floods due to extreme rainfall and snowmelt in four Latin American environments 2: Model analysis, J. Hydrol., 400, 292–304, 2011.
Birkinshaw, S. J.: Technical Note: Automatic river network generation for a physically-based river catchment model, Hydrol. Earth Syst. Sci., 14, 1767–1771, https://doi.org/10.5194/hess-14-1767-2010, 2010.
Birkinshaw, S. J., Bathurst, J. C., and Robinson, M.: 45 years of non-stationary hydrology over a forest plantation growth cycle, Coalburn catchment, Northern England, J. Hydrol., 519, 559–573, https://doi.org/10.1016/j.jhydrol.2014.07.050, 2014.
Birkinshaw, S. J., James, P., and Ewen, J.: Graphical user interface for rapid set-up of SHETRAN physically-based river catchment model, Environ. Modell. Softw., 25, 609–610, https://doi.org/10.1016/j.envsoft.2009.11.011, 2010.
Birkinshaw, S.: Yangtze climate change data and Shetran simulation input files and results, Newcastle University, https://doi.org/10.17634/120693-2, 2017.
Breuer, L., Eckhardt, K., and Frede, H.-G.: Plant parameter values for models in temperate climates, Ecol. Model., 169, 237–293, https://doi.org/10.1016/S0304-38000300274-6, 2003.
Chen, L. and Frauenfeld, O. W.: A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections, J. Geophy. Res.-Atmos., 119, 5767–5786, https://doi.org/10.1002/2013JD021190, 2014.
Chen, S., Liu, Y., and Thomas, A.: Climatic change on the Tibetan Plateau: potential evapotranspiration trends from 1961–2000, Climatic Change., 76, 291–319, https://doi.org/10.1007/s10584-006-9080-z, 2006.
Dai, H., Cao, G., and Su, H.: Management and Construction of the Three Gorges Project, J. Constr. Eng. M.-ASCE, 132, 615–619, 2006.
Dai, Z., Chu, A., Stive, M. J. F., and Yao, H.: Impact of the Three Gorges Dam Overruled by an Extreme Climate Hazard, Nat. Hazards. Rev., 13, 310–316, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000081, 2012.
Diaz-Nieto, J. and Wilby, R. L.: A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom, Climatic Chang., 69, 245–268, https://doi.org/10.1007/s10584-005-1157-6, 2005.
Dong, G., Zhang, H., Moise, A., Hanson, L., Liang, P., and Ye, H.: CMIP5 model-simulated onset, duration and intensity of the Asian summer monsoon in current and future climate, Clim. Dynam., 46, 355–382, https://doi.org/10.1007/s00382-015-2588-z, 2016.
Ekström, M., Jones, P. D., Fowler, H. J., Lenderink, G., Buishand, T. A., and Conway, D.: Regional climate model data used within the SWURVE project – 1: projected changes in seasonal patterns and estimation of PET, Hydrol. Earth Syst. Sci., 11, 1069–1083, https://doi.org/10.5194/hess-11-1069-2007, 2007.
Ewen, J., Parkin, G., and O'Connell, P. E.: SHETRAN: distributed river basin flow and transport modeling system, J. Hydrol. Eng., 5, 250–258, https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(250), 2000.
FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil Database (version 1.2), FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2012.
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 1547–1578, https://doi.org/10.1002/joc.1556, 2007.
Ge, S., Wu, Q. B., Lu, N., Jiang, G. L., and Ball, L.: Groundwater in the Tibet Plateau, western China, Geophys. Res. Lett., 35, L18403, https://doi.org/10.1029/2008GL034809, 2008.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R, and Kommareddy, A.: High-resolution global maps of 21st-century forest cover change, Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013.
Hayashi, S., Murakami, S., Xu, K. Q., Watanabe, M., and Xu, B. H.: Daily runoff simulation by an integrated catchment model in the middle and lower regions of the Changjiang basin, China, J. Hydrol. Eng., 13, 846–862, https://doi.org/10.1061/(ASCE)1084-0699(2008)13:9(846), 2008.
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282, 104–115, 2003.
Immerzeel, W. W., Van Beek, L. P., and Bierkens, M. F.: Climate change will affect the Asian water towers. Science, 328, 1382–1385, https://doi.org/10.1126/science.118318, 2010.
Jiang, D. and Tian, Z.: East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models, Chinese Sci. Bull., 58, 1427–1435, https://doi.org/10.1007/s11434-012-5533-0, 2013.
Kingston, D. G., Todd, M. C., Taylor, R. G., Thompson, J. R., and Arnell, N. W.: Uncertainty in the estimation of potential evapotranspiration under climate change, Geophys. Res. Lett., 36, L20403, https://doi.org/10.1029/2009GL040267, 2009.
Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges in combining projections from multiple climate models, J. Climate, 23, 2739–2758, https://doi.org/10.1175/2009JCLI3361.1, 2010.
Koirala, S., Hirabayashi, Y., Mahendran, R., and Kanae, S.: Global assessment of agreement among streamflow projections using CMIP5 model outputs, Environ. Res. Lett., 9, 064017, https://doi.org/10.1088/1748-9326/9/6/064017, 2014.
Lee, J. Y. and Wang, B.: Future change of global monsoon in the CMIP5, Clim. Dynam., 42, 101–119, https://doi.org/10.1007/s00382-012-1564-0, 2014.
Li, K., Zhu, C., Wu, L., and Huang, L.: Problems caused by the Three Gorges Dam construction in the Yangtze River basin: a review, Environ. Rev., 21, 127–135, https://doi.org/10.1139/er-2012-0051, 2013.
Li, X., Masuda, H., Koba, K., and Zeng, H.: Nitrogen isotope study on nitrate-contaminated groundwater in the Sichuan Basin, China, Water Air Soil Poll., 178, 145–156, https://doi.org/10.1007/s11270-006-9186-y, 2007.
Liu, J., Zhang, Z., Xu, X., Kuang, W., Zhou, W., Zhang, S., Li, R., Yan, C., Yu, D., Wu, S., and Jiang, N.: Spatial patterns and driving forces of land use change in China during the early 21st century, J. Geogr. Sci., 20, 483–494, https://doi.org/10.1007/s11442-010-0483-4, 2010.
Ma, Q., Xie, Z. H., and Zhao, L. N.: Variations of terrestrial water storage in the Yangtze River Basin under climate change scenarios, Atmos. Oceanic Sci. Lett., 3, 293–298, 2010.
McMahon, T. A., Peel, M. C., and Karoly, D. J.: Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation, Hydrol. Earth Syst. Sci., 19, 361–377, https://doi.org/10.5194/hess-19-361-2015, 2015.
McSweeney, C. F., Jones, R. G., Lee, R. W., and Rowell, D. P.: Selecting CMIP5 GCMs for downscaling over multiple regions, Clim. Dynam., 44, 3237–3260, https://doi.org/10.1007/s00382-014-2418-8, 2015.
Milly, P. C. D. and Dunne, K. A.: Potential evapotranspiration and continental drying, Nature Climate Change, 6, 946–949, https://doi.org/10.1038/nclimate3046, 2016.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, T. ASABE, 50, 885–900, 2007.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., and Kram, T.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010.
Nakićenović, N. J., Alcamo, G., Davis, B., De Vries, J., Fenhann, S., Gaffin, K., Gregory, A., Grubler, T., Jung, T., Kram, T., Lebre La Rovere, E., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., and Dadi, Z.: IPCC Special Report on Emissions Scenarios (SRES), Cambridge University Press, Cambridge, 2000.
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., and Friedlingstein, P.: The impacts of climate change on water resources and agriculture in China, Nature, 467, 43–51, https://doi.org/10.1038/nature09364, 2010.
Prudhomme, C. and Williamson, J.: Derivation of RCM-driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections, Hydrol. Earth Syst. Sci., 17, 1365–1377, https://doi.org/10.5194/hess-17-1365-2013, 2013.
Ragettli, S., Pellicciotti, F., Bordoy, R., and Immerzeel, W. W.: Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change, Water Resour. Res., 49, 6048–6066, https://doi.org/10.1002/wrcr.20450, 2013.
Sanderson, B. M., O'Neill, B. C., Kieh, J. T., Meehl, G. A., Knutti, R., and Washington, W. M.: The response of the climate system to very high greenhouse gas emission scenarios, Environ. Res. Lett., 6, 034005. https://doi.org/10.1088/1748-9326/6/3/034005, 2011.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., and Rudolf, B.: GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle, Theor. Appl. Climatol., 115, 15–40, https://doi.org/10.1007/s00704-013-0860-x, 2014.
Song, F. and Zhou, T.: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection, J. Climate, 27, 1679–1697, https://doi.org/10.1002/2013GL058705, 2014.
Sperber, K. R., Annamalai, H., Kang, I. S., Kitoh, A., Moise, A., Turner, A., Wang, B., and Zhou, T.: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dynam., 41, 2711–2744, https://doi.org/10.1007/s00382-012-1607-6, 2013.
Sperna Weiland, F. C., Tisseuil, C., Dürr, H. H., Vrac, M., and van Beek, L. P. H.: Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study, Hydrol. Earth Syst. Sci., 16, 983–1000, https://doi.org/10.5194/hess-16-983-2012, 2012.
