Articles | Volume 20, issue 12
https://doi.org/10.5194/hess-20-4895-2016
https://doi.org/10.5194/hess-20-4895-2016
Research article
 | 
15 Dec 2016
Research article |  | 15 Dec 2016

Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model

Gabriëlle J. M. De Lannoy and Rolf H. Reichle

Related authors

Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023,https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
The Fire Weather Index Improved for Boreal Peatlands Using Hydrological Modeling and Satellite-Based L-band Microwave Observations
Jonas Mortelmans, Anne Felsberg, Gabriëlle De Lannoy, Sander Veraverbeke, Robert Field, Niels Andela, and Michel Bechtold
EGUsphere, https://doi.org/10.5194/egusphere-2023-1451,https://doi.org/10.5194/egusphere-2023-1451, 2023
Short summary
Probabilistic Hydrological Estimation of LandSlides (PHELS): global ensemble landslide hazard modelling
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
EGUsphere, https://doi.org/10.5194/egusphere-2023-869,https://doi.org/10.5194/egusphere-2023-869, 2023
Short summary
Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP
Sara Modanesi, Christian Massari, Michel Bechtold, Hans Lievens, Angelica Tarpanelli, Luca Brocca, Luca Zappa, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 4685–4706, https://doi.org/10.5194/hess-26-4685-2022,https://doi.org/10.5194/hess-26-4685-2022, 2022
Short summary
Estimating global landslide susceptibility and its uncertainty through ensemble modeling
Anne Felsberg, Jean Poesen, Michel Bechtold, Matthias Vanmaercke, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 22, 3063–3082, https://doi.org/10.5194/nhess-22-3063-2022,https://doi.org/10.5194/nhess-22-3063-2022, 2022
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
A semi-parametric hourly space–time weather generator
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023,https://doi.org/10.5194/hess-27-3957-2023, 2023
Short summary
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023,https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023,https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023,https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu
Hydrol. Earth Syst. Sci., 27, 2919–2933, https://doi.org/10.5194/hess-27-2919-2023,https://doi.org/10.5194/hess-27-2919-2023, 2023
Short summary

Cited articles

Al-Yaari, A., Wigneron, J.-P., Ducharne, A., Kerr, Y., Wagner, W., Lannoy, G. D., Reichle, R., Bitar, A. A., Dorigo, W., Richaume, P., and Mialon, A.: Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land), Remote Sens. Environ., 152, 614–626, 2014.
Alvarez-Garreton, C., Ryu, D., Western, A. W., Su, C.-H., Crow, W. T., Robertson, D. E., and Leahy, C.: Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-distributed schemes, Hydrol. Earth Syst. Sci., 19, 1659–1676, https://doi.org/10.5194/hess-19-1659-2015, 2015.
Bell, J., Palecki, M., Baker, C., Collins, W., Lawrimore, J., Leeper, R., Hall, M., Kochendorfer, J., Meyer, T., Wilson, T., and Diamond, H.: US climate reference network soil moisture and temperature observations, J. Hydrometeorol., 14, 977–988, 2013.
Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., and Savoie, M.: Correction: Incremental but Significant Improvements for Earth-Gridded Data Sets, ISPRS Int. J. Geo.-Inf., 3, 1154–1156, 2014.
Download
Short summary
The SMOS mission provides various various products to estimate soil moisture. This paper evaluates the performance of assimilating either Level-1-based multi-angle brightness temperature (Tb) observations, Level-1-based single-angle Tb observations, or Level 2 soil moisture retrievals, into the NASA Catchment land surface model.