Sunyer, M. A., Madsen, H., and Ang, P. H.: A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change, Atmos. Res., 103, 119–128, https://doi.org/10.1016/j.atmosres.2011.06.011, 2010.
Tao, H., Gemmer, M., Jiang, J., Lai, X., and Zhang, Z.: Assessment of CMIP3 climate models and projected changes of precipitation and temperature in the Yangtze River Basin, China, Climatic Change, 111, 737–751, https://doi.org/10.1007/s10584-011-0144-3, 2012.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tian, D., Guo, Y., and Dong, W.: Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models, Adv. Atmos. Sci., 32, 487–496, https://doi.org/10.1007/s00376-014-4102-7, 2015.
Wang, H. J., Sun, J. Q., Chen, H. P., Zhu, Y. L., Zhang, Y., Jiang, D. B., Lang, X. M., Fan, K., Yu, E. T., and Yang, S.: Extreme climate in China: Facts, simulation and projection, Meteorol. Z., 21, 279–304, https://doi.org/10.1127/0941-2948/2012/033, 2012.
Wang, J., Sheng, Y., Gleason, C. J., and Wada, Y.: Downstream Yangtze River levels impacted by Three Gorges Dam, Environ. Res. Lett., 8, 044012, https://doi.org/10.1088/1748-9326/8/4/044012, 2013.
Wang, Y., Ding, Y., Ye, B., Liu, F., and Wang, J.: Contributions of climate and human activities to changes in runoff of the Yellow and Yangtze rivers from 1950 to 2008, Sci. China Earth Sci., 56, 1398–1412, https://doi.org/10.1007/s11430-012-4505-1, 2012.
Woo, M. K., Long, T. Y., and Thorne, R.: Simulating monthly streamflow for the Upper Changjiang, China, under climatic change scenarios, Hydrolog. Sci. J., 54, 596–605, https://doi.org/10.1623/hysj.54.3.596, 2009.
Wösten, J. H. M., Lilly, A., Nemes, A., and Le Bas, C.: Development and use of a database of hydraulic properties of European soils, Geoderma, 90, 169–185, https://doi.org/10.1016/S0016-7061(98)00132-3, 1999.
Xu, J., Yang, D., Yi, Y., Lei, Z., Chen, J., and Yang, W.: Spatial and temporal variation of runoff in the Yangtze River basin during the past 40 years, Quatern. Int., 186, 32–42, https://doi.org/10.1016/j.quaint.2007.10.014, 2008.
Yan, K., Ye, B., Zhou, D., Wu, B., Foken, T., Qin, J., and Zhou, Z.: Response of hydrological cycle to recent climate changes in the Tibetan Plateau, Climatic Change, 109, 517–534, https://doi.org/10.1007/s10584-011-0099-4, 2011.
Yang, S. L., Zhang, J., Zhu, J., Smith, J. P., Dai, S. B., Gao, A., and Li, P.: Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response, J. Geophys. Res., 110, F03006. https://doi.org/10.1029/2004JF000271, 2005.
Yang, Z. S., Wang, H. J., Saito, Y., Milliman, J. D., Xu, K., Qiao, S., and Shi, G.: Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam, Water Resour. Res., 42, W04407, https://doi.org/10.1029/2005WR003970, 2006.
Yin, H. and Li, C.: Human impact on floods and flood disasters in the Yangtze River, Geomorphology, 41, 105–109, 2001.
Zhang, Q., Singh, V. P., Sun, P., Chen, X., Zhang, Z., and Li, J.: Precipitation and streamflow changes in China: changing patterns, causes and implications, J. Hydrol., 410, 204–216, https://doi.org/10.1016/j.jhydrol.2011.09.017, 2011.
Zhang, Z., Chen, X., Xu, C. Y., Yuan, L., Yong, B., and Yan, S.: Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50 years, J. Hydrol., 409, 81–93, https://doi.org/10.1016/j.jhydrol.2011.07.041, 2011.
Zhou, X. and Li, C.: Hydrogeochemistry of deep formation brines in the central Sichuan Basin, China, J. Hydrol., 138, 1–15, 1992.
Short summary
The Yangtze River basin in China is home to more than 400 million people and susceptible to major floods. We used projections of future precipitation and temperature from 35 of the most recent global climate models and applied this to a hydrological model of the Yangtze. Changes in the annual discharge varied between a 29.8 % decrease and a 16.0 % increase. The main reason for the difference between the models was the predicted expansion of the summer monsoon north and and west into the basin.
The Yangtze River basin in China is home to more than 400 million people and susceptible to...